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Abstract
Given an entanglementmeasureE, the entanglement of a quantum channel is defined as the largest
amount of entanglement E that can be generated from the channel, if the sender and receiver are not
allowed to share a quantum state before using the channel. The amortized entanglement of a quantum
channel is defined as the largest net amount of entanglement Ethat can be generated from the
channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our
main technical result is that amortization does not enhance the entanglement of an arbitrary quantum
channel, when entanglement is quantified by themax-Rains relative entropy.We prove this statement
by employing semi-definite programming (SDP)duality and SDPformulations for themax-Rains
relative entropy and a channel’smax-Rains information, found recently inWang et al (arXiv:1709.
00200). Themain application of our result is a single-letter, strong converse, and efficiently
computable upper bound on the capacity of a quantumchannel for transmitting qubits when assisted
by positive-partial-transpose preserving (PPT-P) channels between every use of the channel. As the
class of local operations and classical communication (LOCC) is contained in PPT-P, our result
establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel,
which is relevant in the context of distributed quantum computation and quantumkey distribution.

1. Introduction

Oneof themaingoals of quantuminformation theory is tounderstand the fundamental limitationson
communicationwhena sender and receiver are connectedby aquantumcommunication channel [1–3]. Since it
mightbedifficult to transmit information reliably bymakinguseof a channel just once, a practically relevant setting is
when the sender and receiveruse the channelmultiple times,with the goal being tomaximize the rate of
communication subject to a constraint on the errorprobability. The capacityof aquantumchannel is defined tobe the
maximumrateof reliable communication, such that the errorprobability tends to zero in the limitwhen the channel is
utilized anarbitrarynumberof times.

Among the various capacities of a quantumchannel  , theLOCC-assistedquantumcapacity «( )Q [4]is
particularly relevant for tasks suchasdistributedquantumcomputation. In the setting corresponding to this capacity,
the sender and receiver are allowed toperformarbitrary local operations and classical communication (LOCC)
betweeneveryuseof the channel, and the capacity is equal to themaximumrate,measured inqubits per channeluse, at
whichqubits canbe transmitted reliably fromthe sender to the receiver [4].Due to the teleportationprotocol [5], this
rate is equal to themaximumrate atwhich shared entangledbits (Bell pairs) canbe generated reliablybetween the
sender and the receiver [4]. TheLOCC-assistedquantumcapacity of certain channels suchas thequantumerasure
channelhasbeenknown for some time [6], but in general, it remains anopenquestion to characterize «( )Q .One
canaddress this questionby establishing either lowerboundsorupperboundson «( )Q .
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In this paper, we are interested in placing upper bounds on the LOCC-assisted quantum capacity, and one
way of simplifying themathematics behind this task is to relax the class of free operations that the sender and
receiver are allowed to performbetween each channel use.With this inmind, we follow the approach of
[7, 8]and relax the set LOCCto a larger class of operations known as PPT-preserving (PPT-P), standing for
channels that are positive-partial transpose preserving. The resulting capacity is then known as the PPT-P-
assisted quantum capacity «( )‐QPPT P, , and it is equal to themaximum rate at which qubits can be
communicated reliably from a sender to a receiver, when they are allowed to use a PPT-P channel in between
every use of the actual channel  . Figure 1 provides a visualization of such a PPT-P-assisted quantum
communication protocol. Due to the containment LOCC⊂PPT-P [7, 8], the inequality

 « «( ) ( ) ( )‐Q Q 1PPT P,

holds for all channels  . Thus, if wefind an upper bound on «( )‐QPPT P, , then by (1), such an upper bound
also bounds the physically relevant LOCC-assisted quantum capacity «( )Q .

A general approach for bounding these assisted capacities of a quantum channel has been developed recently
in [9](see [10–14] for related notions). The starting point is to consider an entanglementmeasure E(A;B)ρ [15],
which is evaluated for a bipartite state ρAB. Given such an entanglementmeasure, one can define the
entanglement ( )E of a channel  in terms of it by taking an optimization over all pure, bipartite states that
could be input to the channel:

 =
y

w( ) ( ) ( )E E R Bsup ; , 2
RA

where w y=  ( )RB A B RA . The channel’s entanglement ( )E characterizes the amount of entanglement that a
sender and receiver can generate by using the channel if they do not share entanglement prior to its use. Due to
the properties of an entanglementmeasure and thewell known Schmidt decomposition theorem, it suffices to
take systemR isomorphic to the channel input systemA and furthermore to optimize over pure statesψRA.

One can alternatively consider the amortized entanglement ( )EA of a channel  as the following
optimization [9]:

 = ¢ ¢ - ¢ ¢
r

t r

¢ ¢

( ) [ ( ) ( ) ] ( )E E A BB E A A Bsup ; ; , 3A

A AB

where t r=¢ ¢  ¢ ¢( )A BB A B A AB and r ¢ ¢A AB is a state. The supremum is with respect to all states r ¢ ¢A AB and the
systems ¢ ¢A B arefinite-dimensional but could be arbitrarily large (so that the supremummight never be achieved
for any particularfinite-dimensional ¢ ¢A B , but only in the limit of unbounded dimension). Thus, ( )EA is not
known to be computable in general. The amortized entanglement quantifies the net amount of entanglement
that can be generated by using the channel  , if the sender and receiver are allowed to beginwith some initial
entanglement in the formof the state r ¢ ¢A AB . That is, ¢ ¢ r( )E A A B; quantifies the entanglement of the initial state
r ¢ ¢A AB , and ¢ ¢ t( )E A BB; quantifies thefinal entanglement of the state after the channel acts. As observed in [9],
the inequality

 ( ) ( ) ( )E E 4A

always holds for any entanglementmeasure E and for any channel  , simply because one could take theB′
system trivial in the optimization for ( )EA , which is the same as not allowing entanglement between the sender
and receiver before the channel acts. It is nontrivial if the opposite inequality

 ( ) ( ) ( )E E 5A

?

holds, which is known to occur generally for certain entanglementmeasures [9, 12, 16]or for certain channels
with particular symmetries [9].

Figure 1.Aprotocol for PPT-P-assisted quantum communication that uses a quantum channel n times. Every channel use is
interleaved by a PPT-preserving channel. The goal of such a protocol is to produce an approximatemaximally entangled state in the
systemsMA andMB, where Alice possesses systemMA andBob systemMB.
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One of themain observations of [9], connected to earlier developments in [10–14], is that the amortized
entanglement of a channel serves as an upper bound on the entanglement of thefinal stateωAB generated by an
LOCC- or PPT-P-assisted quantum communication protocol that uses the channel n times:

w( ) ( ) ( )E A B nE; . 6A

The basic intuition forwhy this bound holds is that, after a given channel use, the sender and receiver are allowed
to perform a free operation such as LOCCor PPT, and thus the state that they share before the next channel use
could have some entanglement. So the amount of entanglement generated by each channel use cannot exceed
the amortized entanglement ( )EA , and if the channel is used n times in such a protocol, then the entanglement
of thefinal state wAB cannot exceed the channel’s amortized entanglementmultiplied by the number n of channel
uses. Such a general bound can then be used to derive particular upper bounds on the assisted quantum
capacities, such as strong converse bounds. Clearly, if the inequality in (5) holds, then  =( ) ( )E EA and the
upper bound becomesmuch simpler because the channel entanglement ( )E is simpler than the amortized
entanglement ( )EA . Thus, one of themain contributions of [9]was to reduce the physical question of
determiningmeaningful upper bounds on the assisted capacities of  to a purelymathematical question of
whether amortization can enhance the entanglement of a channel, i.e., whether the equality

 =( ) ( ) ( )E E 7A
?

holds for a given entanglementmeasure Eand/or channel  . Furthermore, it was shown in [9] how to
incorporate the previous results of [4, 17, 18] into the amortization framework of [9].

In this paper, we solve themathematical question posed above for themax-Rains information ( )Rmax of a
quantum channel  , by proving that amortization does not enhance it; i.e., we prove that

 =( ) ( ) ( )R R , 8Amax, max

for all channels  , where ( )R Amax, denotes the amortizedmax-Rains information.Note that ( )Rmax and
( )R Amax, are respectively defined by taking the entanglementmeasure E in (2)and (3)to be themax-Rains

relative entropy, whichwe define formally in the next section.Wenote here that the equality in (8) solves an
open question posed in the conclusion of [12], andwe set our result in the context of the prior result of [12] and
other literature in section 6. Themax-Rains information of a quantum channel is a special case of a quantity
known as the sandwichedRényi–Rains information [19]andwas recently shown to be equal to an information
quantity discussed in [20, 21] and based on semi-definite programming (SDP). To prove ourmain technical
result (the equality in (8)), we criticallymake use of the tools and framework developed in the recent works
[20–22]. In particular, we employ SDPduality [23] and thewell knownChoi isomorphism to establish ourmain
result, with the proof consisting of just a few lines once the framework from [20–22]is set in place.

Themain application of the equality in (8)is an efficiently computable, single-letter, strong converse bound
on «( )‐QPPT P, , the PPT-P-assisted quantum capacity of an arbitrary channel  . Due to (1), this is also an
upper bound on the physically relevant LOCC-assisted quantum capacity «( )Q . To arrive at this result, we
simply apply the general inequality in (6)alongwith the equality in (8). For the benefit of the reader, we give
technical details of this application in section 4 . The quantity ( )Rmax has already been shown in [21]to be
efficiently computable via a semi-definite program, and in section 4, we explain how ( )Rmax is both ‘single-
letter’ and ‘strong converse’.

The usefulness of the upper bound given in our paper is ultimately relatedwith the importance of PPT-P
channels. This is because the set of PPT-P channels contains the set of separable channels, and the set of
separable channels strictly contains the set of LOCC channels, as shown in [24] and then in [25] for a classical
scenario.Moreover, there is an entanglementmonotone that can be increased by separable channels [26]. Thus,
in general, PPT-P channels can increase entanglement, although this increase is not detectable by themax-Rains
information. Thus, in this sense, themax-Rains informationmight be considered a roughmeasure for bounding
LOCC-assisted quantum capacity. Therefore, as stressed earlier, the usefulness of our bound on the PPT-P
assisted quantum capacity is directly related to PPT-P channels.

Our paper is organized as follows. In the next section, we review some backgroundmaterial before starting
with themain development. Section 3 gives a short proof of ourmain technical result, and section 4 discusses its
application as an efficiently computable, single-letter, strong converse bound on «( )QPPT, . In section 5, we
revisit a result from [12], inwhich it was shown that amortization does not enhance a channel’smax-relative
entropy of entanglement. The authors of [12]proved this statement by employing complex interpolation theory
[27].We prove themain inequality underlying this statement using amethod different from that used in [12],
but along the lines of that given for our proof of (8) (i.e., convex programming duality), andwe suspect that our
alternative approach could be useful in future applications. In section 6, we discuss howour resultfits into the
prior literature on assisted quantum capacities and strong converses.We concludewith a brief summary in
section 7.
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2. Background andnotation

In this section, we provide background on theChoi isomorphism, partial transpose, PPTstates, separable states,
PPT-P channels,max-relative entropy,max-Rains relative entropy, andmax-Rains information. For basic
concepts and standard notation used in quantum information theory, we point the reader to [3].

TheChoi isomorphism represents awell knownduality between channels and states, often employed in
quantum information theory. Let  A B be a quantum channel, and let ¡ñ∣ RA denote themaximally entangled
vector

å¡ñ = ñ ñ∣ ∣ ∣ ( )i i , 9RA
i

R A

where theHilbert spacesR andA are of the same dimension and ñ{∣ }i R i and ñ{∣ }i A i arefixed orthonormal
bases. TheChoi operator for a channel  A B is defined as

 = Ä ¡ñá¡( )(∣ ∣ ) ( )J id , 10RB R A B RA

where idR denotes the identitymap on systemR. One can recover the action of the channel  A B on an
arbitrary input state r ¢SA as follows:

r rá¡ Ä ¡ñ =¢ ¢ ¢ ∣ ∣ ( ) ( )J , 11A R SA RB A R A B SA

whereA′ is a system isomorphic to the channel inputA. The above identity can be understood in terms of a
postselected variant [28, 29] of the quantum teleportation protocol [5]. Another identity we recall is that

á¡ Ä ¡ñ =∣ ( )∣ { } ( )X I XTr , 12RA SR A RA R SR

for an operatorXSR acting on ÄS R.
For afixed basis ñ{∣ }i B i, the partial transpose is the followingmap:

åÄ = Ä ñá Ä ñá( )( ) ( ∣ ∣ ) ( ∣ ∣ ) ( )T X I i j X I i jid , 13A B AB
i j

A B AB A B
,

whereXAB is an arbitrary operator acting on a tensor-productHilbert space ÄA B. For simplicity we often
employ the abbreviation = Ä( ) ( )( )T X T XidB AB A B AB . The partial transposemap plays a role in the following
well known transpose trick identity:

Ä ¡ñ = Ä ¡ñ( )∣ ( ( ) )∣ ( )X I T X I . 14SR A RA A SA R RA

The partial transposemap plays another important role in quantum information theory because a separable
(unentangled) state

ås t w= Ä Î( ) ( ) ( )p x A BSEP : , 15AB
x

A
x

B
x

for a distribution p(x) and states tA
x and wB

x , stays within the set of separable states under thismap [30, 31]:

s Î( ) ( ) ( )T A BSEP : . 16B AB

Thismotivates defining the set of PPTstates, which are those statesσAB for which s( )T 0B AB . This in turn
motivates defining themore general set of positive semi-definite operators [32]:

 s s s¢ =   ( ) { ( ) } ( )A B TPPT : : 0 1 , 17AB AB B AB 1

wherewe have employed the trace norm, defined for an operatorX as =  {∣ ∣}X XTr1 with =∣ ∣ †X X X .We
then have the containments Ì Ì ¢SEP PPT PPT .

An LOCCquantum channel   ¢ ¢AB A B consists of an arbitrarily large but finite number of compositions of
the following:

1. Alice performs a quantum instrument, which has both a quantum and classical output. She forwards the
classical output to Bob, who then performs a quantum channel conditioned on the classical data received.
This sequence of actions corresponds to a channel of the following form:

 å Ä ¢  ¢ ( ), 18
x

A A
x

B B
x

where   ¢{ }A A
x

x is a collection of completely positivemaps such that å  ¢x A A
x is a quantum channel and

  ¢{ }B B
x

x is a collection of quantum channels.

2. The situation is reversed, with Bob performing the initial instrument, who forwards the classical data to
Alice, who then performs a quantum channel conditioned on the classical data. This sequence of actions
corresponds to a channel of the form in (18), with theA andB labels switched.
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Aquantum channel   ¢ ¢AB A B is a PPT-P channel if themap ¢  ¢ ¢◦ ◦T TB AB A B B is a quantum channel
[7, 8]. Any LOCC channel is a PPT-P channel [7, 8].

Themax-relative entropy of a state ρ relative to a positive semi-definite operatorσ is defined as [33]

r s l r s= l( ) { } ( )D inf : 2 . 19max

If r sÍ( ) ( )supp supp , then r s = ¥( )Dmax . Themax-relative entropy ismonotone non-increasing under
the action of a quantum channel  [33], in the sense that

 r s r s ( ) ( ( ) ( )) ( )D D . 20max max

The above inequality is also called the data processing inequality formax-relative entropy.
Themax-Rains relative entropy of a state ρAB is defined as

r s=r
s Î ¢

( ) ( ) ( )
( )

R A B D; min , 21
A B

AB ABmax
PPT :

max
AB

and it ismonotone non-increasing under the action of a PPT-P quantum channel   ¢ ¢AB A B [19], in the sense
that

 ¢ ¢r w( ) ( ) ( )R A B R A B; ; , 22max max

for w r=¢ ¢  ¢ ¢( )A B AB A B AB . Themax-Rains information of a quantum channel  A B is defined by replacing E
in (2)with themax-Rains relative entropyRmax; i.e.,

 =
f

w( ) ( ) ( )R R S Bmax ; , 23max max
SA

where w f=  ( )SB A B SA andfSA is a pure state, with =∣ ∣ ∣ ∣S A . The amortizedmax-Rains information of a
channel, denoted as ( )R Amax, , is defined by replacing E in (3)with themax-Rains relative entropyRmax.

Recently, in [22, equation (8)] (see also [21, equation (36)]), themax-Rains relative entropy of a state ρABwas
expressed as

=r r( ) ( ) ( )R A B W A B; log ; , 24max 2

where r( )W A B; is the solution to the following semi-definite program:


 r

+

-

{ }

( ) ( )

C D

C D

T C D

minimize Tr

subject to , 0,

. 25

AB AB

AB AB

B AB AB AB

Similarly, in [21, equation (21)], themax-Rains information of a quantum channel  A B was expressed as

 = G( ) ( ) ( )R log , 26max

where G( ) is the solution to the following semi-definite program:







+

-

¥ { }

( ) ( )

V Y

Y V

T V Y J

minimize Tr

subject to , 0,

. 27

B SB SB

SB SB

B SB SB SB

These formulations of r( )R A B;max and ( )Rmax are the tools that we use to prove ourmain technical result,
proposition 1. It is worthmentioning that the formulations above follow by employing the theory of SDP and its
duality.

3.Main technical result

The following proposition constitutes ourmain technical result, and an immediate corollary of it is that
amortization does not enhance themax-Rains information of a quantum channel:

Proposition 1. Let r ¢ ¢A AB be a state and let  A B be a quantum channel. Then

¢ ¢ + ¢ ¢w r( ) ( ) ( ) ( )R A BB R R A A B; ; , 28max max max

where

w r=¢ ¢  ¢ ¢( ) ( ). 29A BB A B A AB

Proof.By removing logarithms and applying (24) and (26), the desired inequality is equivalent to the followingone:

¢ ¢ G ¢ ¢w r( ) ( ) · ( ) ( )W A BB W A A B; ; , 30
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and sowe aim to prove this one. Exploiting the identity in (25), we find that

¢ ¢ = +r ¢ ¢ ¢ ¢( ) { } ( )W A A B C D; minTr , 31A AB A AB

subject to the constraints

¢ ¢ ¢ ¢ ( )C D, 0, 32A AB A AB

 r-¢ ¢ ¢ ¢ ¢ ¢ ¢( ) ( )T C D , 33B A AB A AB A AB

while the identity in (27) gives that

G = + ¥ ( ) { } ( )V Ymin Tr , 34B SB SB

subject to the constraints

 ( )Y V, 0, 35SB SB

-( ) ( )T V Y J . 36B SB SB SB

The identity in (25) implies that the left-hand side of (30)is equal to

¢ ¢ = +w ¢ ¢ ¢ ¢( ) { } ( )W A BB E F; minTr , 37A BB A BB

subject to the constraints

¢ ¢ ¢ ¢ ( )E F, 0, 38A BB A BB

 r - ¢ ¢ ¢ ¢ ¢ ¢ ¢( ) ( ) ( )T E F . 39A B A AB BB A BB A BB

With these SDP formulations in place, we can now establish the inequality in (30) bymaking judicious
choices for ¢ ¢EA BB and ¢ ¢FA BB . Let ¢ ¢CA AB and ¢ ¢DA AB be optimal for ¢ ¢ r( )W A A B; , and letYSB andVSB be optimal
for G( ). Let ¡ñ∣ SA be themaximally entangled vector, as defined in (9). Pick

=á¡ Ä + Ä ¡ñ
= á¡ Ä + Ä ¡ñ

¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

∣ ∣
∣ ∣

E C V D Y

F C Y D V

,

.
A BB SA A AB SB A AB SB SA

A BB SA A AB SB A AB SB SA

Wenote that these choices are somewhat similar to thosemade in the proof of [21], Proposition6, and they can
be understood roughly via (11) as a postselected teleportation of the optimal operators of ¢ ¢ r( )W A A B; through
the optimal operators of G( ), with the optimal operators of ¢ ¢ r( )W A A B; being in correspondencewith the
input state r ¢ ¢A AB through (33) and the optimal operators of G( ) being in correspondencewith theChoi
operator JSB through (36).We then have that ¢ ¢ ¢ ¢E F, 0A BB A BB because ¢ ¢CA AB , ¢ ¢DA AB ,YSB,VSB�0. Consider
that



 r
r

- = á¡ - Ä - ¡ñ
= á¡ - Ä - ¡ñ

á¡ Ä ¡ñ
=

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢

¢ ¢

 ¢ ¢

( ) [ ∣ ( ) ( )∣ ]
∣ ( ) ( )∣
∣ ∣

( ) ( )

T E F T C D V Y

T C D T V Y

J

. 40

BB A BB A BB BB SA A AB A AB SB SB SA

SA B A AB A AB B SB SB SA

SA A AB SB SA

A B A AB

The inequality follows from (33) and (36), and the last equality follows from (11). Also consider that





+ = á¡ + Ä + ¡ñ
= + +
= + +

+ +
= + +
= ¢ ¢ Gr

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¥

¢ ¢ ¢ ¢ ¥

 
 

{ } { ∣ ( ) ( )∣ }
{( ) ( )}
{( ) ( { })}
{ } ( { })
{ } { }
( ) · ( ) ( )

E F C D V Y

C D T V Y
C D T V Y

C D T V Y

C D V Y

W A A B

Tr Tr

Tr
Tr Tr

Tr Tr

Tr Tr

; . 41

A BB A BB SA A AB A AB SB SB SA

A AB A AB A AB AB

A AB A AB A B AB AB

A AB A AB A B AB AB

A AB A AB B AB AB

The second equality follows from (14) and (12). The inequality is a consequence ofHölder’s inequality. Thefinal
equality follows because the spectrumof an operator is invariant under the action of a (full)transpose (note, in
this case, thatTA is a full transpose because the operator +{ }V YTrB AB AB acts only on systemA).

Thus, we can conclude that our choices of ¢ ¢EA BB and ¢ ¢FA BB are feasible for ¢ ¢ w( )W A BB; . Since ¢ ¢ w( )W A BB;
involves aminimization over all ¢ ¢EA BB and ¢ ¢FA BB satisfying (38) and (39), this concludes our proof of (30). +

An immediate corollary of proposition 1is the following:

Corollary 2.Amortization does not enhance themax-Rains information of a quantum channel   ;A B i.e., the
following equality holds

 =( ) ( ) ( )R R . 42Amax, max

Proof.The inequality  ( ) ( )R RAmax, max always holds, as reviewed in (4). The other inequality is an
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immediate consequence of proposition 1. Letting r ¢ ¢A AB denote an arbitrary input state, proposition 1 implies
that

¢ ¢ - ¢ ¢w r( ) ( ) ( ) ( )R A BB R A A B R; ; , 43max max max

where w r=¢ ¢  ¢ ¢( )A BB A B A AB . Since the inequality holds for any state r ¢ ¢A AB , it holds for the supremumover all
such input states, leading to  ( ) ( )R RAmax, max . +

4. Application to PPT-P-assisted quantum communication

Wenow give ourmain application of proposition 1, which is that themax-Rains information is a single-letter,
strong converse upper bound on the PPT-P-assisted quantum capacity of any channel. The term ‘single-letter’
refers to the fact that themax-Rains information requires an optimization over a single use of the channel. Aswe
remarked previously, themax-Rains information is efficiently computable via SDP, as observed in [20, 21].
Finally, the bound is a strong converse bound because, as wewill show, if the rate of a sequence of PPT-P-assisted
quantum communication protocols exceeds themax-Rains information, then the error probability of these
protocols necessarily tends to one exponentially fast in the number of channel uses.

4.1. Protocol for PPT-P-assisted quantum communication
Webegin by reviewing the structure of a PPT-P-assisted quantum communication protocol, along the lines
discussed in [9]. In such a protocol, a sender Alice and a receiver Bob are spatially separated and connected by a
quantum channel  A B. They begin by performing a PPT-P channel Æ ¢ ¢

( )
A A B

1

1 1 1
, which leads to a PPT state

r ¢ ¢
( )
A A B
1

1 1 1
, where ¢A1 and ¢B1 are systems that are finite-dimensional but arbitrarily large. The systemA1 is such that

it can be fed into thefirst channel use. Alice sends systemA1 through thefirst channel use, leading to a state
s rº¢ ¢  ¢ ¢( )( ) ( )

A B B A B A A B
1 1

1 1 1 1 1 1 1 1
. Alice andBob then perform the PPT-P channel  ¢ ¢ ¢ ¢

( )
A B B A A B
2

1 1 1 2 2 2
, which leads to the

state

r sº¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢( ) ( )( ) ( ) ( ) . 44A A B A B B A A B A B B
2 2 1

2 2 2 1 1 1 2 2 2 1 1 1

Alice sends systemA2 through the second channel use  A B2 2
, leading to the state s rº¢ ¢  ¢ ¢( )( ) ( )

A B B A B A A B
2 1

2 2 2 2 2 2 2 2
.

This process iterates:the protocol uses the channel n times. In general, we have the following states for all
Î ¼{ }i n2, , :

r sº¢ ¢ ¢ ¢  ¢ ¢ ¢ ¢
-

- - - - - -
( ) ( )( ) ( ) ( ) , 45A A B

i
A B B A A B
i

A B B
i 1

i i i i i i i i i i i i1 1 1 1 1 1

s rº¢ ¢  ¢ ¢( ) ( )( ) ( ) , 46
A B B
i

A B A A B
i

i i i i i i i i

where  ¢ ¢  ¢ ¢- - -

( )
A B B A A B
i

i i i i i i1 1 1
is a PPTchannel. Thefinal step of the protocol consists of a PPT-P channel

 ¢ ¢
+( )

A B B M M
n 1

n n n A B
, which generates the systemsMA andMB for Alice andBob, respectively. The protocol’sfinal state

is as follows:

w sº ¢ ¢
+

¢ ¢( ) ( )( ) ( ) . 47M M A B B M M
n

A B B
n1

A B n n n A B n n n

Figure 1depicts such a protocol.
The goal of the protocol is that the final state wM MA B

is close to amaximally entangled state. Fix În M,
and e Î [ ]0, 1 . The original protocol is an e( )n M, , protocol if the channel is used n times as discussed above,

= =∣ ∣ ∣ ∣M M MA B , and if

w wF = áF Fñ( ) ∣ ∣ ( )F , 48M M M M M M M M M MA B A B A B A B A B

 e- ( )1 , 49

where thefidelity t k t kº  ( )F , 1
2 [34] and themaximally entangled state F = FñáF∣ ∣M M M MA B A B

is defined
from

åFñ º ñ Ä ñ
=

∣ ∣ ∣ ( )
M

m m
1

. 50M M
m

M

M M
1

A B A B

A rateR is achievable for PPT-P-assisted quantum communication if for all e Î ( ]0, 1 , δ>0, and
sufficiently large n, there exists an ed-( )( )n, 2 ,n R protocol. The PPT-P-assisted quantum capacity of a channel
 , denoted as «( )‐QPPT P, , is equal to the supremumof all achievable rates.

On the other hand, a rateR is a strong converse rate for PPT-P-assisted quantum communication if for all
e Î [ )0, 1 , δ>0, and sufficiently large n, there does not exist an ed+( )( )n, 2 ,n R protocol. The strong converse
PPT-P-assisted quantum capacity « ( )‐ †QPPT P, is equal to the infimumof all strong converse rates.We say that
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a channel obeys the strong converse property for PPT-P-assisted quantum communication
if  =« «( ) ( )‐ ‐ †Q QPPT P, PPT P, .

We can also consider thewhole development abovewhenwe only allow the assistance of LOCCchannels
instead of PPTchannels. In this case, we have similar notions as above, and thenwe arrive at the LOCC-assisted
quantum capacity «( )Q and the strong converse LOCC-assisted quantum capacity « ( )†Q . It then
immediately follows that

 « «( ) ( ) ( )‐Q Q , 51PPT P,

 « «( ) ( ) ( )† ‐ †Q Q 52PPT P,

because every LOCCchannel is a PPTchannel.

4.2.Max-Rains information as a strong converse rate for PPT-P-assisted quantum communication
Wenowprove the following upper bound on the communication rate Mlog

n

1
2 (qubits per channel use) of any

e( )n M, , PPT-P-assisted protocol:

Theorem3. Fix În M, and e Î ( )0, 1 . The following bound holds for an e( )n M, , protocol for PPT-P-assisted
quantum communication over a quantum channel  :


e

+
-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )M nRlog log

1

1
. 532 max 2

Proof. For convenience of the reader, we give a complete proof, butwe note that some of the essential steps are
available in prior works [9, 12, 14]. From the assumption in (49), it follows that

w eF -{ } ( )Tr 1 , 54M M M MA B A B

while [7, lemma 2] implies that

sF{ } ( )
M

Tr
1

, 55M M M MA B A B

for all s Î ¢( )M MPPT :M M A BA B
. So under an ‘entanglement test,’ i.e., ameasurement of the form

F - F{ }I,M M M M M MA B A B A B
and applying the data processing inequality for themax-relative entropy, wefind for

all s Î ¢( )M MPPT :M M A BA B
that

w s s- - ( ) ({ } { { } }) ( )D D p p q q, 1 , Tr 56M M M M M Mmax maxA B A B A B

s= - -{ ( ) ( { } )} ( )p q p qlog max , 1 Tr 57M M2 A B

 ( ) ( )p qlog 582

 e-[( ) ] ( )Mlog 1 , 592

where wº F{ }p Tr M M M MA B A B
and s= F{ }q Tr M M M MA B A B

. Since the above chain of inequalities holds for all
s Î ¢( )M MPPT :M M A BA B

, we conclude that

 e-w( ) [( ) ] ( )R M M M; log 1 . 60A Bmax 2

From themonotonicity of the Rains relative entropywith respect to PPT-P channels [8, 19], wefind that

 ¢ ¢w s( ) ( ) ( )( )R M M R A B B; ; 61A B n n nmax max n

= ¢ ¢ - ¢ ¢s r( ) ( ) ( )( ) ( )R A B B R A A B; ; 62n n nmax max 1 1 1n 1

å= ¢ ¢ + ¢ ¢ - ¢ ¢

- ¢ ¢

s r r

r

=

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

R A B B R A A B R A A B

R A A B

; ; ;

; 63

n n n
i

n

i i i i i imax
2

max max

max 1 1 1

n i i

1

 å ¢ ¢ - ¢ ¢s r
=

[ ( ) ( ) ] ( )( ) ( )R A B B R A A B; ; 64
i

n

i i i i i i
1

max maxi i

 ( ) ( )nR . 65max

Thefirst equality follows because the state r ¢ ¢
( )
A A B
1

1 1 1
is a PPT state with vanishingmax-Rains relative entropy. The

second equality follows by adding and subtracting terms. The second inequality follows because
¢ ¢ ¢ ¢r s- - - -( ) ( )( ) ( )R A A B R A B B; ;i i i i i imax max 1 1 1i i 1 for all Î ¼{ }i n2, , , due tomonotonicity of the Rains relative

entropywith respect to PPT-P channels. Thefinal inequality follows by applying proposition 1to each term
¢ ¢ - ¢ ¢s r( ) ( )( ) ( )R A B B R A A B; ;n n n i i imax maxi i . Combining (60)and (65), we arrive at the inequality in (53). +
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Remark 4.The bound in (53)can also be rewritten in the followingway:

e- - - ( )[ ( )]1 2 , 66n Q Rmax

wherewe set the rate =Q Mlog
n

1
2 . Thus, if the communication rateQ is strictly larger than themax-Rains

information ( )Rmax , then the fidelity of the transmission ( e-1 ) decays exponentially fast to zero in the
number n of channel uses.

An immediate corollary of the above is the following strong converse statement:

Corollary 5.The strong converse PPT-P-assisted quantum capacity is bounded from above by themax-Rains
information:

 - « ( ) ( ) ( )†Q R . 67PPT P,
max

5. Amortization does not increase a channel’smax-relative entropy of entanglement

One of themain results of [12] is that amortization does not increase a channel’smax-relative entropy of
entanglement; i.e.,

 =( ) ( ) ( )E E , 68Amax, max

where ( )Emax denotes a channel’smax-relative entropy of entanglement (wewill define this shortly). The
authors of [12] proved (68)by employing themethods of complex interpolation [27]. Themain application of
(68) is that ( )Emax is a strong converse upper bound on the secret-key-agreement capacity of a quantum
channel [12](this is defined as the private capacity of the channel, when arbitrary LOCC is allowed between
every channel use—see [35] or [12]for a definition).

In this section, we provide an alternate proof of (68), which is along the lines of the proofs of proposition
1and corollary 2.We think that this approach brings a different perspective to the result of [12] and could
potentially be useful in future applications.

To beginwith, let us recall the definition of themax-relative entropy of entanglement of a bipartite state ρAB
[33]:

r s=r
s Î

( ) ( ) ( )
( )

E A B D; min . 69
A B

AB ABmax
SEP :

max
AB

Let
¾

( )A BSEP : denote the cone of all separable operators, i.e., Î
¾

( )X A BSEP :AB if there exists a positive
integer L and positive semi-definite operators { }PA

x
x and { }QB

x
x such that = å Ä=X P QAB x

L
A
x

B
x

1 . The arrow in
¾

( )A BSEP : ismeant to remind the reader of ‘cone’ and is not intended to indicate any directionality between the

A andB systems. Inwhat follows, we sometimes employ the shorthands SEP and
¾
SEP when the bipartite cuts

are clear from the context. Thenwe have the following alternative expression for themax-relative entropy of
entanglement:

Lemma6. Let rAB be a bipartite state. Then

=r r( ) ( ) ( )E A B W A B; log ; , 70max 2 sep

where

r=r
Î
¾( ) { { } } ( )W A B X X; min Tr : . 71

X
AB AB ABsep

SEPAB

Proof.Employing the definition in (69), consider that

r s m r ms s= Î
s m sÎ

( ) { } ( )
( )

Dmin log min : , SEP 72
A B

AB AB AB AB AB
SEP :

max 2
,AB AB

r= Î
¾{ { } } ( )X X Xlog min Tr : , SEP . 73

X
AB AB AB AB2

AB

This concludes the proof. +

Wecan then define a channel’smax-relative entropy of entanglement ( )Emax as in (2), by replacing Ewith
Emax.We can alternatively write ( )Emax as follows, by employing similar reasoning as given in the proof of [36,
lemma 6]:

 r r s=
r s Î

( ) ( ) ( )E D Jmax min , 74S SB S SBmax
SEP

max
1 2 1 2

S SB

where ρS is a density operator and
JSB is the Choi operator for the channel  , as defined in (10).We nowprove

the following alternative expression for ( )Emax :
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Lemma7. Let  A B be a quantum channel. Then

 = S( ) ( ) ( )E log , 75max 2

where

  S =
Î
¾ ¥ ( ) { { } } ( )Y J Ymin Tr : . 76

Y
B SB SB SB

SEPSB

Proof.Employing (74) and lemma 6, we find that

  r r=
r Î

¾( ) { { } } ( )E Y J Ylog max min Tr : . 77
Y

SB S SB S SBmax
SEP

1 2 1 2

S SB

So our aim is to prove that the expression inside the logarithm is equal to S( ). Taking the ansatz that ρS is an
invertible density operator, wefind that the condition  r rJ YS SB S SB

1 2 1 2 is equivalent to the condition
  r r = ¢ Î

¾- - ( )J Y Y S BSEP :SB S SB S SB
1 2 1 2 . Noting that r r= ¢Y YSB S SB S

1 2 1 2, thismeans that



 







 







r r r

r

r

= ¢ ¢

= ¢ ¢

= ¢ ¢

= ¢ ¢

= S

r r

r

r

Î
¾ ¢ Î

¾

¢ Î
¾

¢ Î
¾

¢ Î
¾ ¥ 

{ { } } { { } }

{ { } }

{ { { }} }

{ { } } }

( ) ( )

Y J Y Y J Y

Y J Y

Y J Y

Y J Y

max min Tr : max min Tr :

min max Tr :

min max Tr Tr :

min Tr :

. 78

Y
SB S SB S SB

Y
S SB SB SB

Y
S SB SB SB

Y
S B SB SB SB

Y
B SB SB SB

SEP

1 2 1 2

SEP

SEP

SEP

SEP

S SB S SB

SB S

SB S

SB

The second equality follows from the Sionminimax theorem:the sets overwhichwe are optimizing are convex,
with the set of density operators additionally being compact, and the objective function r ¢{ }YTr S SB is linear in ρS
and ¢YSB, and so the Sionminimax theorem applies. The third equality follows frompartial trace, and the fourth
follows because r= r¥  { }D Dmax Tr , when the optimization is with respect to density operators. Finally, we
note that the ansatzmay be lifted by an appropriate limiting argument. +

Wecan now see that the expressions for r( )E A B;max in lemma 6and ( )Emax in lemma 7 have a very
similar form to those in (24) and (26) for r( )R A B;max and ( )Rmax , respectively. However, the optimization
problems for r( )E A B;max and ( )Emax are not necessarily efficiently computable because they involve an
optimization over the cone of separable operators, which is known to be difficult [37] in general. Regardless, due
to the forms that we nowhave for r( )E A B;max and ( )Emax , we can prove an inequality from [12], analogous to
(28), with a proof very similar to that given in the proof of proposition 1:

Proposition 8. [12] Let r ¢ ¢A AB be a state and let  A B be a quantum channel. Then

¢ ¢ + ¢ ¢w r( ) ( ) ( ) ( )E A BB E E A A B; ; , 79max max max

where

w r=¢ ¢  ¢ ¢( ) ( ). 80A BB A B A AB

Proof.By removing logarithms and applying lemmas 6 and 7, the desired inequality is equivalent to the
following one:

¢ ¢ S ¢ ¢w r( ) ( ) · ( ) ( )W A BB W A A B; ; , 81sep sep

and sowe aim to prove this one. Exploiting the identity in lemma 6, we find that

¢ ¢ =r ¢ ¢( ) { } ( )W A A B C; minTr , 82A ABsep

subject to the constraints

Î
¾

¢ ¢¢ ¢ ( ) ( )C A A BSEP : , 83A AB

 r¢ ¢ ¢ ¢ ( )C , 84A AB A AB

while the identity in lemma 7 gives that

S = ¥ ( ) { } ( )Ymin Tr , 85B SB

subject to the constraints

Î
¾( ) ( )Y S BSEP : , 86SB

 ( )Y J . 87SB SB
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The identity in lemma 6 implies that the left-hand side of (81)is equal to

¢ ¢ =w ¢ ¢( ) { } ( )W A BB E; minTr , 88A BBsep

subject to the constraints

Î
¾

¢ ¢¢ ¢ ( ) ( )E A BBSEP : , 89A BB

 r¢ ¢  ¢ ¢( ) ( )E . 90A BB A B A AB

With these optimizations in place, we can now establish the inequality in (81) bymaking a judicious choice
for ¢ ¢EA BB . Let ¢ ¢CA AB be optimal for ¢ ¢ r( )W A A B;sep , and letYSB be optimal for S( ). Let ¡ñ∣ SA be themaximally
entangled vector, as defined in (9). Pick

= á¡ Ä ¡ñ¢ ¢ ¢ ¢∣ ∣E C Y .A BB SA A AB SB SA

This choice is clearly similar to that in the proof of proposition 1.Weneed to prove that ¢ ¢EA BB is feasible for
¢ ¢ w( )W A BB;sep . To this end, consider that



 r
r

á¡ Ä ¡ñ á¡ Ä ¡ñ
=

¢ ¢ ¢ ¢

 ¢ ¢

∣ ∣ ∣ ∣
( ) ( )

C Y J

, 91

SA A AB SB SA SA A AB SB SA

A B A AB

which follows from (84), (87), and (11). Now, since Î
¾

¢ ¢¢ ¢ ( )C A A BSEP :A AB , it can bewritten aså Ä¢ ¢P Qx A A
x

B
x

for positive semi-definite ¢PA A
x and ¢Q

B
x . Furthermore, consider that since Î

¾
( )Y S BSEP :SB , it can bewritten as

å ÄL My S
y

B
y for positive semi-definite LS

y andMB
y . Thenwe have that

å

å

å

á¡ Ä ¡ñ = á¡ Ä Ä Ä ¡ñ

= á¡ Ä Ä Ä ¡ñ

= Ä Ä Î ¢ ¢

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

∣ ∣ ∣ ∣

∣ ( ) ∣

{ ( )} ( ) ( )

C Y P Q L M

P T L Q I M

P T L Q M A BBTr SEP : . 92

SA A AB SB SA
x y

SA A A
x

B
x

S
y

B
y

SA

x y
SA A A

x
A A

y
B
x

S B
y

SA

x y
A A A

x
A A

y
B
x

B
y

,

,

,

The second equality follows from (14) and the third from (12). The last statement follows because
=¢ ¢{ ( )} { ( ) ( ) }P T L T L P T LTr TrA A A

x
A A

y
A A A

y
A A
x

A A
y is positive semi-definite for each x and y. Finally, consider that





= á¡ Ä ¡ñ
=
=

=
= ¢ ¢ Sr

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¥

¢ ¢ ¥

 
 

{ } { ∣ ∣ }
{ ( )}
{ ( { })}
{ } ( { })
{ } { }

( ) · ( ) ( )

E C Y

C T Y
C T Y

C T Y

C Y

W A A B

Tr Tr

Tr
Tr Tr

Tr Tr

Tr Tr

; . 93

A BB SA A AB SB SA

A AB A AB

A AB A B AB

A AB A B AB

A AB B AB

sep

The reasoning for this chain is identical to that for (41).
Thus, we can conclude that our choice of ¢ ¢EA BB is feasible for ¢ ¢ w( )W A BB; . Since ¢ ¢ w( )W A BB; involves a

minimization over all ¢ ¢EA BB satisfying (89) and (90), this concludes our proof of (81). +

By the same reasoning employed in the proof of corollary 2, the equality in (68)follows as a consequence of
the inequality in proposition 8.

Wefinally note thatmax-relative entropy of entanglement is subadditive as a function of quantum channels,
in the following sense:

   Ä +( ) ( ) ( ) ( )E E E , 94max max max

where  and are quantum channels. This follows as a consequence of the equality in (68) and [9, proposition
4], the latter of which states that the amortized entanglement is always subadditive as a function of quantum
channels. It is an interesting open question to determinewhether themax-relative entropy of entanglement is
additive as a function of quantum channels.

6.On converses for quantumandprivate capacities

Herewe discuss briefly howour strong converse result stands with respect to prior work on strong converses and
quantumand private capacities [12, 18–21, 35, 38, 39].
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6.1.Quantum capacities
Let ( )Q and ( )†Q denote the quantum capacity and the strong converse quantum capacity of a quantum
channel  . These quantities are defined similarly to «( )‐QPPT P, and « ( )‐ †QPPT P, , but there is no PPT
assistance allowed. The partial transposition boundwas defined in [38] as follows:

 =Q à ( ) ◦ ( )Q Tlog , 952

whereT denotes the transposemap and à · is the diamond norm. In [38], Q( )Q was established as a pretty-
strong converse rate, in the sense of [40], for the quantum capacity of the channel  . This result was
subsequently improved in [39] to the following strong converse bound:

   «
Q( ) ( ) ( ) ( )† ‐ †Q Q Q . 96PPT P,

The recent work in [20, 21]established the following two bounds:

  Q( ) ( ) ( )R Q , 97max

 ( ) ( ) ( )†Q R . 98max

Thus, in light of the above history, it is clear that the natural questionwaswhether  « ( ) ( )‐ †Q RPPT P,
max ,

and this is the question that our paper affirmatively answers. In summary, we nowhave that

       «
Q( ) ( ) ( ) ( ) ( ) ( )† ‐ †Q Q Q R Q . 99PPT P,

max

Wenowmention some other related results. The Rains relative entropy r( )R A B; of a bipartite state ρAB is
defined as [7, 8, 32]

r s=r
s Î ¢

( ) ( ) ( )
( )

R A B D; min , 100
A B

AB AB
PPT :AB

whereD denotes the quantum relative entropy [41, 42], defined as w t w w t= -( ) { [ ]}D Tr log log2 2
whenever w tÍ( ) ( )supp supp and+¥ otherwise. Then the Rains information ( )R of a quantum channel
 is defined by replacing E in (2)withR(A;B)ρ [19]. One can also define the amortized Rains information
( )RA via the recipe in (3). Due to the inequality w t w t ( ) ( )D Dmax [33], the following inequality holds

 ( ) ( ) ( )R R . 101max

The following bound is known from [19]

 ( ) ( ) ( )†Q R , 102

and it is open to determinewhether

 - « ( ) ( ) ( )†Q R . 103PPT P,
?

This latter inequality is known to hold if the channel  has sufficient symmetry [19].
The squashed entanglement Esq(A;B)ρ of a quantum state ρAB is defined as [43]

r r= =r
r

r( ) { ( ∣ ) { } } ( )E A B I A B E;
1

2
inf ; : Tr , 104E ABE ABsq

ABE

where = + - -r r r r r( ∣ ) ( ) ( ) ( ) ( )I A B E H AE H BE H E H ABE; and s s= -s( ) { }H F Tr logF F2 . (See also
discussions in [44, 45]for squashed entanglement.)One can also consider the squashed entanglement of a
channel ( )Esq [16], as well as the amortized squashed entanglement ( )E Asq, . Another function of a quantum
channel is its entanglement cost [46], whichwewrite as ( )EC and forwhich a definition is given in [46]. The
following bounds and relations are known regarding these quantities:

 « ( ) ( ) [ ] ( )†Q E , 44 105C

 =( ) ( ) [ ] ( )E E , 16 106Asq, sq

   «( ) ( ) ( ) [ ] ( )Q E E , 16 107Csq

It is open to determinewhether the following inequality holds

 « ( ) ( ) ( )†Q E . 108
?

sq

6.2. Private capacities
One can also consider various private capacities and strong converse private capacities of a quantum channel,
denoted as ( )P , «( )P , ( )†P , and « ( )†P . Defining the relative entropy of entanglement ER [47]as

r s=r
s Î

( ) ( ) ( )
( )

E A B D; min , 109R
A B

AB AB
SEP :AB
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and themax-relative entropy of entanglement Emaxaswe did in (69), we can also define their channel versions
( )ER and ( )Emax and their amortized versions ( )ER A, and ( )E Amax, . For these various quantities, we

have that

 ( ) ( ) ( )E E , 110R max

 «( ) ( ) [ ] ( )P E , 16, 46 111sq

 « ( ) ( ) [ ] ( )†P E , 12 112C

 =( ) ( ) [ ] ( )E E , 12 113Amax, max

 « ( ) ( ) [ ] ( )†P E , 12 114max

 ( ) ( ) [ ] ( )†P E . 33 115R

It is not knownwhether

 « ( ) ( ) ( )†P E , 116
?

sq

 « ( ) ( ) ( )†P E , 117R

?

but the latter inequality is known to hold for channels with sufficient symmetry [35].
An interesting question is whether themax-Rains information of a channel  could serve as an upper

bound on one of its private capacities ( )P , ( )†P , «( )P , or « ( )†P . The guiding principle behindmany
strong converse bounds in quantum information theory is to compare the output of the actual protocol, with
respect to a relative entropy-likemeasure, to a state or positive semi-definite operator that is ‘useless’ for the task.
By ‘useless,’wemean that the state or operator should have a probability of passing a test for the task that is no
larger than inversely proportional to the dimension of the systembeing communicated. For example, this kind
of result is known from [7, lemma 2] for operators in the set ¢( )M MPPT :A B and the entanglement test, andwe
used this bound effectively in (55)in order to establish themax-Rains information as an upper bound onPPT-
P-assisted quantum capacity. Furthermore, this kind of result is known from [35, 48, 49]for separable states and
the privacy test, and prior work has used this result to establish upper bounds on various private capacities of a
channel [12, 35]. However, it is not knownhow to obtain this kind of result for operators in the set

¢( )M MPPT :A B and the privacy test, and it is for this reason that we have not been able to establish themax-
Rains information as an upper bound on private capacity.We doubt whether this would be possible, given that
there exist channels that produce PPTstates with non-zero distillable secret-key [50, 51].

In the same spirit, onemight wonder about differences between themax-Rains relative entropy and the
max-relative entropy of entanglement. First, it is clear that themax-relative entropy of entanglement can
increase under the action of a PPT-P channel, because there exist states that are PPT and entangled [48].
Furthermore, the aforementioned is related to the fact that there exist states for which there is a strict separation
between themax-Rains relative entropy and themax-relative entropy of entanglement. Any state that is PPT and
entangled has amax-Rains relative entropy equal to zero, while itsmax-relative entropy of entanglement is
non-zero.

6.3. Summary: channelmeasures that do not increase under amortization
In summary, we know that amortization does not increase

1. the squashed entanglement ( )Esq [16],

2. themax-relative entropy of entanglement ( )Emax [12],

3. or themax-Rains information ( )Rmax (Corollary 2).

This is themain reason that these information quantities are single-letter converse bounds for assisted capacities.
Is there any chance that the same could hold generally for ( )ER or ( )R ? Ifso, then the known capacity
bounds could be improved.

7. Conclusion

Themain contribution of our paperwas to show that themax-Rains information of a quantum channel does not
increase under amortization. That is, when entanglement is quantified by themax-Rains relative entropy, the
net entanglement that a channel can generate is the same as the amount of entanglement that it can generate if
the sender and receiver do not start with any initial entanglement. This result then implies a single-letter, strong
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converse, and efficiently computable bound for the capacity of a quantum channel to communicate qubits along
with the assistance of PPT-P operations between every channel use. As such, themax-Rains information can be
easily evaluated and is a general benchmark for this capacity. Aswe emphasized previously, our upper bound is
also an upper bound on the physically relevant LOCC-assisted quantum capacity. Themain tool that we used to
prove our result is the formulation of themax-Rains relative entropy andmax-Rains information as semi-
definite programs [20–22] (in particular, we employed SDPduality—wenote here that this kind of approach has
previously been employed successfully formultiplicativity, additivity, or parallel repetition problems in
quantum information theory [52–54]).We also compared our result to other results in the growing literature on
the topic of bounds for the assisted capacities of arbitrary quantum channels [12, 16, 19, 35, 39].

We also provided an alternative proof for the fact that amortization does not enhance a channel’smax-
relative entropy of entanglement [12]: i.e.,  =( ) ( )E EAmax, max . This statement was proved in [12]by
employing themethods of complex interpolation [27], but herewe found a different proof by establishing
alternative expressions for themax-relative entropy of entanglement (lemma 6) and a channel’smax-relative
entropy of entanglement (lemma 7). These alternative expressions then allowed us to employ reasoning similar
to that in our proof of proposition 1 in order to establish a different proof for the equality

 =( ) ( )E EAmax, max .We suspect that our approach could be useful in future applications.
Finally, in [21], it was noted that themax-Rains information does not give a good upper bound on the

quantum capacity of the qubit depolarizing channel. Our result gives a compelling reason for this
observation:themax-Rains information finds its natural place as an upper bound on the PPT-P-assisted
quantum capacity of the qubit depolarizing channel, and these assisting operations allowed between every
channel use could result in a significant increase in capacity.
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