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Abstract
We establish a generalized quantum Chernoff bound for the discrimination of multiple

sets of quantum states, thereby extending the classical and quantum Chernoff bounds to the
general setting of composite and correlated quantum hypotheses. Specifically, we consider
the task of distinguishing whether a quantum system is prepared in a state from one of several
convex, compact sets of quantum states, each of which may exhibit arbitrary correlations.
Assuming their stability under tensor product, we prove that the optimal error exponent for
discrimination is precisely given by the regularized quantum Chernoff divergence between
the sets. Furthermore, leveraging minimax theorems, we show that discriminating between
sets of quantum states is no harder than discriminating between their worst-case elements in
terms of error probability. This implies the existence of a universal optimal test that achieves
the minimum error probability for all states in the sets, matching the performance of the opti-
mal test for the most challenging states. We provide explicit characterizations of the universal
optimal test in the binary composite case. Finally, we show that the maximum overlap be-
tween a pure state and a set of free states, a quantity that frequently arises in quantum resource
theories, is equal to the quantum Chernoff divergence between the sets, thereby providing an
operational interpretation of this quantity in the context of symmetric hypothesis testing.
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1 Introduction

Hypothesis testing is a fundamental method for deciding between competing explanations of ob-
served data. It provides a rigorous framework for making decisions under uncertainty and is cen-
tral to statistics, information theory, and many applied fields such as signal processing, machine
learning, and experimental physics [LR22]. The main goal of hypothesis testing is to determine
which of several possible models or probability distributions best describes a set of observations,
while keeping the probability of making an error as low as possible. In the classical setting, Cher-
noff showed that, when many independent samples are available, the probability of error decreases
exponentially with the number of samples. The rate at which this error probability decays is given
by the celebrated Chernoff bound [Che52], which quantifies the fundamental limit of distinguisha-
bility between different hypotheses.

The study of Chernoff bound has been generalized to the quantum domain, encompassing
a variety of scenarios that can be broadly categorized as either simple or composite hypothesis
testing. In the simple hypothesis setting, the state to be distinguished is specified by a single
quantum state. For independent and identically distributed (i.i.d.) states, the optimal error expo-
nent is given by the quantum Chernoff bound, as established by Audenaert et al. [ACMT+07] and
Nussbaum and Szkoła [NS09], with extensions to multiple hypotheses by Li [Li16]. For corre-
lated quantum states, such as those arising in spin chains, the problem has been studied by Hiai et
al. [HMO07, HMO08]. In the composite hypothesis setting, the hypothesis is described by a set
of quantum states. If each state in the set is i.i.d., this is referred to as the composite i.i.d. case,
which has been investigated by Mosonyi et al. [MSW22]. If the states in the set have a tensor
product structure but are allowed to vary arbitrarily across subsystems, this leads to the composite
arbitrarily varying case, also studied in [MSW22]. Composite hypothesis testing with restricted
measurements has also been studied by Brandão et al. [BHLP20].

However, in many practical scenarios, the states to be distinguished are not fully specified
and may lack a simple tensor product structure. Instead, one only knows that the states belong to
different sets of quantum states, which may exhibit arbitrary correlations and lack i.i.d. structure.
Existing results do not directly apply to this general setting. Recent progress has been made in
the asymmetric (Stein’s) regime, where the type-II error is minimized subject to a constraint on
the type-I error [FFF24]. In this work, we address the symmetric hypothesis testing scenario for
discriminating between two (or more) sets of quantum states, thereby generalizing the quantum
Chernoff bound to the general composite and correlated settings.

Summary of main results. We establish a generalized quantum Chernoff bound for the dis-
crimination of multiple sets of quantum states, allowing for arbitrary correlations and composite
hypotheses. Specifically, we consider the task of distinguishing whether a quantum system is pre-
pared in a state from one of several convex, compact sets of quantum states, each of which may
exhibit arbitrary correlations and need not possess an i.i.d. structure. In Theorems 17 and 19, we
show that, under the assumption of stability under tensor product, the optimal asymptotic error ex-
ponent for discrimination is given by the regularized Chernoff divergence between the sets. These
results extend the classical and quantum Chernoff bounds to the general setting of composite and
correlated hypotheses, unifying and generalizing several previously known results as special cases.
Furthermore, we provide an explicit characterization of the optimal measurement for binary com-
posite hypotheses in Theorem 26. Finally, in Theorem 27, we provide an operational interpretation
of the maximum overlap between a pure state and a set of free states—a quantity that frequently
arises in quantum resource theory—as the optimal error exponent in symmetric hypothesis testing.
This, in turn, also yields explicit examples where the quantum Chernoff divergence between sets
of quantum states is not additive, thereby highlighting the necessity of its regularization.
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Organization of the paper. The remainder of this paper is structured as follows. Section 2
introduces the necessary notation, reviews relevant minimax theorems, and summarizes the quan-
tum Chernoff bound for simple hypotheses. In Section 3, we develop the operational framework
for quantum hypothesis testing between sets of quantum states, introduce the quantum Chernoff
divergence for sets, and establish its key properties. We also present our main results: the quantum
Chernoff bound for multiple composite hypotheses, including both the general and binary cases,
together with detailed proofs. Section 4 provides an explicit construction of optimal tests for
binary composite hypotheses, leveraging minimax optimization and saddle-point analysis. In Sec-
tion 5, we offer an operational interpretation of the maximum overlap with free states in quantum
resource theories and illustrate the necessity of regularization of quantum Chernoff divergence for
sets. Finally, Section 6 concludes with a discussion of future research directions.

2 Preliminaries

2.1 Notations

We adopt the following notational conventions throughout this work. Finite-dimensional Hilbert
spaces are denoted by H, with |H| representing their dimension. The set of all linear operators
on H is denoted by L (H), while H (H) and H+(H) denote the sets of Hermitian and positive
semidefinite operators on H, respectively. The set of density matrices (i.e., positive semidefinite
operators with unit trace) on H is denoted by D(H). Calligraphic letters such as A , B, and C
are used to denote sets of linear operators. Unless otherwise specified, all logarithms are taken
to base two and denoted by log(x). The positive semidefinite ordering is written as X ≥ Y if
and only if X − Y ≥ 0. The absolute value of an operator X is defined as |X| := (X†X)1/2.
For a Hermitian operator X with spectral decomposition X =

∑
i xiEi, the projection onto the

non-negative eigenspaces is denoted by {X ≥ 0} :=
∑

xi≥0Ei.

2.2 Minimax theorems

The following lemma is a minimax theorem that account for the infinity values of the function.
Let X be a convex set in a linear space. A function f : X → (−∞,−∞] said to be convex,
if f(px + (1 − p)y) ≤ pf(x) + (1 − p)f(y), the multiplication 0 · f(x) is interpreted as 0 and
p ·+∞ = +∞ for p ̸= 0. Similar definiton holds for concave functions.

Lemma 1. [FR06, Theorem 5.2] Let X be a compact, convex subset of a Hausdorff topological
vector space and Y be a convex subset of the linear space. Let f : X×Y → (−∞,+∞] be lower
semicontinuous on X for fixed y ∈ Y , and assume that f is convex in the first and concave in the
second variable. Then

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y). (1)

Another minimax theorem is given by [MH11, Corollary A.2] or [MH23, Lemma II.2].

Lemma 2. Let X be a compact topological space, Y be an ordered set, and let f : X × Y →
R ∪ {±∞} be a function. Assume that (i) f(·, y) is upper semicontinuous for every y ∈ Y , and
(ii) f(x, ·) is monotonic increasing (or decreasing) for every x ∈ X . Then

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y), (II.5)

and the suprema can be replaced by maxima.

The following lemmas are standard results in mathematical analysis and will be used fre-
quently in our proofs. For detailed proofs, see, e.g., [BDB23, Lemma 2.8, 2.9].
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Lemma 3. Let X be a nonempty compact topological space, and let f : X → R be a function.
Then if f is upper semicontinuous, it attains its maximum, meaning there is some x ∈ X such that
for all x′ ∈ X , f(x′) ≤ f(x). Similarly, if f is lower semicontinuous, it attains its minimum.

Lemma 4. LetX be a topological space, let I be a set, and let {fi}i∈I be a collection of functions
fi : X → R. Then if each fi is upper semicontinuous, the function f(x) = infi∈I fi(x) is also
upper semicontinuous. Similarly, if each fi is lower semicontinuous, the pointwise supremum is
lower semicontinuous.

2.3 Quantum Chernoff bound

Consider the problem of distinguishing between two quantum hypotheses: the system is prepared
either in state ρ1 (the null hypothesis) or in state ρ2 (the alternative hypothesis). In the Bayesian
framework, each hypothesis is assigned a prior probability, denoted by π1 and π2, where π1, π2 >
0 and π1 + π2 = 1 (excluding the trivial case where either prior is zero).

Operationally, the discrimination is carried out using a two-outcome positive operator-valued
measure (POVM) {M, I −M}, with 0 ≤M ≤ I . The average error probability for this measure-
ment is given by

Pe(M,ρ1, ρ2) := π1Tr[(I −M)ρ1] + π2Tr[Mρ2]. (2)

The goal is to minimize the average error probability over all possible POVMs:

Pe,min(ρ1, ρ2) := inf
0≤M≤I

Pe(M,ρ1, ρ2). (3)

In a landmark result, Audenaert et al. [ACMT+07] and Nussbaum and Szkoła [NS09] showed
that, in the asymptotic regime, the optimal error probability decays exponentially with the number
of copies, with the optimal exponent characterized by

lim
n→∞

− 1

n
logPe,min(ρ

⊗n
1 , ρ⊗n

2 ) = C(ρ1∥ρ2), (4)

where the quantum Chernoff divergence is defined as

C(ρ1∥ρ2) := max
0≤α≤1

− logQα(ρ1∥ρ2), with Qα(ρ1∥ρ2) := Tr[ρα1 ρ
1−α
2 ]. (5)

This fundamental result is known as the quantum Chernoff bound, which establishes the optimal
asymptotic rate at which the error probability decays when discriminating between two quantum
states in the i.i.d. setting.

The proof of the quantum Chernoff bound relies on two key lemmas, which will also play a
central role in our analysis.

Lemma 5. For any V,W ∈ H+, it holds that [Hol72, Hel69]

inf
0≤M≤I

Tr[(I −M)V ] + Tr[MW ] =
1

2
(Tr[V +W ]− ∥V −W∥1). (6)

Lemma 6. Let V,W ∈ H+ and α ∈ [0, 1]. It holds that [ACMT+07]

Tr[V αW 1−α] ≥ 1

2
Tr[V +W − |V −W |]. (7)

By its operational meaning, the quantum Chernoff divergence is additive under n-fold tensor
product states, i.e., for any n ∈ N, C(ρ⊗n

1 ∥ρ⊗n
2 ) = nC(ρ1∥ρ2). More generally, the Chernoff

divergence is subadditive under tensor products of different states:

C(ρ1 ⊗ σ1∥ρ2 ⊗ σ2) ≤ C(ρ1∥ρ2) + C(σ1∥σ2). (8)
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This can be seen as follows:

C(ρ1 ⊗ σ1∥ρ2 ⊗ σ2) = max
α∈[0,1]

− logQα(ρ1 ⊗ σ1∥ρ2 ⊗ σ2) (9)

= max
α∈[0,1]

− logQα(ρ1∥ρ2)− logQα(σ1∥σ2) (10)

≤ max
α∈[0,1]

− logQα(ρ1∥ρ2) + max
α∈[0,1]

− logQα(σ1∥σ2) (11)

= C(ρ1∥ρ2) + C(σ1∥σ2), (12)

where the second equality uses the multiplicativity ofQα under tensor products, and the inequality
follows from splitting the maximization over α for each term.

The quantum Chernoff bound for multiple hypotheses was established by Li in [Li16]. Con-
sider r quantum states {ρi}ri=1 with prior probabilities {πi}ri=1 such that

∑r
i=1 πi = 1. Let

{Mi}ri=1 be a POVM, i.e., a collection of positive semidefinite operators satisfying
∑r

i=1Mi = I .
The average error probability for discriminating among these r quantum states is given by

Pe({Mi}ri=1, {ρi}ri=1) :=
r∑

i=1

πiTr[ρi(I −Mi)] = 1−
r∑

i=1

πiTr[ρiMi]. (13)

Optimizing over all POVMs, the minimum error probability is defined as

Pe,min({ρi}ri=1) := inf
{Mi}ri=1

Pe({Mi}ri=1, {ρi}ri=1). (14)

It has been shown in [Li16] that

lim
n→∞

− 1

n
logPe,min({ρ⊗n

i }ri=1) = C({ρi}ri=1) := min
i ̸=j

C(ρi, ρj). (15)

3 Hypothesis testing between sets of quantum states

In this section, we generalize the quantum Chernoff bound to the discrimination of multiple sets of
quantum states. We begin by formulating the operational framework for hypothesis testing among
several sets, and then introduce the notion of the quantum Chernoff divergence between sets of
quantum states, along with its key mathematical properties. We conclude by presenting our main
result, which establishes the quantum Chernoff bound for multiple sets of quantum states under
appropriate structural assumptions.

3.1 Operational setting: discriminating multiple sets of quantum states

Consider the problem of discriminating among r sets of quantum states, denoted by Ci for i ∈
{1, . . . , r}, where each set is associated with a prior probability πi such that

∑r
i=1 πi = 1. The

task is to determine, via quantum measurement, from which set a given quantum state is drawn,
without knowledge of the specific state within each set. Let {Mi}ri=1 be a POVM, where each
Mi corresponds to the decision that the state is drawn from set Ci. For each i, Tr[ρi(I −Mi)]
represents the probability of incorrectly rejecting set Ci when the true state is ρi ∈ Ci. Since the
specific state within each set is unknown, we adopt a worst-case approach and define the error
probability as the supremum, over all possible choices of states from each set, of the average
probability of incorrectly identifying the set:

Pe({Mi}ri=1, {Ci}ri=1) := sup
∀i, ρi∈Ci

r∑
i=1

πiTr[ρi(I −Mi)]. (16)
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To characterize the fundamental limit of discrimination, we minimize the worst-case error
probability over all possible POVMs:

Pe,min({Ci}ri=1) := inf
{Mi}ri=1

Pe({Mi}ri=1, {Ci}ri=1). (17)

This quantity characterizes the optimal error probability for discriminating among multiple sets of
quantum states, accounting for the worst-case selection of states from each set.

If each Ci = {Ci,n}n∈N is a sequence of sets of quantum states,1 we are interested in the
asymptotic behavior of the minimum error probability:

lim inf
n→∞

− 1

n
logPe,min({Ci,n}ri=1) =? (18)

As a special case, choosing the set to be the singleton Ci,n = {ρ⊗n
i }, it recovers the quantum

Chernoff bound for multiple i.i.d. states given in Eq. (15).

3.2 Quantum Chernoff divergence between sets of quantum states

We now introduce the quantum Chernoff divergence between two sets of quantum states, which
generalizes the quantum Chernoff divergence defined in Eq. (5). This quantity captures the funda-
mental distinguishability between two sets of quantum states and serves as a key tool in establish-
ing the quantum Chernoff bound for composite correlated hypotheses. Building on this notion, we
further extend the definition to encompass the case of multiple sets.

Definition 7 (Quantum Chernoff divergence between two sets of quantum states). Let H be a
finite-dimensional Hilbert space, and let C1,C2 ⊆ D(H) be two sets of quantum states. The
quantum Chernoff divergence between these sets is defined as

C(C1∥C2) := inf
ρ1∈C1
ρ2∈C2

C(ρ1∥ρ2). (19)

Moreover, let C1 = {C1,n}n∈N and C2 = {C2,n}n∈N be two sequences of sets of quantum
states, where each C1,n,C2,n ⊆ D(H⊗n). The regularized quantum Chernoff divergence between
these sequences is defined as

C∞(C1∥C2) := lim inf
n→∞

1

n
C(C1,n∥C2,n), (20)

C
∞
(C1∥C2) := lim sup

n→∞

1

n
C(C1,n∥C2,n). (21)

If the following limit exists, we define the regularized Chernoff divergence as

C∞(C1∥C2) := lim
n→∞

1

n
C(C1,n∥C2,n). (22)

Remark 8. The quantum Chernoff divergence can be written in terms of the Petz Rényi divergence
as C(ρ1∥ρ2) = supα∈(0,1)(1 − α)DP,α(ρ1∥ρ2). Since DP,α(ρ1∥ρ2) is lower semicontinuous in
(ρ1, ρ2) ∈ H++×H++ for any fixed α [MH23, Proposition III.11], and C(ρ1∥ρ2) is the pointwise
supremum of lower semicontinuous functions, it follows from Lemma 4 that C(ρ1∥ρ2) is also
lower semicontinuous in (ρ1, ρ2). Consequently, if the sets C1 and C2 are compact, we know from
Lemma 3 that the infimum in the definition of C(C1∥C2) is achieved.

In many practical scenarios, the sequences of sets under consideration are not arbitrary but
possess a structure that is compatible with tensor products. This property, known as stability (or
closeness) under tensor product, is formalized as follows.

1 We abuse the notation Ci to refer both to sets of quantum states and to sequences of such sets, depending on the context.
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Definition 9 (Stable sequence). Let C1 ⊆ H+(H1), C2 ⊆ H+(H2), and C3 ⊆ H+(H1 ⊗ H2).
We say that (C1,C2,C3) is stable under tensor product if, for any X1 ∈ C1 and X2 ∈ C2, it
holds that X1 ⊗ X2 ∈ C3. In short, we write C1 ⊗ C2 ⊆ C3. A sequence of sets {Cn}n∈N with
Cn ⊆ H+(H⊗n) is called stable under tensor product if Cn ⊗ Cm ⊆ Cn+m for all n,m ∈ N.

As a consequence of the subadditivity of the Chernoff divergence in Eq. (8), its extension to
sets of quantum states is also subadditive, provided that the sequences C1 = {C1,n}n∈N and C2 =
{C2,n}n∈N are both stable under tensor product [FFF24, Lemma 26]. Therefore, the regularized
quantum Chernoff divergence C∞(C1∥C2) exists and satisfies

C∞(C1∥C2) = C
∞
(C1∥C2) = C∞(C1∥C2) = inf

n≥1

1

n
C(C1,n∥C2,). (23)

In Section 5, we provide examples where the quantum Chernoff divergence between two sets is
strictly subadditive, highlighting the necessity of regularization in general.

Analogous to the extension of the quantum Chernoff divergence to sets of quantum states, we
also generalize the quantum Chernoff quasi-divergence to this setting.

Definition 10 (Quantum Chernoff quasi-divergence between two sets of quantum states). Let
α ∈ [0, 1] and H be a finite-dimensional Hilbert space. Let C1,C2 ⊆ D(H) be two sets of
quantum states. The quantum Chernoff quasi-divergence between these sets is defined as

Qα(C1∥C2) := sup
ρ1∈C1
ρ2∈C2

Qα(ρ1∥ρ2). (24)

Moreover, let C1 = {C1,n}n∈N and C2 = {C2,n}n∈N be two sequences of sets of quantum
states, where each C1,n,C2,n ⊆ D(H⊗n). The regularized quantum Chernoff quasi-divergence
between these sequences is defined as

Q∞
α
(C1∥C2) := lim inf

n→∞
[Qα(C1,n∥C2,n)]

1
n , (25)

Q
∞
α (C1∥C2) := lim sup

n→∞
[Qα(C1,n∥C2,n)]

1
n . (26)

If the following limit exists, we define the regularized Chernoff quasi-divergence as

Q∞
α (C1∥C2) := lim

n→∞
[Qα(C1,n∥C2,n)]

1
n . (27)

The multiplicativity of the quantum Chernoff quasi-divergence under tensor product implies
that its extension to sets is supermultiplicative, provided that the sequences are stable under tensor
product. Consequently, the regularized quasi-divergence Q∞

α (C1∥C2) exists and satisfies

Q∞
α (C1∥C2) = Q

∞
α (C1∥C2) = Q∞

α
(C1∥C2) = sup

n≥1
[Qα(C1,n∥C2,n)]

1
n . (28)

While the quantum Chernoff divergence and quasi-divergence between two states are directly
related through their definitions, we have thus far extended these quantities for sets of quantum
states independently. It is therefore natural to ask whether a relationship analogous to Eq. (5)
holds between the Chernoff divergence and quasi-divergence when extended to sets of quantum
states. The following result establishes this connection by applying minimax theorems.
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Lemma 11. Let H be a finite-dimensional Hilbert space, and let C1,C2 ⊆ D(H) be two convex
sets of quantum states. Then it holds that

C(C1∥C2) = max
α∈[0,1]

− logQα(C1∥C2). (29)

Moreover, let C1 = {C1,n}n∈N and C2 = {C2,n}n∈N be two stable sequences of convex sets of
quantum states, where each C1,n,C2,n ⊆ D(H⊗n). Then it holds that

C∞(C1∥C2) = max
α∈[0,1]

− logQ∞
α (C1∥C2). (30)

Proof. We have the following chain of equalities:

C(C1∥C2) = inf
ρ1∈C1
ρ2∈C2

C(ρ1∥ρ2) (31)

= inf
ρ1∈C1
ρ2∈C2

max
0≤α≤1

− logQα(ρ1∥ρ2) (32)

= − log sup
ρ1∈C1
ρ2∈C2

min
0≤α≤1

Qα(ρ1∥ρ2) (33)

= − log min
0≤α≤1

sup
ρ1∈C1
ρ2∈C2

Qα(ρ1∥ρ2) (34)

= max
0≤α≤1

inf
ρ1∈C1
ρ2∈C2

− logQα(ρ1∥ρ2) (35)

= max
0≤α≤1

− logQα(C1∥C2), (36)

where the first two equalities follow directly from the definitions. By Lieb’s concavity theorem,
Qα(ρ1∥ρ2) is jointly concave in (ρ1, ρ2) (see also [Tom16, Proposition 4.8]), and it is convex and
continuous in α [ANSV08]. These properties allow us to apply the minimax theorem in Lemma 1
to exchange the order of the supremum and infimum. The final equality then follows from the
definition of Qα(C1∥C2).

We now prove the second statement. Suppose C1 = {C1,n}n∈N and C2 = {C2,n}n∈N are
stable sequences under tensor product. By Eq. (23), the regularized Chernoff divergence exists
and can be written as

C∞(C1∥C2) = inf
n≥1

1

n
C(C1,n∥C2,n) (37)

= inf
n≥1

1

n
max
α∈[0,1]

− logQα(C1,n∥C2,n) (38)

= inf
n≥1

max
α∈[0,1]

− 1

n
logQα(C1,n∥C2,n), (39)

where the second line follows from Eq. (36) established above. Define

f(n, α) := − 1

n
logQα(C1,n∥C2,n). (40)

Due to the supermultiplicativity of Qα(C1,n∥C2,n), the objective function f(n, α) is monotone
decreasing in n for each fixed α. Furthermore, since Qα(ρn∥σn) is continuous in α ∈ [0, 1],
and Qα(C1,n∥C2,n) is defined as the pointwise supremum over lower semicontinuous functions,
Lemma 4 ensures that Qα(C1,n∥C2,n) is also lower semicontinuous in α. Consequently, f(n, α)
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is upper semicontinuous in α for each n. By applying the minimax theorem in Lemma 2, we can
exchange the infimum and the maximum to obtain

C∞(C1∥C2) = max
α∈[0,1]

inf
n≥1

− 1

n
logQα(C1,n∥C2,n) (41)

= max
α∈[0,1]

− log sup
n≥1

[Qα(C1,n∥C2,n)]
1
n (42)

= max
α∈[0,1]

− logQ∞
α (C1∥C2), (43)

where the last line follows from Eq. (28). This completes the proof. ⊓⊔

Remark 12 (Computability). For any fixed α ∈ [0, 1], the function Qα(ρ∥σ) is jointly concave
in (ρ, σ), so the quasi-divergence Qα(C1∥C2) can be efficiently computed using the QICS pack-
age [HSF24] whenever C1 and C2 admit semidefinite representations. If the sets C1 and C2 pos-
sess additional symmetries, the computational complexity can be further reduced. Moreover, since
Qα(C1∥C2) is convex and lower semicontinuous in α, the minimum over α ∈ [0, 1] is achieved at
a unique optimal solution. Thus, the quantum Chernoff divergence C(C1∥C2) can be efficiently
computed by scanning over α (e.g., via a bisection method).

Motivated by the quantum Chernoff divergence for multiple quantum states in Eq. (15), we
now extend the notion of quantum Chernoff divergence from two sets to the case of multiple sets
of quantum states, as formalized in the following definition.

Definition 13 (Quantum Chernoff divergence between multiple sets of quantum states). Let H
be a finite-dimensional Hilbert space, and let {Ci}ri=1 be r sets of quantum states, where each
Ci ⊆ D(H). The quantum Chernoff divergence between these sets is defined as

C({Ci}ri=1) := min
i ̸=j

C(Ci∥Cj). (44)

Moreover, if each Ci := {Ci,n}n∈N is a sequence of sets of quantum states where Ci,n ⊆
D(H⊗n), then the regularized quantum Chernoff divergence between these sets is defined as

C∞({Ci}ri=1) := lim inf
n→∞

1

n
C({Ci,n}ri=1), (45)

C
∞
({Ci}ri=1) := lim sup

n→∞

1

n
C({Ci,n}ri=1). (46)

If the following limit exists, we define the regularized Chernoff divergence as

C∞({Ci}ri=1) := lim
n→∞

1

n
C({Ci,n}ri=1). (47)

3.3 Quantum Chernoff bound for sets of quantum states

We now present a fundamental relation for the minimum error probability, which follows directly
from the minimax theorem. This result plays a central role in establishing the quantum Cher-
noff bound for sets of quantum states and in the subsequent discussion of universal optimal tests.
Importantly, it shows that the problem of composite hypothesis testing can be reduced to discrim-
inating between the worst-case states in the respective sets; that is, discriminating between sets of
quantum states is no harder than discriminating between their most challenging elements.
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Lemma 14. Let H be a finite-dimensional Hilbert space, and let {Ci}ri=1 be r convex sets of
quantum states, where each Ci ⊆ D(H). Then it holds that

Pe,min({Ci}ri=1) = sup
∀i, ρi∈Ci

Pe,min({ρi}ri=1), (48)

where the suprema can be replaced by maxima if the sets are also compact.

Proof. By definition, we have

Pe,min({Ci}ri=1) = inf
{Mi}ri=1

sup
∀i, ρi∈Ci

r∑
i=1

πiTr[ρi(I −Mi)] (49)

Due to the linearity of the error probability
∑r

i=1 πiTr[ρi(I −Mi)] in each of its arguments Mi

and ρi, and the set of all POVMs is convex and compact, we can apply Lemma 1 to exchange the
infimum and supremum and get

Pe,min({Ci}ri=1) = sup
∀i, ρi∈Ci

inf
{Mi}ri=1

r∑
i=1

πiTr[ρi(I −Mi)] = sup
∀i, ρi∈Ci

Pe,min({ρi}ri=1), (50)

where the second equality follows from Eq. (14). Note that Pe,min({ρi}ri=1) is upper semicontin-
uous by Lemma 4. Therefore by Lemma 3 the supremum can be replaced by a maximum if the
sets are compact. ⊓⊔

Remark 15 (Computability). For a fixed collection of r quantum states, the minimum error prob-
ability admits a semidefinite programming (SDP) formulation [Li16, Eq. (39)]:

Pe,min({ρi}ri=1) = max
X∈H

{1− TrX : X ≥ πiρi, ∀i = 1, . . . , r} . (51)

Applying Lemma 14, we obtain

Pe,min({Ci}ri=1) = sup
∀i, ρi∈Ci

max
X∈H

{1− TrX : X ≥ πiρi, ∀i = 1, . . . , r} , (52)

which remains an SDP whenever the sets Ci admit SDP representations. In such cases, the optimal
value can be efficiently computed.

Remark 16 (Symmetry reduction). Observe that
∑r

i=1 πiTr[ρi(I −Mi)] is linear in {ρi}ri=1.
Consequently, Pe,min({ρi}ri=1) = inf{Mi}ri=1

∑r
i=1 πiTr[ρi(I−Mi)] is concave in {ρi}ri=1. More-

over, Pe,min({ρi}ri=1) is invariant under simultaneous application of the same unitary transforma-
tion to all states. Therefore, if each Ci is a convex, compact, and permutation-invariant 2 set, the
supremum in sup∀i, ρi∈Ci

Pe,min({ρi}ri=1) can be achieved by permutation-invariant states.

We are now prepared to state and prove the quantum Chernoff bound for multiple sets of
quantum states. This result demonstrates that the minimum error probability decays exponentially
at a rate determined by the regularized Chernoff divergence between the sets, thereby extending
the quantum Chernoff bound to the composite correlated setting.

2 That is, any quantum state in the set remains in the set under any permutation of subsystems.
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Theorem 17 (Quantum Chernoff bound for multiple composite hypotheses). Let H be a finite-
dimensional Hilbert space, and let Ci = {Ci,n}n∈N for i ∈ {1, . . . , r} be r stable sequences
of convex, compact, permutation-invariant sets of quantum states, where each Ci,n ⊆ D(H⊗n).
Moreover, let {πi}ri=1 be the prior probability. Then,

lim inf
n→∞

− 1

n
logPe,min({Ci,n}ri=1) = C∞({Ci}ri=1). (53)

Proof. 1) proof of the achievable part: Let {ρi}ri=1 be r quantum states with a prior probability
{πi}ri=1. Then it holds that [Li16, Theorem 2]

Pe,min({ρi}ri=1) ≤ 10(r − 1)2T ({ρi}ri=1)
2
∑
i<j

min
α∈[0,1]

παi π
1−α
j Qα(ρi∥ρj), (54)

where T ({ρi}ri=1) = maxi{|spec(ρi)|} and |spec(X)| is the number of mutually different eigen-
values of X . Therefore, we have for any ρi,n ∈ Ci,n that

Pe,min({ρi,n}ri=1) ≤ 10(r − 1)2T ({ρi,n}ri=1)
2
∑
i<j

min
α∈[0,1]

Qα(ρi,n∥ρj,n) (55)

≤ 10(r − 1)2T ({ρi,n}ri=1)
2C2

r max
i ̸=j

min
α∈[0,1]

Qα(ρi,n∥ρj,n), (56)

where we use the fact that παi π
1−α
j ≤ 1 and then relax the summation on the right hand side to the

maximum value times the number of terms C2
r = r(r−1)

2 . Let ρ∗i,n be the maximizer of Eq. (48),
which can be choosen as permutation-invariant state due to Remark 16. We have

Pe,min({Ci,n}ri=1) = Pe,min({ρ∗i,n}ri=1) (57)

≤ 10(r − 1)2T ({ρ∗i,n}ri=1)
2C2

r max
i ̸=j

min
α∈[0,1]

Qα(ρ
∗
i,n∥ρ∗j,n) (58)

≤ 10(r − 1)2T ({ρ∗i,n}ri=1)
2C2

r max
i ̸=j

min
α∈[0,1]

Qα(Ci,n∥Cj,n), (59)

where the first inequality follows from Eq. (56) and T ({ρ∗i,n}ri=1) ≤ (n+1)|H| by the permutation
invariance of each states and the second inequality follows from the fact that ρ∗i,n ∈ Ci,n for all i
is a specific choice in the sets. This gives

− logPe,min({Ci,n}ri=1) ≥ − log[10(r − 1)2T ({ρ∗i,n}ri=1)
2C2

r ] + min
i ̸=j

C(Ci,n∥Cj,n), (60)

where we use Eq. (29) in Lemma 11. This implies

lim inf
n→∞

− 1

n
logPe,min({Ci,n}ri=1) ≥ lim inf

n→∞

1

n
min
i ̸=j

C(Ci,n∥Cj,n) = C∞({Ci}ri=1), (61)

the equality follows by definition.
2) proof of the converse part: For any fixed m ∈ N and ρi,m ∈ Ci,m, we have

lim inf
n→∞

− 1

n
logPe,min({Ci,n}ri=1) ≤ lim inf

n→∞
− 1

nm
logPe,min({Ci,mn}ri=1) (62)

= lim inf
n→∞

− 1

nm
log sup

∀i, ρi,mn∈Ci,mn

Pe,min({ρi,mn}ri=1) (63)

≤ lim inf
n→∞

− 1

nm
logPe,min({(ρi,m)⊗n}ri=1) (64)

=
1

m
min
i ̸=j

C(ρi,m∥ρj,m), (65)
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where the first inequality follows as the lower limit of a subsequence is no smaller than the lower
limit of the sequence, the first equality follows from Lemma 14, the second inequality follows by
taking a particular feasible solution and the stability of the sequences, the second equality follows
from the quantum Chernoff bound for multiple i.i.d. quantum states (see Eq. (15)). As this holds
for any ρi,m ∈ Ci,m, we have

lim inf
n→∞

− 1

n
logPe,min({Ci,n}ri=1) ≤ inf

∀i ρi,m∈Ci,m

1

m
min
i ̸=j

C(ρi,m∥ρj,m) (66)

= min
i ̸=j

inf
∀i ρi,m∈Ci,m

1

m
C(ρi,m∥ρj,m) (67)

= min
i ̸=j

1

m
C(Ci,m∥Cj,m), (68)

where in the second line we exchange the order of the minimum and infimum, and in the last line
we use the definition of C(Ci,m∥Cj,m). As this holds for any m ∈ N, we have

lim inf
n→∞

− 1

n
logPe,min({Ci,n}ri=1) ≤ lim inf

m→∞
min
i ̸=j

1

m
C(Ci,m∥Cj,m) = C∞({Ci}ri=1). (69)

This completes the proof. ⊓⊔

Remark 18. If we choose Ci,n = {ρ⊗n
i } as the singleton i.i.d. quantum states, then we can

recover the quantum Chernoff bound for multiple quantum states in [Li16].

For the case of multiple sets of quantum states, the above theorem requires permutation invari-
ance of each set in the proof of the achievable part. However, as we show below, this assumption
is not necessary when considering only two sequences of sets of quantum states.

Theorem 19 (Quantum Chernoff bound for binary composite hypotheses). Let H be a finite-
dimensional Hilbert space, and let Ci = {Ci,n}n∈N for i ∈ {1, 2} be two stable sequences of
convex, compact sets of quantum states, where each Ci,n ⊆ D(H⊗n). Moreover, let {π1, π2} be
the prior probability. Then it holds that

lim inf
n→∞

− 1

n
logPe,min(C1,n,C2,n) = C∞(C1∥C2). (70)

Proof. 1) proof of the achievable part: For any α ∈ [0, 1], we have that

Pe,min(ρ1,n, ρ2,n) =
1

2
[Tr(π2ρ2,n + π1ρ1,n)− ∥π1ρ1,n − π2ρ2,n∥1] (71)

≤ πα1 π
1−α
2 Qα(ρ1,n∥ρ2,n), (72)

where the equality follows from Lemma 5 and the inequality follows from Lemma 6. As this holds
for any ρ1,n ∈ C1,n and ρ2,n ∈ C2,n, we have from Lemma 14 that

Pe,min(C1,n,C2,n) ≤ (πα1 π
1−α
2 )Qα(C1,n∥C2,n) ≤ Qα(C1,n∥C2,n), (73)

where the second inequality follows from the fact that 0 ≤ πα1 π
1−α
2 ≤ απ1 + (1 − α)π2 ≤ 1 for

any α ∈ [0, 1]. This gives

− logPe,min(C1,n,C2,n) ≥ − logQα(C1,n∥C2,n). (74)
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As this holds for any α ∈ [0, 1], we have

− logPe,min(C1,n,C2,n) ≥ max
α∈[0,1]

− logQα(C1,n∥C2,n) = C(C1,n∥C2,n), (75)

where the equality follows Lemma 11. This implies

lim inf
n→∞

− 1

n
logPe,min(C1,n,C2,n) ≥ lim inf

n→∞

1

n
C(C1,n∥C2,n) = C∞(A ∥B), (76)

where the equality follows from the stability assumption of the sequences and Eq. (23).
2) proof of the converse part: For any fixed m ∈ N and any ρ1,m ∈ C1,m, ρ2,m ∈ C2,m, we

have the following chain of inequalities:

lim inf
n→∞

− 1

n
logPe,min(C1,n,C2,n) ≤ lim inf

n→∞
− 1

nm
logPe,min(C1,nm,C2,nm) (77)

= lim inf
n→∞

− 1

nm
log sup

ρ1,mn∈C1,mn

ρ2,mn∈C2,mn

Pe,min(ρ1,nm, ρ2,nm) (78)

≤ lim inf
n→∞

− 1

nm
logPe,min((ρ1,m)⊗n, (ρ2,m)⊗n) (79)

=
1

m
C(ρ1,m∥ρ2,m), (80)

where the first inequality follows as the lower limit of a subsequence is no smaller than the lower
limit of the sequence, the first equality follows from Lemma 14, the second inequality follows by
taking a particular feasible solution and the stability of the sequences, the second equality follows
from the quantum Chernoff bound between two quantum states (see Eq. (4)). As this holds for
any ρ1,m ∈ C1,m and ρ2,m ∈ C2,m, we have

lim inf
n→∞

− 1

n
logPe,min(C1,n,C2,n) ≤

1

m
C(C1,m∥C2,m). (81)

As this holds for any m ∈ N, we have

lim inf
n→∞

− 1

n
logPe,min(C1,n,C2,n) ≤ lim inf

m→∞

1

m
C(C1,m∥C2,m) = C∞(C1∥C2), (82)

where the equality follows from the stability assumption of the sequences and Eq. (23). ⊓⊔

Remark 20. If we choose Ci,n = {ρ⊗n
i } as the singleton i.i.d. quantum states, then we can

recover the quantum Chernoff bound for two quantum states in [ACMT+07, NS09].

4 Optimal test for binary composite hypotheses

In quantum hypothesis testing between two quantum states ρ1 and ρ2 with prior probabilities π1
and π2, the optimal measurement is given by the Holevo-Helstrom test {π1ρ1−π2ρ2 ≥ 0} [Hol72,
Hel69]. However, in the composite hypothesis setting—where only partial information about
the states is available—the problem becomes more subtle. Here, one must design a test that
universally minimizes the average error probability for all possible states within the specified
sets. Lemma 14 guarantees the existence of such a universal optimal test: one that achieves the
minimum error probability for all states in the sets, matching the performance of the optimal test
for the most challenging (worst-case) states. While the minimax theorem ensures the existence of
a universal optimal test, it does not provide an explicit construction.

In this section, we explicitly construct a universal optimal test for binary composite hypotheses
by analyzing the saddle point (or equilibrium point) of the minimax problem in more detail.
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4.1 Minimax optimization and saddle points

Before the main result, we first recall the minimax inequality and saddle points in the context of
minimax optimization.

Consider a function f : X × Y → R where X,Y ⊆ L are nonempty subsets of linear
operators, respectively. We always have the minimax inequalty

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y). (83)

If the equality holds, we call it minimax equality and the value on both sides are minimax value.
The minimax equality is a very important property in optimization and game theory.

Definition 21. A pair of solutions x∗ ∈ X and y∗ ∈ Y is called a saddle point of f if

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ X, y ∈ Y. (84)

Remark 22. From the definition, it is clear that (x∗, y∗) is a saddle point of f if and only if
x∗ ∈ X , y∗ ∈ Y , and

sup
y∈Y

f(x∗, y) = f(x∗, y∗) = inf
x∈X

f(x, y∗). (85)

That is, x∗ minimizes against y∗ and y∗ maximizes against x∗.

We also recall a standard characterization of saddle points from convex optimization; see, for
example, [Ber09, Section 3.4]. We restate it here and present the proof for completeness.

Lemma 23. A pair of solutions (x∗, y∗) is a saddle point of f if and only if the minimax equality
holds and x∗ is an optimal solution of the problem

min
x∈X

(
sup
y∈Y

f(x, y)

)
, (86)

while y∗ is an optimal solution of the problem

max
y∈Y

(
inf
x∈X

f(x, y)

)
. (87)

Proof. Suppose that x∗ is an optimal solution of the problem (86) and y∗ is an optimal solution of
the problem (87). Then we have

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

f(x, y∗) ≤ f(x∗, y∗) ≤ sup
y∈Y

f(x∗, y) = inf
x∈X

sup
y∈Y

f(x, y), (88)

where the two equalities follow from the optimality of x∗ and y∗. Therefore, if the minimax
equality holds, then equality holds throughtout above, so that

sup
y∈Y

f(x∗, y) = f(x∗, y∗) = inf
x∈X

f(x, y∗). (89)

From Remark 22, we know that (x∗, y∗) is a saddle point of f .
Conversely, if (x∗, y∗) is a saddle point of f , then we have from Eq. (85) that

inf
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

f(x∗, y) = f(x∗, y∗) = inf
x∈X

f(x, y∗) ≤ sup
y∈Y

inf
x∈X

f(x, y). (90)

Combined with the minimax inequality, we conclude the minimax equality. Therefore, equality
holds throughtout above, so that x∗ is an optimal solution of the problem (86) and y∗ is an optimal
solution of the problem (87). ⊓⊔
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To obtain saddle points, we may calculate the inner “sup” and “inf” functions appearing in
the lemma, then minimize and maximize them, respectively, and obtain the corresponding sets of
minima X∗ and maxima Y ∗. If the optimal values are equal (i.e., minimax equality holds), the set
of saddle points is X∗ × Y ∗. Otherwise, there are no saddle points [ET99, Proposition 1.4].

While the standard approach to finding saddle points involves evaluating both sides of the min-
imax inequality, we provide an alternative method in the following. It allows for the construction
of saddle points by optimizing only one side of the minimax problem, which will prove useful in
the explicit construction of optimal tests in subsequent sections.

Lemma 24. Let f : X × Y → R and g(y) = infx∈X f(x, y). Suppose y∗ ∈ Y is a maximizer of
g(y), i.e., g(y∗) = supy∈Y g(y), and x∗ ∈ X is a minimizer of infx∈X f(x, y∗), i.e., f(x∗, y∗) =
infx∈X f(x, y∗). If the minimax equality holds for function f and the optimization infx∈X f(x, y∗)
has a unique minimizer, then (x∗, y∗) is a saddle point. Consequently, x∗ is a minimizer of the
optimization infx∈X [supy∈Y f(x, y)].

Proof. Let x∗∗ ∈ X be a minimizer of infx∈X [supy∈Y f(x, y)]. Then we know from Lemma 23
that (x∗∗, y∗) is a saddle point of f . By Eq. (90) (note that all equalities holds), any saddle point
(x∗, y∗) gives the same minimax value. So we have

f(x∗∗, y∗) = f(x∗, y∗) = inf
x∈X

f(x, y∗). (91)

As we assume that infx∈X f(x, y∗) has a unique minimizer, we have x∗∗ = x∗. Therefore,
(x∗, y∗) is a saddle point of f . ⊓⊔

We note that the uniqueness of the minimizer in infx∈X f(x, y∗) is essential for Lemma 24
to hold. If the minimizer of infx∈X f(x, y∗) is not unique, it is generally unclear whether any
minimizer will yield a saddle point. In particular, it is not guaranteed that every minimizer of
infx∈X f(x, y∗) is also a minimizer of infx∈X [supy∈Y f(x, y)].

4.2 Optimal test for hypothesis testing

Lemma 25. Let X ∈ H be a full rank Hermitian operator. Then the optimal solution to the
semidefinite program max0≤M≤I Tr[XM ] is unique and is given by {X ≥ 0}.

Proof. Let X =
∑d

i=1 λi|ψi⟩⟨ψi| be the spectral decomposition of X , where λi > 0 for i ∈
{1, · · · , k} and λi < 0 for i ∈ {k + 1, · · · , d}. For any M , let mij = ⟨ψi|M |ψj⟩. Then we have

Tr[XM ] =

d∑
i=1

λiTr[|ψi⟩⟨ψi|M ] =

d∑
i=1

λimii =

k∑
i=1

λimii +

d∑
i=k+1

λimii ≤
k∑

i=1

λi, (92)

where the equality holds if and only if mii = 1 for i ∈ {1, · · · , k} and mii = 0 for i ∈ {k +
1, · · · , d}. Denote the matrix form of M in the basis of {|ψi⟩}di=1 as(

M11 M12

M21 M22

)
(93)
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where M11 is of size k × k and M22 is of size (d− k)× (d− k). As M ≥ 0, we have M22 ≥ 0.
Since the diagonal elements of M22 are all zeros, we have M22 = 0. This further implies that
M12 = 0 and M21 = 0. So any optimal M is in the form of block diagonal matrix(

M11 0
0 0

)
, (94)

where 0 above represents the zero matrix of suitable size. Since M ≤ I , we have M11 ≤ I .
Moreover, since the dignoal elements of M11 are all ones, we can conclude that any offdiagonal
elements of M11 are zeros. This is because any principle submatrix(

1 x
x∗ 1

)
≤
(
1 0
0 1

)
(95)

implies that x = 0. This shows that the optimal solution is unique and is given by
∑k

i=1 |ψi⟩⟨ψi| =
{X ≥ 0}. This concludes the proof. ⊓⊔

With Lemma 24 and Lemma 25 in place, we are now prepared to explicitly construct the
optimal test. The following result shows that, for binary composite hypotheses, the universal
optimal measurement is given by the Holevo-Helstrom test corresponding to the pair of states
from the two sets that achieve the minimal trace distance.

Theorem 26 (Optimal test for binary composite hypotheses). Let H be a finite-dimensional
Hilbert space. Let C1,C2 ⊆ D(H) be two convex, compact sets of quantum states and {π1, π2}
be the prior probabilities. Suppose (ρ∗1, ρ

∗
2) ∈ C1 × C2 is a minimizer of the convex optimization

problem infρ1∈C1, ρ2∈C2 ∥π1ρ1 − π2ρ2∥1. Then, the optimal test for discriminating between C1

and C2 is given by the projection {π1ρ∗1 − π2ρ
∗
2 ≥ 0}, provided that π1ρ∗1 − π2ρ

∗
2 is full rank.

Proof. By Lemma 14, we have the minimax equality:

inf
0≤M≤I

sup
ρ1∈C1
ρ2∈C2

Pe(M,ρ1, ρ2) = sup
ρ1∈C1
ρ2∈C2

inf
0≤M≤I

Pe(M,ρ1, ρ2). (96)

Lemma 5 states that for any ρ1, ρ2,

inf
0≤M≤I

Pe(M,ρ1, ρ2) =
1

2

(
1− 1

2
∥π1ρ1 − π2ρ2∥1

)
. (97)

Since (ρ∗1, ρ
∗
2) is the minimizer of the convex optimization problem infρ1∈C1, ρ2∈C2 ∥π1ρ1−π2ρ2∥1,

it also maximizes supρ1∈C1,ρ2∈C2
[inf0≤M≤I Pe(M,ρ1, ρ2)]. Fixing ρ∗1, ρ

∗
2, we have

inf
0≤M≤I

Pe(M,ρ∗1, ρ
∗
2) = π1 − sup

0≤M≤I
TrM [π1ρ

∗
1 − π2ρ

∗
2]. (98)

Since π1ρ∗1 − π2ρ
∗
2 is assumed to be full rank, Lemma 25 ensures that {π1ρ∗1 − π2ρ

∗
2 ≥ 0} is the

unique maximizer of sup0≤M≤I Tr[M(π1ρ
∗
1 − π2ρ

∗
2)]. Therefore, it is also the unique minimizer

of inf0≤M≤I Pe(M,ρ∗1, ρ
∗
2). Finally, by Lemma 24, {π1ρ∗1 − π2ρ

∗
2 ≥ 0} is the minimizer of

inf0≤M≤I [supρ1∈C1,ρ2∈C2
Pe(M,ρ1, ρ2)]. Therefore, it is the optimal test for C1 and C2. ⊓⊔
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5 Maximum overlap with free states in resource theory

The maximum overlap between a pure state |ψ⟩ and a set of free states F ,

OF (ψ) := sup
σ∈F

⟨ψ|σ|ψ⟩, (99)

is a technical quantity that appears frequently in quantum resource theory [FL20, FL22, LBT19].
Here, we provide an operational interpretation of this quantity as the optimal error exponent in
symmetric hypothesis testing. This also, in turns, provides explicit examples where the quantum
Chernoff divergence between sets of quantum states is not additive, thereby justifying the need for
regularization of the quantum Chernoff divergence.

Theorem 27. Let |ψ⟩⟨ψ| be a pure state and F ⊆ D be a convex set of quantum states. Then

C(|ψ⟩⟨ψ|∥F ) = − logOF (ψ). (100)

Proof. We have the following chain of equalities:

C(|ψ⟩⟨ψ|∥F ) = inf
σ∈F

C(|ψ⟩⟨ψ|∥σ) (101)

= − log sup
σ∈F

inf
α∈[0,1]

Tr[|ψ⟩⟨ψ|ασ1−α] (102)

= − log sup
σ∈F

inf
α∈[0,1]

Tr[|ψ⟩⟨ψ|σ1−α] (103)

= − log sup
σ∈F

Tr[|ψ⟩⟨ψ|σ] (104)

= − logOF (ψ), (105)

where the first, second and last equalities follow from definitions, the fourth equality follows from
the fact that σα ≥ σβ if α ≤ β. This concludes the proof. ⊓⊔

We now present explicit examples from several resource theories in which the maximum over-
lap with free states can be computed exactly. These values directly determine the optimal error
exponent for quantum hypothesis testing between a pure state and a set of free states.

Resource theory of magic. The maximum overlap with free states is a fundamental quantity in
the resource theory of magic [BBC+19]. In this context, the set of free states F is typically chosen
as the set of stabilizer states on n qubits, denoted STABn, which is stable under tensor product.
The maximum overlapOSTAB(ψ) is closely related to the stabilizer rank and stabilizer extent—key
quantities in fault-tolerant quantum computation.3 For certain states, such as the magic T-state
|T ⟩ := (|0⟩+ eiπ/4|1⟩)/

√
2, the maximum overlap can be computed explicitly [BBC+19]:

OSTAB(|T ⟩⟨T |⊗m) = (4− 2
√
2)−m. (106)

This leads to the quantum Chernoff divergence,

C(|T ⟩⟨T |∥STAB1) = C∞({|T ⟩⟨T |⊗n}n∈N∥{STABn}n∈N) = log(4− 2
√
2). (107)

It is also known from [BBC+19, Section 6.2] that there exist quantum states for which the max-
imum overlap with stabilizer states is not multiplicative. Consequently, the quantum Chernoff
divergence between two sets is not additive in general.

3 In [BBC+19], the maximum overlap is defined with respect to pure stabilizer states. However, since the objective
function is linear, maximizing over the convex hull (i.e., all stabilizer states) yields the same value.
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Resource theory of coherence. In the resource theory of coherence, the set of free states is
the set of incoherent states In = {ρ ∈ D(H⊗n) : ρ = diag(ρ)}, i.e., states diagonal in a fixed
basis [FWL+18, RFWA18, HFW21]. Let |ψ⟩ =

∑d
i=1 ai|i⟩ and |ψ⟩⟨ψ| ∈ D(H). Then,

OI1(|ψ⟩⟨ψ|) = max
σ∈I1

⟨ψ|σ|ψ⟩ = max
σ∈I1

d∑
i=1

|ai|2σi (108)

where σ =
∑d

i=1 σi|i⟩⟨i|, σi ≥ 0, and
∑d

i=1 σi = 1. Note that the objective function is an
average of the probability vector (|a1|2, |a2|2, . . . , |ad|2). So it is no greater than maxi |ai|2. This
value can be achieved by choosing σimax = 1 for imax = argmaxi |ai|2 and σi = 0 otherwise.
Therefore, we have

OI1(|ψ⟩⟨ψ|) = max
i

|ai|2, (109)

which is the infinity norm of the probability vector (|a1|2, |a2|2, . . . , |ad|2). This leads to the
quantum Chernoff divergence

C(|ψ⟩⟨ψ|∥I1) = C∞({|ψ⟩⟨ψ|⊗n}n∈N∥{In}n∈N) = − logmax
i

|ai|2. (110)

Resource theory of entanglement. In the resource theory of entanglement, the standard re-
source is the maximally entangled state |Φm⟩ := 1√

m

∑m
i=1 |ii⟩ [FWTD19, RFWG19]. The stan-

dard sets of free states are the separable states SEP and the positively partial transpose states PPT,
with the inclusion SEP(A : B) ⊆ PPT(A : B). The maximum overlap of |Φm⟩ with these sets is
given by [Rai99, Lemma 2]:

OSEP(Φm) = OPPT(Φm) =
1

m
, (111)

where the maximum is achieved, for example, by the product state |0⟩⟨0|A ⊗ |0⟩⟨0|B . Conse-
quently, the quantum Chernoff divergence is

C(Φm∥SEP(A : B)) = C∞({Φ⊗n
m }n∈N∥{SEP(An : Bn)}n∈N) = logm, (112)

C(Φm∥PPT(A : B)) = C∞({Φ⊗n
m }n∈N∥{PPT(An : Bn)}n∈N) = logm. (113)

6 Discussion

We have established a generalized quantum Chernoff bound for the discrimination of multiple sets
of quantum states, thereby extending the classical and quantum Chernoff bounds to the general
setting of composite and correlated quantum hypothesis testing. Our main results demonstrate
that the optimal asymptotic error exponent for discriminating between stable sequences of sets
of quantum states is precisely characterized by the regularized Chernoff divergence between the
sets. Additionally, we have provided explicit constructions of the optimal measurement for binary
composite hypotheses and offered an operational interpretation of the maximum overlap with free
states in quantum resource theories.

Several open questions and future directions remain. While the optimal exponent in the asym-
metric (Stein’s) setting can be efficiently computed despite the need for regularization [FFF25b],
it remains open whether efficient algorithms exist for computing the regularized Chernoff diver-
gence in the symmetric setting. As noted in Remark 12, the Chernoff divergence can be efficiently
computed for fixed n, but the rate of convergence of the regularized Chernoff divergence as n
increases is not well understood. Additionally, our construction of the optimal test for binary
composite hypotheses assumes that the difference between the closest states is full rank. It would
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be interesting to determine whether this assumption can be relaxed, perhaps by appealing to con-
tinuity arguments or alternative analytical techniques.

Another direction concerns the equivalence between adaptive and nonadaptive strategies in
adversarial quantum channel discrimination. It was shown in [FFF25a] that, in the asymmetric
hypothesis testing setting, adaptive and nonadaptive strategies yield the same optimal error expo-
nent. Whether this equivalence persists in the symmetric setting remains an open question. In
particular, based on the quantum Chernoff bound established in this work, this question reduces
to whether the regularized Chernoff divergence between sequences of sets of quantum states gen-
erated by adaptive and nonadaptive strategies coincide.
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