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Abstract

Given an entanglement measure E, the entanglement of a quantum channel is defined as the largest
amount of entanglement E that can be generated from the channel, if the sender and receiver are not
allowed to share a quantum state before using the channel. The amortized entanglement of a quantum
channel is defined as the largest net amount of entanglement E that can be generated from the
channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our
main technical result is that amortization does not enhance the entanglement of an arbitrary quantum
channel, when entanglement is quantified by the max-Rains relative entropy. We prove this statement
by employing semi-definite programming (SDP) duality and SDP formulations for the max-Rains
relative entropy and a channel’s max-Rains information, found recently in Wang et al (arXiv:1709.
00200). The main application of our result is a single-letter, strong converse, and efficiently
computable upper bound on the capacity of a quantum channel for transmitting qubits when assisted
by positive-partial-transpose preserving (PPT-P) channels between every use of the channel. As the
class oflocal operations and classical communication (LOCC) is contained in PPT-P, our result
establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel,
which is relevant in the context of distributed quantum computation and quantum key distribution.

1. Introduction

One of the main goals of quantum information theory is to understand the fundamental limitations on
communication when a sender and receiver are connected by a quantum communication channel [ 1-3]. Since it
might be difficult to transmit information reliably by making use of a channel just once, a practically relevant setting is
when the sender and receiver use the channel multiple times, with the goal being to maximize the rate of
communication subject to a constraint on the error probability. The capacity of a quantum channel is defined to be the
maximum rate of reliable communication, such that the error probability tends to zero in the limit when the channel is
utilized an arbitrary number of times.

Among the various capacities of a quantum channel A/, the LOCC-assisted quantum capacity Q~(N) [4] is
particularly relevant for tasks such as distributed quantum computation. In the setting corresponding to this capacity,
the sender and receiver are allowed to perform arbitrarylocal operations and classical communication (LOCC)
between every use of the channel, and the capacity is equal to the maximum rate, measured in qubits per channel use, at
which qubits can be transmitted reliably from the sender to the receiver [4]. Due to the teleportation protocol [5], this
rate is equal to the maximum rate at which shared entangled bits (Bell pairs) can be generated reliably between the
sender and the receiver [4]. The LOCC-assisted quantum capacity of certain channels such as the quantum erasure
channel has been known for some time [6], but in general, it remains an open question to characterize Q*(A\/). One
can address this question by establishing either lower bounds or upper bounds on Q< (/).
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Figure 1. A protocol for PPT-P-assisted quantum communication that uses a quantum channel n times. Every channel use is
interleaved by a PPT-preserving channel. The goal of such a protocol is to produce an approximate maximally entangled state in the
systems M, and Mg, where Alice possesses system M, and Bob system Mp.

In this paper, we are interested in placing upper bounds on the LOCC-assisted quantum capacity, and one
way of simplifying the mathematics behind this task is to relax the class of free operations that the sender and
receiver are allowed to perform between each channel use. With this in mind, we follow the approach of
[7,8] and relax the set LOCC to alarger class of operations known as PPT-preserving (PPT-P), standing for
channels that are positive-partial transpose preserving. The resulting capacity is then known as the PPT-P-
assisted quantum capacity QP*T-P~(N), and it is equal to the maximum rate at which qubits can be
communicated reliably from a sender to a receiver, when they are allowed to use a PPT-P channel in between
every use of the actual channel N Figure 1 provides a visualization of such a PPT-P-assisted quantum
communication protocol. Due to the containment LOCC C PPT-P [7, 8], the inequality

QW) < QTP (W) ()]

holds for all channels A/. Thus, if we find an upper bound on Q**T-P=(N), then by (1), such an upper bound
also bounds the physically relevant LOCC-assisted quantum capacity Q(N).

A general approach for bounding these assisted capacities of a quantum channel has been developed recently
in [9] (see [10-14] for related notions). The starting point is to consider an entanglement measure E(A; B), [15],
which is evaluated for a bipartite state p, 5. Given such an entanglement measure, one can define the
entanglement E(N\) of achannel N in terms of it by taking an optimization over all pure, bipartite states that
could be input to the channel:

E(N) = sup E(R; B),,, (2

PR

where wrp = N p(tPra)- The channel’s entanglement E () characterizes the amount of entanglement thata
sender and receiver can generate by using the channel if they do not share entanglement prior to its use. Due to
the properties of an entanglement measure and the well known Schmidt decomposition theorem, it suffices to
take system R isomorphic to the channel input system A and furthermore to optimize over pure states ¥r4.

One can alternatively consider the amortized entanglement E4 (\') of a channel A/ as the following
optimization [9]:

E4(N) = sup [E(A; BB), — E(AA; B'),], 3

P yap

where 7 ypp = Na_p(p yap) and p 4, is a state. The supremum is with respect to all states p , , 5 and the
systems A’B’ are finite-dimensional but could be arbitrarily large (so that the supremum might never be achieved
for any particular finite-dimensional A’B’, but only in the limit of unbounded dimension). Thus, E4 (N) is not
known to be computable in general. The amortized entanglement quantifies the net amount of entanglement
that can be generated by using the channel \/, if the sender and receiver are allowed to begin with some initial
entanglement in the form of the state p ,, . Thatis, E(A’A; B'), quantifies the entanglement of the initial state

P xap>and E(A’; BB') quantifies the final entanglement of the state after the channel acts. As observed in [9],
the inequality

E(WN) < EA(N) (C))

always holds for any entanglement measure E and for any channel /', simply because one could take the B’
system trivial in the optimization for E, (\), which is the same as not allowing entanglement between the sender
and receiver before the channel acts. It is nontrivial if the opposite inequality

Es(N) < EWN) (5)

holds, which is known to occur generally for certain entanglement measures [9, 12, 16] or for certain channels
with particular symmetries [9].
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One of the main observations of [9], connected to earlier developments in [10—14], is that the amortized
entanglement of a channel serves as an upper bound on the entanglement of the final state w3 generated by an
LOCC- or PPT-P-assisted quantum communication protocol that uses the channel # times:

E(A; B), < nEA(N). (6)

The basic intuition for why this bound holds is that, after a given channel use, the sender and receiver are allowed
to perform a free operation such as LOCC or PPT, and thus the state that they share before the next channel use
could have some entanglement. So the amount of entanglement generated by each channel use cannot exceed
the amortized entanglement E, (), and if the channel is used n times in such a protocol, then the entanglement
of the final state wyp cannot exceed the channel’s amortized entanglement multiplied by the number # of channel
uses. Such a general bound can then be used to derive particular upper bounds on the assisted quantum
capacities, such as strong converse bounds. Clearly, if the inequality in (5) holds, then E, (M) = E(N') and the
upper bound becomes much simpler because the channel entanglement E () is simpler than the amortized
entanglement E4 (). Thus, one of the main contributions of [9] was to reduce the physical question of
determining meaningful upper bounds on the assisted capacities of A/ to a purely mathematical question of
whether amortization can enhance the entanglement of a channel, i.e., whether the equality

Ex(N) = EWV) )

holds for a given entanglement measure E and/or channel N'. Furthermore, it was shown in [9] how to
incorporate the previous results of [4, 17, 18] into the amortization framework of [9].

In this paper, we solve the mathematical question posed above for the max-Rains information Ry, (N') of a
quantum channel A/, by proving that amortization does not enhance it; i.e., we prove that

Rmax,A (N) = Rmax (N)a (8)

forall channels A/, where Ryax 4 (NV') denotes the amortized max-Rains information. Note that R, (NV') and
Rinax A (N) are respectively defined by taking the entanglement measure Ein (2) and (3) to be the max-Rains
relative entropy, which we define formally in the next section. We note here that the equality in (8) solves an
open question posed in the conclusion of [12], and we set our result in the context of the prior result of [12] and
other literature in section 6. The max-Rains information of a quantum channel is a special case of a quantity
known as the sandwiched Rényi—Rains information [19] and was recently shown to be equal to an information
quantity discussed in [20, 21] and based on semi-definite programming (SDP). To prove our main technical
result (the equality in (8)), we critically make use of the tools and framework developed in the recent works
[20-22]. In particular, we employ SDP duality [23] and the well known Choi isomorphism to establish our main
result, with the proof consisting of just a few lines once the framework from [20-22] is set in place.

The main application of the equality in (8) is an efficiently computable, single-letter, strong converse bound
on QPPT-P=(A\/), the PPT-P-assisted quantum capacity of an arbitrary channel V. Due to (1), thisis also an
upper bound on the physically relevant LOCC-assisted quantum capacity Q(N). To arrive at this result, we
simply apply the general inequality in (6) along with the equality in (8). For the benefit of the reader, we give
technical details of this application in section 4 . The quantity Ry, (\') has already been shown in [21] to be
efficiently computable via a semi-definite program, and in section 4, we explain how Ry, (\) is both ‘single-
letter’ and ‘strong converse’.

The usefulness of the upper bound given in our paper is ultimately related with the importance of PPT-P
channels. This is because the set of PPT-P channels contains the set of separable channels, and the set of
separable channels strictly contains the set of LOCC channels, as shown in [24] and then in [25] for a classical
scenario. Moreover, there is an entanglement monotone that can be increased by separable channels [26]. Thus,
in general, PPT-P channels can increase entanglement, although this increase is not detectable by the max-Rains
information. Thus, in this sense, the max-Rains information might be considered a rough measure for bounding
LOCC-assisted quantum capacity. Therefore, as stressed earlier, the usefulness of our bound on the PPT-P
assisted quantum capacity is directly related to PPT-P channels.

Our paper is organized as follows. In the next section, we review some background material before starting
with the main development. Section 3 gives a short proof of our main technical result, and section 4 discusses its
application as an efficiently computable, single-letter, strong converse bound on Q**™>~*(/\/). In section 5, we
revisit a result from [12], in which it was shown that amortization does not enhance a channel’s max-relative
entropy of entanglement. The authors of [12] proved this statement by employing complex interpolation theory
[27]. We prove the main inequality underlying this statement using a method different from that used in [12],
but along the lines of that given for our proof of (8) (i.e., convex programming duality), and we suspect that our
alternative approach could be useful in future applications. In section 6, we discuss how our result fits into the
prior literature on assisted quantum capacities and strong converses. We conclude with a brief summary in
section 7.
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2. Background and notation

In this section, we provide background on the Choi isomorphism, partial transpose, PPT states, separable states,
PPT-P channels, max-relative entropy, max-Rains relative entropy, and max-Rains information. For basic
concepts and standard notation used in quantum information theory, we point the reader to [3].

The Choi isomorphism represents a well known duality between channels and states, often employed in
quantum information theory. Let A4 _, 5 be a quantum channel, and let | )4 denote the maximally entangled
vector

T)ra = Z|i>R|i>A> ©)

where the Hilbert spaces Hg and H, are of the same dimension and {|i)z }; and {|i) }; are fixed orthonormal
bases. The Choi operator for a channel N} _, p is defined as

Jits = (idz ® Na—p)(IT) (Ylra), (10)
where idg denotes the identity map on system R. One can recover the action of the channel N, _, g onan
arbitrary input state pg, as follows:

(Ylar psy ® Ji% 1T ar = Na—s(psy), 11
where A'is a system isomorphic to the channel input A. The above identity can be understood in terms of a
postselected variant [28, 29] of the quantum teleportation protocol [5]. Another identity we recall is that
(Tlra (Xsr @ Ia)|V)ra = Trr{Xsr}, (12)

for an operator Xgg actingon Hs ® Hp.
For a fixed basis {|i)3 };, the partial transpose is the following map:

(ida ® Tp)(Xap) = Y (Ia @ i) (jlp) XasUa @ 1i) (jls), (13)
ij
where X, pis an arbitrary operator acting on a tensor-product Hilbert space H,y ® Hp. For simplicity we often

employ the abbreviation T(Xs5) = (id4 ® Tp)(X4p)- The partial transpose map plays a role in the following
well known transpose trick identity:

Xsr @ L) T)ra = (Ta(Xsa) @ I)[T)ra- (14)
The partial transpose map plays another important role in quantum information theory because a separable

(unentangled) state

oap = Y p(x)T% ® wj € SEP(A: B), (15)

for a distribution p(x) and states 77 and w3, stays within the set of separable states under this map [30, 31]:
Tg(oag) € SEP(A : B). (16)
This motivates defining the set of PPT states, which are those states 0 4 for which Tg(045) > 0. This in turn
motivates defining the more general set of positive semi-definite operators [32]:
PPT/(A: B) = {oup: oup = O A || Tp(oup) [p < 1}, 17)

where we have employed the trace norm, defined for an operator Xas || X ||, = Tr{|X |} with|X| = VX'X.We
then have the containments SEP C PPT C PPT'.

AnLOCC quantum channel Nyp_, 4p consists of an arbitrarily large but finite number of compositions of
the following:

1. Alice performs a quantum instrument, which has both a quantum and classical output. She forwards the
classical output to Bob, who then performs a quantum channel conditioned on the classical data received.
This sequence of actions corresponds to a channel of the following form:

Do Fioa ® Gips (18)

where { F% _, 4} « is a collection of completely positive maps such that >~ F7 _, , is a quantum channel and
{G%_ g} xisacollection of quantum channels.

2. The situation is reversed, with Bob performing the initial instrument, who forwards the classical data to
Alice, who then performs a quantum channel conditioned on the classical data. This sequence of actions
corresponds to a channel of the form in (18), with the A and Blabels switched.

4
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A quantum channel N3, yp isa PPT-P channel ifthemap Ty o Nyp_ .45 o Tpisaquantum channel
[7,8]. Any LOCC channel is a PPT-P channel [7, 8].
The max-relative entropy of a state p relative to a positive semi-definite operator o is defined as [33]

Dmax(pllo) = inf{X: p < 2*0}. (19)

If supp(p) & supp(o),then Dy (pl|o) = oo. The max-relative entropy is monotone non-increasing under
the action of a quantum channel N [33], in the sense that

Dinax (p[|0) Z Dinax (M(p)[| V(). (20)

The above inequality is also called the data processing inequality for max-relative entropy.
The max-Rains relative entropy of a state p, 5 is defined as

Rmax (A) B)p = min Dmax(pAB ||UAB)) (21)
oAsE€PPT/(A:B)

and it is monotone non-increasing under the action of a PPT-P quantum channel AVyp_, 4p [19], in the sense
that
Ruax (A; B)y = Rax (A5 B, (22)

for wap = Nap— a5 (p,p)- The max-Rains information of a quantum channel NV, _, 3 is defined by replacing E
in (2) with the max-Rains relative entropy Ry, i.€.,

Rimax (N) = max Ryax (S; B)_w (23)
Bsa
where wsp = Ny_p(¢s,) and ¢4 is a pure state, with | S| = |A[. The amortized max-Rains information of a
channel, denoted as Ry 4 (N), is defined by replacing E in (3) with the max-Rains relative entropy Ry
Recently, in [22, equation (8)] (see also [21, equation (36)]), the max-Rains relative entropy of a state p5 was

expressed as

Runax (A5 B), = log, W (A; B),, (24)
where W (A; B), is the solution to the following semi-definite program:

minimize Tr{Cup + Dip}
subject to Cap, Dap = 0,

Tp(Cap — Dap) = pyp (25)
Similarly, in [21, equation (21)], the max-Rains information of a quantum channel A4 ., was expressed as
Rinax(N) = logT'(V), (26)

where T'(V) is the solution to the following semi-definite program:

minimize || Trg{Vsg + Y55} |l
subject to Ysp, Vsg = 0,

Ty(Vsp — Ysp) > T (27)

These formulations of Ry,.x (A; B), and Ry, (N) are the tools that we use to prove our main technical result,
proposition 1. It is worth mentioning that the formulations above follow by employing the theory of SDP and its
duality.

3. Main technical result

The following proposition constitutes our main technical result, and an immediate corollary of it is that
amortization does not enhance the max-Rains information of a quantum channel:

Proposition 1. Let p , , » be a state and let N _, g be a quantum channel. Then
Rinax (A's BB')y < Rinax(N) + Rinax (A'A; B'),,, (28)
where
wapp = Na—p(p yap)- (29)
Proof. By removing logarithms and applying (24) and (26), the desired inequality is equivalent to the following one:

W (45 BB), < TW) - W(AA; B),, (30)
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and so we aim to prove this one. Exploiting the identity in (25), we find that

W(A'A; B'), = minTr{Cuaap + Duap'}, (31)
subject to the constraints
Caaps Daap > 0, (32)
Tp(Cuap — Daap) = paaps (33)
while the identity in (27) gives that
T'(N) = min || Trg{Vsp + Y58} [loc> (34)
subject to the constraints
Ysp, Vs 2 0, (35)
To(Vsg — Ysp) > Jiy. (36)
The identity in (25) implies that the left-hand side of (30) is equal to
W (A'; BB'),, = minTr{E gz + Fasp}, (37)
subject to the constraints
Eypp, Fagg 2 0, (38)
Na—g(p aap) < T’ (Exps — Fapp). (39)

With these SDP formulations in place, we can now establish the inequality in (30) by making judicious
choices for E ypp and F ypp. Let C yqp and D y4p be optimal for W (A'A; B'),, and let Ysgand Vg be optimal
for T'(V). Let | T)s4 be the maximally entangled vector, as defined in (9). Pick

Expp = (Ylsa Caap @ Vs + Daap @ Ysp|L)sas

Fupp = (Ylsa Caap @ Ysp + Daap ® Vsp|T)sa-
We note that these choices are somewhat similar to those made in the proof of [21], Proposition 6, and they can
be understood roughly via (11) as a postselected teleportation of the optimal operators of W (A’A; B'), through

the optimal operators of I'(V), with the optimal operators of W (A’A; B'), being in correspondence with the
input state p , , through (33) and the optimal operators of I'(\/) being in correspondence with the Choi

operator ]S/X through (36). We then have that E ypp, Fypp > 0because Cyap, D aap> Ysp, Vsg = 0. Consider
that
Tpp'(Expy — Fay) = Top'[{Ylsa(Caap — Daap) @ (Vsp — Ysp)|T)sal

= (Ylsa Tp'(Caap — Daap) @ Tp(Vsp — Ysp)|T)sa

P <T|SA Paap @ ]sjl\s[|T>SA

= NA—»B(PA’AB’)' (40)
The inequality follows from (33) and (36), and the last equality follows from (11). Also consider that

Tr{Expp + Fapp} = Tr{(Y|sa(Caap + Daap) @ (Vs + Ysp)|T)sa }

= Tr{(Caap + Daap) Ta(Vap + Yap)}

= Tr{(Caap + Daap) Ta(Trg{Vap + Yap})}

< Tr{Cuap + Daap} | Ta(Trs{ Vap + Yap}) [l

= Tr{Cuap + Daap}||Trs{Vap + Yan}lo

=W(A4A4; B), - T(N). (41)
The second equality follows from (14) and (12). The inequality is a consequence of Holder’s inequality. The final
equality follows because the spectrum of an operator is invariant under the action of a (full) transpose (note, in
this case, that T, is a full transpose because the operator Trz{ V45 + Y45} acts only on system A).

Thus, we can conclude that our choices of E ygpr and F 4 gp are feasible for W (A’; BB'),,. Since W (A’; BB'),,
involves a minimization over all E ygpr and F 4 pp satistying (38) and (39), this concludes our proof of (30). |

An immediate corollary of proposition 1 is the following:

Corollary 2. Amortization does not enhance the max-Rains information of a quantum channel Ny _p; i.e., the
following equality holds

Rmax,A (N) = Rmax (N) (42)
Proof. The inequality Riax 4 (N) = Ripax (V) always holds, as reviewed in (4). The other inequality is an

6
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immediate consequence of proposition 1. Letting p , , 5 denote an arbitrary input state, proposition 1 implies
that

Rmax (A/; BB/)w - Rmax A/A; B/)p < Rmax(N)) (43)

where w 4pp = Na_.5(p 4 4p)- Since the inequality holds for any state p ,,» it holds for the supremum over all
such input states, leading to Rpax 4 (N) < Ripax (N). [

4. Application to PPT-P-assisted quantum communication

We now give our main application of proposition 1, which is that the max-Rains information is a single-letter,
strong converse upper bound on the PPT-P-assisted quantum capacity of any channel. The term ‘single-letter’
refers to the fact that the max-Rains information requires an optimization over a single use of the channel. As we
remarked previously, the max-Rains information is efficiently computable via SDP, as observed in [20, 21].
Finally, the bound is a strong converse bound because, as we will show, if the rate of a sequence of PPT-P-assisted
quantum communication protocols exceeds the max-Rains information, then the error probability of these
protocols necessarily tends to one exponentially fast in the number of channel uses.

4.1. Protocol for PPT-P-assisted quantum communication
We begin by reviewing the structure of a PPT-P-assisted quantum communication protocol, along the lines
discussed in [9]. In such a protocol, a sender Alice and a receiver Bob are spatially separated and connected by a

quantum channel A,_. 3. They begin by performing a PPT-P channel Pg)_) ALABD which leads to a PPT state

p(All? ABD where A and B/ are systems that are finite-dimensional but arbitrarily large. The system A, is such that
it can be fed into the ﬁrst channel use. Alice sends system A, through the first channe] use, leading to a state

U(f:{)B] B = =Ny Bl(p A B,) Alice and Bob then perform the PPT-P channel 73 L ALABD which leads to the

state

2) = p?

PalaB, = 7 AlBBI—AL AZB’( Al B B (44)

Alice sends system A, through the second channel use Ny, ,, leading to the state U(A 'p,B] = Ny, Bz(,o AL, B/)

This process iterates: the protocol uses the channel # times. In general, we have the followmg states for all
ie{2,..,n}

pf‘l\)A B = P(l), BB —lA,BL0 (1, BBl (45)
05;) /B;B] — NAI»—»B‘(P,;;A,.B;% (46)
where 77(2, BB | A!AB! isaPPT channel. The final step of the protocol consists of a PPT-P channel
79(/;1;133 _ M,y Which generates the systems M4 and M for Alice and Bob, respectively. The protocol’s final state
is as follows:
WMMp = P(/’xHBl;a HMAMB(UA 15,5, (47)

Figure 1 depicts such a protocol.

The goal of the protocol is that the final state wy, u, is close to a maximally entangled state. Fix n, M € N
and ¢ € [0, 1]. The original protocolis an (1, M, ) protocol if the channel is used # times as discussed above,
|MA| = |MB| = M,andif

F(WMAMB’ (I)MAMB) = <q)|MAMB wMAMBl(I)>MAMB (48)
2 1 - & (49)

where the fidelity F (7, ) = || V7 /% [|{ [34] and the maximally entangled state @, s, = |®) (®|us, a1, is defined
from

1P)Mny = — J— Z [m)r, ® |m)u, (50)

A rate Ris achievable for PPT-P-assisted quantum communication ifforall € € (0, 1],6 > 0,and
sufficiently large n, there exists an (1, 2"®=%), ¢) protocol. The PPT-P-assisted quantum capacity of a channel
N, denoted as Q"PT-P=(N\), is equal to the supremum of all achievable rates.

On the other hand, a rate R is a strong converse rate for PPT-P-assisted quantum communication if for all
e € [0, 1), 6 > 0,and sufficiently large 1, there does not exist an (1, 2"®+9 | &) protocol. The strong converse
PPT-P-assisted quantum capacity Q*?T-P=7(\/) is equal to the infimum of all strong converse rates. We say that

7
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achannel obeys the strong converse property for PPT-P-assisted quantum communication
lf QPPT—P,H(N) — QPPT—P,HT (N)

We can also consider the whole development above when we only allow the assistance of LOCC channels
instead of PPT channels. In this case, we have similar notions as above, and then we arrive at the LOCC-assisted
quantum capacity Q’(\) and the strong converse LOCC-assisted quantum capacity QT (). It then
immediately follows that

QW) < QT PN, (5D
Q=T (N) < QPPT-P=F(N) (52)
because every LOCC channelis a PPT channel.

4.2. Max-Rains information as a strong converse rate for PPT-P-assisted quantum communication
We now prove the following upper bound on the communication rate % log, M (qubits per channel use) of any
(n, M, €) PPT-P-assisted protocol:

Theorem 3. Fixn, M € Nand ¢ € (0, 1). The following bound holds for an (n, M, ¢) protocol for PPT-P-assisted
quantum communication over a quantum channel N :

1

log, M < nRpax (N) + log, (1—) (53)
—€

Proof. For convenience of the reader, we give a complete proof, but we note that some of the essential steps are

available in prior works [9, 12, 14]. From the assumption in (49), it follows that

Tr{ @y mwnmymy} = 1 — & (54)
while [7, lemma 2] implies that
1

Tr{®p,a;0M,05) < IR (55)

forall opg,a, € PPT/(My @ Mp). So under an ‘entanglement test,” i.e., a measurement of the form
{®ag, > Ingon, — Pag,m, ) and applying the data processing inequality for the max-relative entropy, we find for
all oMM € PPTI(MA : Mp) that

Dinax (WM lommy) = Dmax({p> 1 — pY[{a> Tr{om,m) — q)) (56)
= log,max{p/q, (1 — p)/(Tr{om,m,} — @)} (57)
> log,(p/q) (58)
2 log,[(1 — e)M], (59)

where p = Tr{®y, m,wn,m,} and @ = Tr{P s, 0,00, 0, )- Since the above chain of inequalities holds for all
omm,; € PPT/ (M, : Mp), we conclude that

Rinax (Ma; Mp)., = log,[(1 — e)M]. (60)

From the monotonicity of the Rains relative entropy with respect to PPT-P channels [8, 19], we find that
Rinax (Mas Mp) < Ruax (Ay; BB,y (61)
= Runax (A3 BuB,)o® — Ronax (A Ass BY) 0 (62)

n
= Rmax (Ay/p BnB;i)(,r(”) + I:ZRmax (Ai/Ai; Bi/)p“) - Rmax (Ai/Ai; Bl'/)p(i):|
i=2

- Rmax (AllAl; Bll)p“) (63)

g Z [Rmax (Ail; BiBi,)g(i) - Rmax (Ai,Ai; Bi/)p(i>] (64)
i =1

< MRmax (V). (65)

@
A{A B/
second equality follows by adding and subtracting terms. The second inequality follows because

Rmax (A Aj; B) 4" < Riax (A!_}; Bi_\B/_)),e-vforalli € {2, ..., n}, due to monotonicity of the Rains relative
entropy with respect to PPT-P channels. The final inequality follows by applying proposition 1 to each term
Ruax (A} ByB)),6 — Rpax (A/Ai; B)) 9. Combining (60) and (65), we arrive at the inequality in (53). ]

The first equality follows because the state p is a PPT state with vanishing max-Rains relative entropy. The
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Remark 4. The bound in (53) can also be rewritten in the following way:
1 — ¢ < 27MQ=Ruax(N] (66)

where we set therate Q = % log, M. Thus, if the communication rate Q is strictly larger than the max-Rains

information R, (\V), then the fidelity of the transmission (I — ¢) decays exponentially fast to zero in the
number 7 of channel uses.

An immediate corollary of the above is the following strong converse statement:

Corollary 5. The strong converse PPT-P-assisted quantum capacity is bounded from above by the max-Rains
information:

QTP TN < Ruax (W), (67)

5. Amortization does not increase a channel’s max-relative entropy of entanglement

One of the main results of [ 12] is that amortization does not increase a channel’s max-relative entropy of
entanglement; i.e.,

EmaX,A (N) = Emax(N)) (68)

where E, ., (N) denotes a channel’s max-relative entropy of entanglement (we will define this shortly). The
authors of [12] proved (68) by employing the methods of complex interpolation [27]. The main application of
(68) is that Ep.x (N) is a strong converse upper bound on the secret-key-agreement capacity of a quantum
channel [12] (this is defined as the private capacity of the channel, when arbitrary LOCC is allowed between
every channel use—see [35] or [12] for a definition).

In this section, we provide an alternate proof of (68), which is along the lines of the proofs of proposition
1 and corollary 2. We think that this approach brings a different perspective to the result of [12] and could
potentially be useful in future applications.

To begin with, let us recall the definition of the max-relative entropy of entanglement of a bipartite state p
[33]:

Emax (A; B)p = min Dinax (pAB ||0AB)~ (69)
45E SEP(A:B)

— —
Let SEP (A: B) denote the cone of all separable operators, i.e., Xy € SEP (A : B) ifthere exists a positive
integer L and positive semi-definite operators { P;} . and { Qg } , such that X5 = Z,chl Pi ® Qj.Thearrowin

P
SEP (A : B)is meant to remind the reader of ‘cone’ and is not intended to indicate any directionality between the

A and B systems. In what follows, we sometimes employ the shorthands SEP and SEP when the bipartite cuts
are clear from the context. Then we have the following alternative expression for the max-relative entropy of
entanglement:

Lemma 6. Let p,, be a bipartite state. Then

Emax (A3 B)p = logz ‘/vsep(A; B)p) (70)
where
Weep(A; B)y, = min_ {Tr{Xap}: prp < Xas} (71)
Xp€ SEP

Proof. Employing the definition in (69), consider that

min Dy (papllous) = log, min{p : p,p < poas, oap € SEP} (72)
osp€SEP(A:B) [4,0AB
. e ——
= log, min {Tr{Xap} : pyp < Xup> Xap € SEP }. (73)
'AB
This concludes the proof. n

We can then define a channel’s max-relative entropy of entanglement E,,, (\) asin (2), by replacing E with
Enmax- We can alternatively write Ey,,, (\) as follows, by employing similar reasoning as given in the proof of [36,
lemma6]:

Enax(N) = max_min_Dunax (Y *J5§ pi* | 758) (74)
pg  OspESEP

where pgis a density operator and ]5{};/ is the Choi operator for the channel A/, as defined in (10). We now prove
the following alternative expression for Ej,, (ANV):

9
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Lemma 7. Let Ny . p bea quantum channel. Then

Einax (N) = lOgZE(N)a (75)
where
SNV) = min {||Trs{ Ysp} |bo: I < Yop). (76)
Yspe SEP

Proof. Employing (74) and lemma 6, we find that

Emax(N) = logmax min_ {Tr{Yss} : pl/2J& pl/? < Yop). (77)
P Yse SEP
So our aim is to prove that the expression inside the logarithm is equal to (/). Taking the ansatz that pgis an

invertible density operator, we find that the condition pé/ 2], S/X pls/ 2 < Ygpis equivalent to the condition

ISJX < p;l/ZYSBpgl/z = Y{z € SEP(S: B).Notingthat Y3 = pg/zYS’Bpls/z,thismeansthat
max min {Tr{Ysp} : pls/zlsj\,fpls/z < Y} = max min | {Tr{psYig) : ISJX < Yig)
ps  Ysp€ SEP pg  Yizc SEP

= min_max {Tr{ps¥{s} : J§ < Yy}
Yiz€ SEP  pg

= min_max {Tr{ps Tra{Yis}} : J& < Yiz)
Y{zc SEP P

= min_{|[Trp{Yis} o } : J& < Yip)
Ygp€ SEP

=3W). (78)

The second equality follows from the Sion minimax theorem: the sets over which we are optimizing are convex,
with the set of density operators additionally being compact, and the objective function Tr{ ps Y} is linear in pg
and Y{, and so the Sion minimax theorem applies. The third equality follows from partial trace, and the fourth
follows because || D ||, = max, Tr{Dp}, when the optimization is with respect to density operators. Finally, we
note that the ansatz may be lifted by an appropriate limiting argument. [

We can now see that the expressions for E,y (A; B), inlemma 6 and E ., (N) inlemma 7 have a very
similar form to those in (24) and (26) for Ryax (A; B), and Ryx (N), respectively. However, the optimization
problems for Ey,.x (A; B), and Ey,qx (N) are not necessarily efficiently computable because they involve an
optimization over the cone of separable operators, which is known to be difficult [37] in general. Regardless, due
to the forms that we now have for Eyx (A; B), and Ep,y (N), we can prove an inequality from [12], analogous to
(28), with a proof very similar to that given in the proof of proposition I:

Proposition 8. [12] Let p ;. be a state and let N5, g be a quantum channel. Then
Epmax (A's BB)y < Emax(N) + Emax (A'A; B)),, (79)
where

w s = Na—s(p yap)- (80)

Proof. By removing logarithms and applying lemmas 6 and 7, the desired inequality is equivalent to the
following one:

Vvsep (A'; BB), < Z(N) ’ Vvsep (AA; B/)p) (81)
and so we aim to prove this one. Exploiting the identity in lemma 6, we find that
Weep(A'A; B'), = minTr{Caup}, (82)
subject to the constraints
—
Caup € SEP(AA: B, (83)
Caap 2 P pap» (84)
while the identity in lemma 7 gives that
Y(N) = min || Trp{Ysp} [l (85)
subject to the constraints
—
Ysp € SEP(S: B), (86)
Yo = Jgj- (87)

10
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The identity in lemma 6 implies that the left-hand side of (81) is equal to

Weep(A'; BB'),, = minTr{E ypp}, (88)
subject to the constraints
—
Expp € SEP (A : BB), (89)
Eupp 2 NAHB(PA'AB')- (90)

With these optimizations in place, we can now establish the inequality in (8 1) by making a judicious choice
for E ypp. Let C yap be optimal for W, (A'A; B'),, and let Ygz be optimal for 3 (). Let | T)s4 be the maximally
entangled vector, as defined in (9). Pick

Expp = (Ylsa Caap @ Ysp|L)sa.

This choice is clearly similar to that in the proof of proposition 1. We need to prove that E 45 is feasible for
Weep (A5 BB'),.. To this end, consider that

(Ylsa Caap @ Ysp|Y)sa = (Ylsa paap © ]£|T>SA
= NAHB(pA’AB’)) (91)

which follows from (84), (87), and (11). Now, since Cyapr € SEP(A'A : B'),itcanbewrittenas }° Pi, ® QF

—
for positive semi-definite P} 4 and Q. Furthermore, consider that since Ysp € SEP (S : B), it can be written as
>, L{ ® MY for positive semi-definite L} and M%. Then we have that

(Ylsa Caap @ YspThsa =D (Tlsa Pl ® Qi @ LY @ M| T)sa
xy
= > (Ylsa PEATA(L}) ® Qf ® Is ® MJ|T)sa
xy
= Tra{P{, Ta(L)} ® Qi ® M} € SEP(A’ : BB'). (92)
xy
The second equality follows from (14) and the third from (12). The last statement follows because
Tea{Pi, Ta(L)} = Tiuf \/ Ta(LY) Pya \/ T4 (L)) } is positive semi-definite for each x and y. Finally, consider that
Tr{Expp} = Tr{(Ylsa Caap ® Ysp|L)sa}
= Tr{Cuap T (Yap)}
= Tr{Cuap Ta(Trp{Yas})}
S Tr{Cuap} || Ta(Tra{ Yas}) [l
= Tr{Cuap} || Tra{Yap }[|oc
= Wiep(A'A; BY), - B(N). (93)

The reasoning for this chain is identical to that for (41).
Thus, we can conclude that our choice of E ypp is feasible for W (A’; BB’),,. Since W (A’; BB'),, involves a
minimization over all E ypp satisfying (89) and (90), this concludes our proof of (81). |

By the same reasoning employed in the proof of corollary 2, the equality in (68) follows as a consequence of
the inequality in proposition 8.

We finally note that max-relative entropy of entanglement is subadditive as a function of quantum channels,
in the following sense:

Emax(N® M) g Emax(N) + Emax(M)> (94)

where A/ and M are quantum channels. This follows as a consequence of the equality in (68) and [9, proposition
4], the latter of which states that the amortized entanglement is always subadditive as a function of quantum
channels. Itis an interesting open question to determine whether the max-relative entropy of entanglement is
additive as a function of quantum channels.

6. On converses for quantum and private capacities

Here we discuss briefly how our strong converse result stands with respect to prior work on strong converses and
quantum and private capacities [12, 18-21, 35, 38, 39].

11
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6.1. Quantum capacities

Let Q(N) and QT (V) denote the quantum capacity and the strong converse quantum capacity of a quantum
channel N These quantities are defined similarly to Q**T-"=(N") and Q**T-»~T(\/), but there is no PPT
assistance allowed. The partial transposition bound was defined in [38] as follows:

Qo(V) = log, [|ToNfo (95)

where T denotes the transpose map and ||- ||, is the diamond norm. In [38], Qg (V') was established as a pretty-
strong converse rate, in the sense of [40], for the quantum capacity of the channel A/ . This result was
subsequently improved in [39] to the following strong converse bound:

Q') < QPP =T(N) < Qo(N). (96)
The recent work in [20, 21] established the following two bounds:
Q' (N) < Riax(N). (98)

Thus, in light of the above history, it is clear that the natural question was whether QP*T-><T(A") < Ry (N),
and this is the question that our paper affirmatively answers. In summary, we now have that

QW) < QW) < QTP T(N) < Rpax (V) < Qo (N). (99)

We now mention some other related results. The Rains relative entropy R(A; B), of a bipartite state p4p s

defined as[7, 8, 32]
R(A; B), =  min  D(pyglloap), (100)
oABEPPT/(A:B)

where D denotes the quantum relative entropy [41, 42], defined as D (w||7) = Tr{w[log,w — log, 7]}
whenever supp(w) C supp(7) and 400 otherwise. Then the Rains information R (N) of a quantum channel
N is defined by replacing Ein (2) with R(A; B),,[19]. One can also define the amortized Rains information
Ry (N) via the recipe in (3). Due to the inequality D (w||7) < Dpax(w]|7) [33], the following inequality holds

RN) < Rypax(N). (101)
The following bound is known from [19]
Q'(WN) < RW), (102)
and it is open to determine whether
QUPT-Pt (V) < RW). (103)

This latter inequality is known to hold if the channel A/ has sufficient symmetry [19].
The squashed entanglement E,y(A; B),, of a quantum state p, g is defined as [43]

Eoy(A; B), = l;nf (L(As BIE),: Trelpagg) = pash (104)
‘ABE
where I(A; B|E), = H(AE), + H(BE), — H(E), — H(ABE),and H (F), = —Tr{oy log, o5} (Seealso
discussions in [44, 45] for squashed entanglement.) One can also consider the squashed entanglement of a
channel Eyq (N) [16], as well as the amortized squashed entanglement Egq,a (N). Another function of a quantum
channel is its entanglement cost [46], which we write as E¢(N') and for which a definition is given in [46]. The
following bounds and relations are known regarding these quantities:

Q7T (N) < Ec(N), [44] (105)
Esq,A(N) = Esq(N)) [16] (106)
Q~WN) < EqN) < Ec(N), [16] (107)

It is open to determine whether the following inequality holds

QTN < Eq(A). (108)

6.2. Private capacities
One can also consider various private capacities and strong converse private capacities of a quantum channel,
denotedas P(N), P=(N), PT(NV),and P~ (). Defining the relative entropy of entanglement E [47] as

Er(A; B), = min  D(pyplloan), (109)
o4p€SEP(A:B)

12
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and the max-relative entropy of entanglement E, ., as we did in (69), we can also define their channel versions
Ex(N)and E, (N) and their amortized versions Eg o (N') and Epax 4 (N). For these various quantities, we
have that

Po(N) < Eq(N),  [16, 46] (111)
PT(N) < Ec(N), [12] (112)
Emax,A(N) = Emax(/\/)a [12] (113)
P7TN) € Emax(N),  [12] (114)
PTN) < BR(N). [33] (115)
Itis not known whether
P=T(N) % Eyq(N), (116)
PTN) < By, (117)

but the latter inequality is known to hold for channels with sufficient symmetry [35].

An interesting question is whether the max-Rains information of a channel A/ could serve as an upper
bound on one of its private capacities P (N), PT(N), P=(N), or P~ (N). The guiding principle behind many
strong converse bounds in quantum information theory is to compare the output of the actual protocol, with
respect to a relative entropy-like measure, to a state or positive semi-definite operator that is ‘useless’ for the task.
By ‘useless,” we mean that the state or operator should have a probability of passing a test for the task that is no
larger than inversely proportional to the dimension of the system being communicated. For example, this kind
of resultis known from [7,lemma 2] for operatorsin the set PPT/(M, : Mp) and the entanglement test, and we
used this bound effectively in (55) in order to establish the max-Rains information as an upper bound on PPT-
P-assisted quantum capacity. Furthermore, this kind of result is known from [35, 48, 49] for separable states and
the privacy test, and prior work has used this result to establish upper bounds on various private capacities of a
channel [12, 35]. However, it is not known how to obtain this kind of result for operators in the set
PPT/(M, : Mp) and the privacy test, and it is for this reason that we have not been able to establish the max-
Rains information as an upper bound on private capacity. We doubt whether this would be possible, given that
there exist channels that produce PPT states with non-zero distillable secret-key [50, 51].

In the same spirit, one might wonder about differences between the max-Rains relative entropy and the
max-relative entropy of entanglement. First, it is clear that the max-relative entropy of entanglement can
increase under the action of a PPT-P channel, because there exist states that are PPT and entangled [48].
Furthermore, the aforementioned is related to the fact that there exist states for which there is a strict separation
between the max-Rains relative entropy and the max-relative entropy of entanglement. Any state thatis PPT and
entangled has a max-Rains relative entropy equal to zero, while its max-relative entropy of entanglement is
non-zero.

6.3. Summary: channel measures that do not increase under amortization
In summary, we know that amortization does not increase
1. the squashed entanglement E, N [16],
2. the max-relative entropy of entanglement E,,., (') [12],
3. or the max-Rains information R, (\') (Corollary 2).
This is the main reason that these information quantities are single-letter converse bounds for assisted capacities.

Is there any chance that the same could hold generally for Ex (N) or R(N)? If so, then the known capacity
bounds could be improved.

7. Conclusion

The main contribution of our paper was to show that the max-Rains information of a quantum channel does not
increase under amortization. That is, when entanglement is quantified by the max-Rains relative entropy, the
net entanglement that a channel can generate is the same as the amount of entanglement that it can generate if
the sender and receiver do not start with any initial entanglement. This result then implies a single-letter, strong
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converse, and efficiently computable bound for the capacity of a quantum channel to communicate qubits along
with the assistance of PPT-P operations between every channel use. As such, the max-Rains information can be
easily evaluated and is a general benchmark for this capacity. As we emphasized previously, our upper bound is
also an upper bound on the physically relevant LOCC-assisted quantum capacity. The main tool that we used to
prove our result is the formulation of the max-Rains relative entropy and max-Rains information as semi-
definite programs [20-22] (in particular, we employed SDP duality—we note here that this kind of approach has
previously been employed successfully for multiplicativity, additivity, or parallel repetition problems in
quantum information theory [52-54]). We also compared our result to other results in the growing literature on
the topic of bounds for the assisted capacities of arbitrary quantum channels [12, 16, 19, 35, 39].

We also provided an alternative proof for the fact that amortization does not enhance a channel’s max-
relative entropy of entanglement [12]: i.e., Eqax A (N) = Eqax (N). This statement was proved in [12] by
employing the methods of complex interpolation [27], but here we found a different proof by establishing
alternative expressions for the max-relative entropy of entanglement (lemma 6) and a channel’s max-relative
entropy of entanglement (lemma 7). These alternative expressions then allowed us to employ reasoning similar
to that in our proof of proposition 1 in order to establish a different proof for the equality
Emax.A(N) = Emax(N). We suspect that our approach could be useful in future applications.

Finally, in [21], it was noted that the max-Rains information does not give a good upper bound on the
quantum capacity of the qubit depolarizing channel. Our result gives a compelling reason for this
observation: the max-Rains information finds its natural place as an upper bound on the PPT-P-assisted
quantum capacity of the qubit depolarizing channel, and these assisting operations allowed between every
channel use could result in a significant increase in capacity.
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