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Abstract

We study the error exponents in quantum hypothesis testing between two sets of quan-
tum states, extending the analysis beyond the independent and identically distributed case to
encompass composite and correlated hypotheses. We introduce and compare two natural ex-
tensions of the quantum Hoeffding divergence and anti-divergence to sets of quantum states,
establishing their equivalence or quantitative relationships. Our main results generalize the
quantum Hoeffding bound to stable sequences of convex, compact sets of quantum states,
demonstrating that the optimal type-I error exponent—under an exponential constraint on the
type-II error—is precisely characterized by the regularized quantum Hoeffding divergence
between the sets. In the strong converse regime, we provide a lower bound on the exponent in
terms of the regularized quantum Hoeffding anti-divergence. These findings refine the gen-
eralized quantum Stein’s lemma and yield a detailed understanding of the trade-off between
type-I and type-II errors in discrimination with composite correlated hypotheses.
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1 Introduction

1.1 Quantum hypothesis testing between two quantum states

Distinguishability is a central topic in information theory from both theoretical and practical per-
spectives. A fundamental framework for studying distinguishability is asymmetric hypothesis
testing. In this setting, a source generates a sample x from one of two probability distributions
p ≡ {p(x)}x∈X or q ≡ {q(x)}x∈X . The objective of asymmetric hypothesis testing is to minimize
the Type-II error (decides p when the fact is q) while keeping the Type-I error (decides q when the
fact is p) within a certain threshold. The celebrated Chernoff-Stein’s Lemma [Che52] states that,
for any constant bound on the Type-I error, the optimal Type-II error decays exponentially fast in
the number of samples, and the decay rate is exactly the relative entropy,

D(p∥q) =
∑
x∈X

p(x)[log p(x)− log q(x)]. (1)

In particular, this lemma also states the “strong converse property”, a desirable mathematical
property in information theory [Wol78] that delineates a sharp boundary for the tradeoff between
the Type-I and Type-II errors in the asymptotic regime: any possible scheme with Type-II error
decaying to zero with an exponent larger than the relative entropy will result in the Type-I error
converging to one in the asymptotic limit. Therefore, the Chernoff-Stein’s Lemma provides a
rigorous operational interpretation of the relative entropy and establishes a crucial connection
between hypothesis testing and information theory [Bla74].

A natural question is whether the above result generalizes to the quantum case. Substan-
tial efforts have been made to answer this fundamental question in quantum information com-
munity (see, e.g., [HP91, NO00, Hay02, ANSV08b, Hay07, BP10, CMW16, MO15, WW19a,
WW19b, FFF25, FFF24]). Consider the problem of distinguishing between two quantum hy-
potheses: the system is prepared either in state ρn (the null hypothesis) or in state σn (the alter-
native hypothesis). Operationally, the discrimination is carried out using a two-outcome positive
operator-valued measure (POVM) {Mn, I − Mn}, with 0 ≤ Mn ≤ I . The type-I and type-II
errors are, respectively, given by

(Type-I) α(ρn,Mn) := Tr[ρn(I −Mn)], (Type-II) β(σn,Mn) := Tr[σnMn]. (2)

It is generally impossible to find a quantum measurement that simultaneously makes both errors
vanish; thus, one studies the asymptotic behavior of α and β as n → ∞, expecting a trade-off
between minimizing α and minimizing β. The interplay between these errors can be analyzed in
various operational regimes (see Figure 1): (I) the Stein’s exponent regime, which focuses on the
exponential decay rate of the type-II error when the type-I error is constrained below a constant
threshold; (II) the error exponent regime, which investigates the exponential rate at which the
type-I error vanishes when the type-II error is required to decay exponentially at a prescribed rate;
and (III) the strong converse exponent regime, which examines the exponential rate at which the
type-I error converges to one when the type-II error decays exponentially at a given rate.
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Figure 1: Illustration depicting different regimes of quantum hypothesis testing. Each curve rep-
resents the tradeoff between the Type-I and Type-II errors for varying block lengths, with darker
lines corresponding to longer block lengths. (I) represents the Stein’s exponent regime, (II) repre-
sents the error exponent regime, and (III) represents the strong converse exponent regime.

Stein’s exponent. In asymmetric hypothesis testing, one aims to minimize the type-II error
while keeping the type-I error below a certain threshold ε ∈ (0, 1). The optimal type-II error
is given by

βε(ρn∥σn) := min
0≤Mn≤I

{β(σn,Mn) : α(ρn,Mn) ≤ ε}. (3)

The quantum version of the Chernoff-Stein’s Lemma (also known as quantum Stein’s lemma)
states that the optimal type-II error decays exponentially with the number of copies n of the states
when the type-I error is restricted below a constant threshold and the optimal exponent is given by
the quantum relative entropy [HP91, NO00],

lim
n→∞

− 1

n
log βε(ρ

⊗n∥σ⊗n) = D(ρ∥σ), ∀ε ∈ (0, 1), (4)

where D(ρ∥σ) := Tr[ρ(log ρ− log σ)].

Error expoent. As a refinement of the quantum Stein’s lemma, one can study the optimal type-I
error given that the type-II error decays with a given exponential speed. One is then interested in
the asymptotics of the optimal Type-I error,

αn,r(ρn∥σn) := min
0≤Mn≤I

{α(ρn,Mn) : β(σn,Mn) ≤ 2−nr}, (5)

with r > 0 a constant. When r < D(ρ∥σ), the optimal type-I error αn,r(ρ
⊗n∥σ⊗n), also decays

with an exponential speed, as was shown in [OH04]. The exact decay rate is determined by the
quantum Hoeffding bound theorem [Hay07, Nag06, ANSV08a] as

lim
n→∞

− 1

n
logαn,r(ρ

⊗n, σ⊗n) = Hr(ρ∥σ), (6)

where the quantum Hoeffding divergence is defined as

Hr(ρ∥σ) := sup
α∈(0,1)

α− 1

α
(r −DP,α(ρ∥σ)) , (7)

and DP,α is the Petz Rényi divergence.
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Strong converse exponent. On the other hand, when r > D(ρ∥σ), the optimal type-I error
αn,r(ρ

⊗n∥σ⊗n) goes to 1 exponentially fast [NO00]. The rate of this convergence is [MO15]

lim
n→∞

− 1

n
log(1− αn,r(ρ

⊗n∥σ⊗n)) = H∗
r (ρ∥σ), (8)

where the Hoeffding anti-divergence is defined as

H∗
r (ρ∥σ) := sup

α>1

α− 1

α
(r −DS,α(ρ∥σ)) , (9)

and DS,α is the sandwiched Rényi divergence.
The results in Eq. (6) and Eq. (8) provide a comprehensive characterization of the asymptotic

trade-off between the type-I and type-II error probabilities. In particular, the quantum Stein’s
lemma emerges as a special case in the limit r → D(ρ∥σ).

1.2 Quantum hypothesis testing between two sets of quantum states

The quantum hypothesis testing problem has recently been extended to encompass composite and
correlated settings [FFF24], moving beyond the traditional i.i.d. framework. In this generalized
scenario, one considers the task of discriminating between two sets of quantum states. Specifically,
a tester receives samples prepared according to either the set An (the null hypothesis) or the set
Bn (the alternative hypothesis), and must determine, via quantum measurement, from which set
the samples were drawn.

As in standard hypothesis testing, two types of errors can occur: a type-I error, where a sample
from An is incorrectly classified as coming from Bn, and a type-II error, where a sample from
Bn is incorrectly classified as coming from An. Consider distinguish the sets by a quantum
measurement {Mn, I − Mn}. Since we aim to control the discrimination errors for any state
within the given sets, regardless of which one is drawn, the type-I error is defined by

α(An,Mn) := sup
ρn∈An

Tr[ρn(I −Mn)], (10)

and the type-II error is defined by

β(Bn,Mn) := sup
σn∈Bn

Tr[σnMn]. (11)

The quantum Stein’s lemma has been shown in this worst-case setting under some structural
assumptions on the sets An and Bn [FFF24],

lim
n→∞

− 1

n
log βε(An∥Bn) = D∞(A ∥B), ∀ε ∈ (0, 1), (12)

where the quantum relative entropy between two sets of states is defined as D(An∥Bn) :=
infρn∈An,σn∈Bn D(ρn∥σn) and D∞(A ∥B) := limn→∞

1
nD(An∥Bn).

1.3 Main results

In this work, we refine the analysis of asymmetric hypothesis testing for composite and correlated
hypotheses, as developed in [HY24, Lam25, FFF24], by extending it to the error exponent and
strong converse exponent regimes. Specifically, we consider the optimal type-I error:

αn,r(An∥Bn) := min
0≤Mn≤I

{
α(An,Mn) : β(Bn,Mn) ≤ 2−nr

}
, (13)
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and seek to determine the following asymptotic exponents:

(Error exponent) lim inf
n→∞

− 1

n
logαn,r(An∥Bn) = ? (14)

(Strong converse exponent) lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) = ? (15)

A central challenge in composite hypothesis testing is to define suitable notions of the quantum
Hoeffding divergence and anti-divergence for sets of quantum states.

For the error exponent regime, we explore two natural approaches to this extension (see Fig-
ure 2). The first treats the Hoeffding divergence as a quantum divergence and considers the min-
imal divergence between the sets, denoted Hn,r(An∥Bn). The second approach uses the explicit
formula for the Hoeffding divergence in terms of the Petz Rényi divergences: we first extend the
Rényi divergences to sets of quantum states, DP,α(An∥Bn), and then define the Hoeffding diver-
gence accordingly, denoted Hn,r(An∥Bn). We show that these two approaches are equivalent for
finite n in general, and we establish a comparison between their regularizations. Furthermore, we
prove that the error exponent is completely characterized by the regularized quantum Hoeffding
divergence defined via the first approach.

Hn,r(ρn∥σn) := sup
α∈(0,1)

α − 1
α (nr − DP,α(ρn∥σn))

Hn,r(𝒜n∥ ℬn) := inf
ρn∈𝒜n, σn∈ℬn

Hn,r(ρn∥σn)

H∞
r (𝒜∥ℬ) := lim

n→∞
1
n

Hn,r(𝒜n∥ℬn)

ℌn,r(𝒜n∥ℬn) := sup
α∈(0,1)

α − 1
α (nr − DP,α(𝒜n∥ℬn))

ℌ∞
r (𝒜∥ℬ) := sup

α∈(0,1)
α − 1

α (r − D∞P,α(𝒜∥ℬ))

lim inf
n→∞

− 1
n

log αn,r(𝒜n∥ℬn)Error exponent

Theorem 23

Lemma 13

Lemma 15

Extension 1 Extension 2

Figure 2: Summary of results in the error exponent regime. Quantitative relationships between
the various quantities are indicated by black arrows: the quantity at the tail of an arrow is always
greater than or equal to the one at the head. A double arrow indicates an equality.

In the strong converse regime, we likewise investigate two natural extensions of the quantum
Hoeffding anti-divergence to sets of quantum states (see Figure 3). The first approach consid-
ers the maximal anti-divergence between the sets, denoted H∗

n,r(An∥Bn). The second approach
leverages the explicit formula for the anti-divergence in terms of the sandwiched Rényi diver-
gences: we first extend the sandwiched Rényi divergences to sets, DS,α(An∥Bn), and then define
the anti-divergence as H∗

n,r(An∥Bn). We establish that these two approaches are equivalent for
both finite n and in the asymptotic setting, and we prove that the strong converse exponent is lower
bounded by the regularized quantum Hoeffding anti-divergence.
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lim inf
n→∞

− 1
n

log(1 − αn,r(𝒜n∥ℬn))Strong converse exponent

Theorem 24

Lemma 20

Lemma 21

Extension 1 Extension 2
H*n,r(ρn∥σn) := sup

α>1
α − 1

α (nr − DS,α(ρn∥σn))

H*n,r(𝒜n∥ ℬn) := sup
ρn∈𝒜n, σn∈ℬn

Hn,r(ρn∥σn)

H*,∞
r (𝒜∥ℬ) := lim

n→∞
1
n

H*n,r(𝒜n∥ℬn)

ℌ*n,r(𝒜n∥ℬn) := sup
α>1

α − 1
α (nr − DS,α(𝒜n∥ℬn))

ℌ*,∞
r (𝒜∥ℬ) := sup

α>1
α − 1

α (r − D∞S,α(𝒜∥ℬ))

Figure 3: Summary of results in the strong converse exponent regime. Quantitative relationships
between the various quantities are indicated by black arrows: the quantity at the tail of an arrow is
always greater than or equal to the one at the head. A double arrow indicates an equality.

Finally, we leverage our results on the error and strong converse exponents to recover and
strengthen the quantum Stein’s lemma for composite and correlated hypotheses from [FFF24].
Our findings show that any type-II error exponent r below D∞(A ∥B) is achievable, with the
corresponding type-I error decaying exponentially at a rate at least H∞

r (A ∥B). Conversely, if the
type-II error exponent r exceeds D∞(A ∥B), the type-I error inevitably converges to one expo-
nentially fast, with a rate at least H∗,∞

r (A ∥B). Thus, the regularized quantum relative entropy
between sets, D∞(A ∥B), delineates a sharp threshold for the asymptotic trade-off in hypoth-
esis testing between two sets of quantum states. In particular, these results apply to adversarial
quantum channel discrimination, which satisfies all the required assumptions [FFF25], providing
a more refined understanding of the trade-off between type-I and type-II errors in this setting.

1.4 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we introduce the notations and re-
view relevant quantum divergences, including their extensions to sets of quantum states. Section 3
develops two natural extensions of the quantum Hoeffding divergence and anti-divergence to sets
of quantum states, and establishes their relationships. In Section 4, we analyze the asymptotic er-
ror exponents in quantum hypothesis testing between two sets of quantum states, generalizing the
quantum Hoeffding and strong converse bounds to this setting. Section 5 refines the generalized
quantum Stein’s lemma using our results on error exponents. We conclude in Section 6 with a
discussion of open problems and potential future directions.

2 Preliminaries

2.1 Notations

Throughout this work, we adopt the following notational conventions. Finite-dimensional Hilbert
spaces are denoted by H, with |H| indicating their dimension. The set of all linear operators
on H is denoted by L (H), while H (H) and H+(H) denote the sets of Hermitian and positive
semidefinite operators on H, respectively. The set of density operators (i.e., positive semidefinite
operators with unit trace) on H is denoted by D(H). Calligraphic letters such as A , B, and C
are used to represent sets of linear operators. Unless otherwise specified, all logarithms are taken
to base two and denoted by log(x).
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2.2 Quantum divergences

A functional D : D × H+ → R is called a quantum divergence if it satisfies the data-processing
inequality: for any completely positive and trace-preserving (CPTP) map E and any (ρ, σ) ∈
D × H+, it holds that D(E(ρ)∥E(σ)) ≤ D(ρ∥σ). In the following, we introduce several quantum
divergences that will be used throughout this work. We also define quantum divergences between
two sets of quantum states.

Definition 1. (Umegaki relative entropy [Ume54].) For any ρ ∈ D and σ ∈ H+, the Umegaki
relative entropy is defined by

D(ρ∥σ) := Tr[ρ(log ρ− log σ)], (16)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise.

Definition 2. (Petz Rényi divergence [Pet86].) Let α ∈ (0, 1) ∪ (1,+∞). For any ρ ∈ D and
σ ∈ H+, the Petz Rényi divergence is defined by

DP,α(ρ∥σ) :=
1

α− 1
logQα(ρ∥σ) with Qα(ρ∥σ) := Tr

[
ρασ1−α

]
, (17)

if supp(ρ) ⊆ supp(σ), and +∞ otherwise.

Definition 3. (Sandwiched Rényi divergence [MLDS+13, WWY14].) Let α ∈ (0, 1) ∪ (1,+∞).
For any ρ ∈ D and σ ∈ H+, the sandwiched Rényi divergence is defined by

DS,α(ρ∥σ) :=
1

α− 1
log Tr

[
σ

1−α
2α ρσ

1−α
2α

]α
, (18)

if supp(ρ) ⊆ supp(σ), and +∞ otherwise.

Definition 4. (Quantum divergence between two sets of states.) Let D be a quantum divergence
between two quantum states. Let H be a finite-dimensional Hilbert space. Then for any sets
A ,B ⊆ D(H), the quantum divergence between these two sets is defined by

D(A ∥B) := inf
ρ∈A
σ∈B

D(ρ∥σ). (19)

Let A = {An}n∈N and B = {Bn}n∈N be two sequences of sets of quantum states1, where each
An,Bn ⊆ D(H⊗n). the regularized divergence between these sequences is defined by

D∞(A ∥B) := lim inf
n→∞

1

n
D(An∥Bn), (20)

D∞
(A ∥B) := lim sup

n→∞

1

n
D(An∥Bn). (21)

If the following limit exists, we define the regularized divergence as

D∞(A ∥B) := lim
n→∞

1

n
D(An∥Bn). (22)

Remark 5. Note that if D is lower semicontinuous (which is true for most quantum divergences of
interest), and A and B are compact sets, the infimum in the above expression is always attained
and can thus be replaced by a minimization [KZ05, Theorem 7.3.1].

In many practical scenarios, the sequences of sets under consideration are not arbitrary but
possess a structure that is compatible with tensor products. This property, known as stability (or
closeness) under tensor product, is formalized as follows.

1 We abuse the notation A ,B to refer both to sets of states and to sequences of such sets, depending on the context.
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Definition 6 (Stable sequence). Let A ⊆ H+(H1), B ⊆ H+(H2), and C ⊆ H+(H1 ⊗H2). We
say that (A ,B,C ) is stable under tensor product if, for any X1 ∈ A and X2 ∈ B, it holds that
X1⊗X2 ∈ C . In short, we write A ⊗B ⊆ C . A sequence of sets {Cn}n∈N with Cn ⊆ H+(H⊗n)
is called stable under tensor product if Cn ⊗ Cm ⊆ Cn+m for all n,m ∈ N.

Remark 7. If the divergence D is subadditive under tensor product states, then its extension to
sets of states is also subadditive for stable sequences of sets [FFF24, Lemma 26]. This implies
the existence of the regularized divergence and the following equalities,

D∞(A ∥B) = D∞(A ∥B) = D∞
(A ∥B) = inf

n∈N

1

n
D(An∥Bn). (23)

3 Hoeffding divergence and anti-divergence for sets of states

In this section, we develop extensions of the quantum Hoeffding divergence and anti-divergence to
sets of quantum states. Two natural approaches arise for this purpose. The first approach treats the
Hoeffding divergence as a quantum divergence and extends it to sets via Definition 4. The second
approach leverages the explicit formula for the Hoeffding divergence in terms of the Petz Rényi
divergences. Analogous constructions apply to the anti-divergence. We demonstrate that, for
arbitrary sets of quantum states, these two approaches yield equivalent definitions. Furthermore,
for stable sequences of sets, we establish the equivalence for the Hoeffding anti-divergence and
provide a quantitative comparison for the Hoeffding divergence.

3.1 Quantum Hoeffding divergence

Definition 8. Let H be a finite-dimensional Hilbert space, r > 0 a real number, and n ∈ N. Let
ρn, σn ∈ D(H⊗n) be two quantum states. The quantum Hoeffding divergence is defined as

Hn,r(ρn∥σn) := sup
α∈(0,1)

α− 1

α
(nr −DP,α(ρn∥σn)) . (24)

Lemma 9 (Subadditivity). For any ρm, σm ∈ D(H⊗m) and ρn, σn ∈ D(H⊗n), it holds that

H(m+n),r(ρm ⊗ ρn∥σm ⊗ σn) ≤ Hm,r(ρm∥σm) +Hn,r(ρn∥σn). (25)

Proof. This can be seen as follows:

H(m+n),r(ρm ⊗ ρn∥σm ⊗ σn)

= sup
α∈(0,1)

α− 1

α
((m+ n)r −DP,α(ρm ⊗ ρn∥σm ⊗ σn)) (26)

= sup
α∈(0,1)

α− 1

α
((m+ n)r −DP,α(ρm∥σm)−DP,α(ρn∥σn)) (27)

≤ sup
α∈(0,1)

α− 1

α
(mr −DP,α(ρm∥σm)) + sup

α∈(0,1)

α− 1

α
(nr −DP,α(ρn∥σn)) (28)

= Hm,r(ρm∥σm) +Hn,r(ρn∥σn), (29)

where the second equality uses the additivity of DP,α under tensor product states, and the inequal-
ity follows from splitting the supremum over α for each term. ⊓⊔
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Definition 10 (Quantum Hoeffding divergence between sets of states). Let H be a finite-dimensional
Hilbert space, and r > 0 be a real number, n ∈ N. Let An,Bn ⊆ D(H⊗n) be two sets of quantum
states. Two variants of the quantum Hoeffding divergence between these sets are defined as

Hn,r(An∥Bn) := inf
ρn∈An
σn∈Bn

Hn,r(ρn∥σn), (30)

Hn,r(An∥Bn) := sup
α∈(0,1)

α− 1

α
(nr −DP,α(An∥Bn)) , (31)

where DP,α(An∥Bn) is defined as in Definition 4. Moreover, let A = {An}n∈N and B =
{Bn}n∈N be two sequences of sets of quantum states, where each An,Bn ⊆ D(H⊗n). The
regularized quantum Hoeffding divergences between these sequences are defined as

H∞
r (A ∥B) := lim inf

n→∞

1

n
Hn,r(An∥Bn), (32)

H
∞
r (A ∥B) := lim sup

n→∞

1

n
Hn,r(An∥Bn), (33)

H∞
r (A ∥B) := sup

α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)
, (34)

H
∞
r (A ∥B) := sup

α∈(0,1)

α− 1

α

(
r −D

∞
P,α(A ∥B)

)
, (35)

where D∞
P,α(A ∥B) and D

∞
P,α(A ∥B) are defined as in Definition 4. If the following limits exist,

we define the regularized quantum Hoeffding divergence as

H∞
r (A ∥B) := lim

n→∞

1

n
Hn,r(An∥Bn), (36)

H∞
r (A ∥B) := sup

α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)
, (37)

where D∞
P,α(A ∥B) is defined as in Definition 4.

Remark 11. Since DP,α(ρn∥σn) is lower semicontinuous in (ρn, σn) for any fixed α [MH23,
Proposition III.11], it follows from Lemma 30 that Hn,r(ρn∥σn) is also lower semicontinuous in
(ρn, σn). Consequently, if An and Bn are compact sets, we know from Lemma 29 that the infimum
in the definition of Hn,r(An∥Bn) is achieved.

Remark 12. The quantum Hoeffding divergence is subadditive under tensor product states by
Lemma 9. So this property extends to stable sequences of sets by Remark 7,

H(m+n),r(Am+n∥Bm+n) ≤ Hm,r(Am∥Bm) +Hn,r(An∥Bn). (38)

As a consequence, the regularized quantum Hoeffding divergence exists and satisfies

H∞
r (A ∥B) = H

∞
r (A ∥B) = H∞

r (A ∥B) = inf
n≥1

1

n
Hn,r(An∥Bn). (39)

Simlarly, due to the additivity of DP,α under tensor product states, the regularized quantum Ho-
effding divergence H∞

r (A ∥B) also exists for stable sequences and satisfies

H∞
r (A ∥B) = H

∞
r (A ∥B) = H∞

r (A ∥B). (40)

The following results establish the relationship between the two variants of the quantum Ho-
effding divergence for sets and sequences of sets.
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Lemma 13. Let H be a finite-dimensional Hilbert space, and r > 0 be a real number, n ∈ N. Let
An,Bn ⊆ D(H⊗n) be two convex compact sets of quantum states. Then it holds that

Hn,r(An∥Bn) = Hn,r(An∥Bn). (41)

Proof. This result was previously established in [MSW22, Lemma II.8]. ⊓⊔

Remark 14 (Computability). For any fixed α ∈ (0, 1), the function Qα(ρn∥σn) is jointly concave
in (ρn, σn). Consequently, the quasi-divergence Qα(An∥Bn) can be efficiently computed using
the QICS package [HSF24], provided that An and Bn admit semidefinite representations. If
the sets An and Bn exhibit additional symmetries, the computational complexity can be further
reduced. With this, Hn,r(An∥Bn) can be efficiently evaluated by scanning over α ∈ (0, 1).

Lemma 15. Let H be a finite-dimensional Hilbert space, and r > 0 be a real number. Let
A = {An}n∈N and B = {Bn}n∈N be two stable sequences of convex compact sets of quantum
states, where each An,Bn ⊆ D(H⊗n). Then it holds that

H∞
r (A ∥B) ≥ H∞

r (A ∥B). (42)

Proof. The existence of the regularizations on both sides is ensured by Remark 12. Then we have
the following chain of inequalities:

H∞
r (A ∥B) = inf

n≥1

1

n
Hn,r(An∥Bn) (43)

= inf
n≥1

sup
α∈(0,1)

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
(44)

≥ sup
α∈(0,1)

inf
n≥1

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
(45)

= sup
α∈(0,1)

α− 1

α

(
r − inf

n≥1

1

n
DP,α(An∥Bn)

)
(46)

= sup
α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)

(47)

= H∞
r (A ∥B), (48)

where the first equality follows from Remark 12, the second equality follows from Lemma 13, the
inequality follows by minimax inequality, the fourth equality follows from Remark 12, and the
last equality follows by definition. ⊓⊔

If the minimax equality in the above proof can be established, then equality would hold in
Lemma 15. However, this appears to be challenging, as existing minimax theorems typically
require at least one of the spaces to be compact—a condition that is not directly satisfied here.

3.2 Quantum Hoeffding anti-divergence

Analogous to the quantum Hoeffding divergence, we can also define the quantum Hoeffding anti-
divergence for sets of quantum states.
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Definition 16. Let H be a finite-dimensional Hilbert space, and r > 0 a real number, n ∈ N. Let
ρn, σn ∈ D(H⊗n) be two quantum states. The quantum Hoeffding anti-divergence is defined as

H∗
n,r(ρn∥σn) := sup

α>1

α− 1

α
(nr −DS,α(ρn∥σn)) . (49)

Lemma 17 (Subadditivity). For any ρm, σm ∈ D(H⊗m) and ρn, σn ∈ D(H⊗n), it holds that

H∗
(m+n),r(ρm ⊗ ρn∥σm ⊗ σn) ≤ H∗

m,r(ρm∥σm) +H∗
n,r(ρn∥σn). (50)

Proof. This can be seen as follows:

H∗
(m+n),r(ρm ⊗ ρn∥σm ⊗ σn)

= sup
α>1

α− 1

α
((m+ n)r −DS,α(ρm ⊗ ρn∥σm ⊗ σn)) (51)

= sup
α>1

α− 1

α
((m+ n)r −DS,α(ρm∥σm)−DS,α(ρn∥σn)) (52)

≤ sup
α>1

α− 1

α
(mr −DS,α(ρm∥σm)) + sup

α>1

α− 1

α
(nr −DS,α(ρn∥σn)) (53)

= H∗
m,r(ρm∥σm) +H∗

n,r(ρn∥σn), (54)

where the second equality uses the additivity of DS,α under tensor product states, and the inequal-
ity follows from splitting the supremum over α for each term. ⊓⊔

Definition 18 (Quantum Hoeffding anti-divergence between sets of states). Let H be a finite-
dimensional Hilbert space, and r > 0 be a real number, n ∈ N. Let An,Bn ⊆ D(H⊗n) be two
sets of quantum states. Two variants of the quantum Hoeffding anti-divergence between these sets
are defined as 2

H∗
n,r(An∥Bn) := sup

ρn∈An
σn∈Bn

H∗
n,r(ρn∥σn), (55)

H∗
n,r(An∥Bn) := sup

α>1

α− 1

α
(nr −DS,α(An∥Bn)) , (56)

where DS,α(An∥Bn) is defined as in Definition 4. Moreover, let A = {An}n∈N and B =
{Bn}n∈N be two sequences of sets of quantum states, where each An,Bn ⊆ D(H⊗n). The
regularized quantum Hoeffding anti-divergences between these sequences are defined as

H∗,∞
r (A ∥B) := lim inf

n→∞

1

n
H∗

n,r(An∥Bn), (57)

H
∗,∞
r (A ∥B) := lim sup

n→∞

1

n
H∗

n,r(An∥Bn), (58)

H∗,∞
r (A ∥B) := sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
, (59)

H
∗,∞
r (A ∥B) := sup

α>1

α− 1

α

(
r −D

∞
S,α(A ∥B)

)
. (60)

2 The anti-divergence is monotone non-decreasing under CPTP maps, so the extension to sets is based on the supremum
rather than the infimum.
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where D∞
S,α(A ∥B) and D

∞
S,α(A ∥B) are defined as in Definition 4. If the following limits exist,

we define the regularized Hoeffding divergence as

H∗,∞
r (A ∥B) := lim

n→∞

1

n
H∗

n,r(An∥Bn), (61)

H∗,∞
r (A ∥B) := sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
, (62)

where D∞
S,α(A ∥B) is defined as in Definition 4.

Remark 19. It is known that H∗
n,r(ρn∥σn) is upper semicontinuous in (ρn, σn) [MSW22, Corol-

lary V.16]. So the supremum in the definition of H∗
n,r(An∥Bn) is achieved for any compact sets.

The following results aim to establish the relationship between the two variants of the quantum
Hoeffding anti-divergence for sets and sequences of sets.

Lemma 20. Let H be a finite-dimensional Hilbert space, and r > 0 be a real number, n ∈ N. Let
An,Bn ⊆ D(H⊗n) be two convex compact sets of quantum states. Then it holds that

H∗
n,r(An∥Bn) = H∗

n,r(An∥Bn). (63)

Proof. By definition, we have

H∗
n,r(An∥Bn) = sup

ρn∈An
σn∈Bn

sup
α>1

α− 1

α
(nr −DS,α(ρn∥σn)) (64)

= sup
α>1

sup
ρn∈An
σn∈Bn

α− 1

α
(nr −DS,α(ρn∥σn)) (65)

= sup
α>1

α− 1

α

nr − inf
ρn∈An
σn∈Bn

DS,α(ρn∥σn)

 (66)

= sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
(67)

= H∗
n,r(An∥Bn), (68)

where in the third line we exchange the two suprema. ⊓⊔

It is important to note that H∗
n,r(An∥Bn) is defined as a supremum over the feasible states,

which makes its additivity property for stable sequences unclear—even though we know the Ho-
effding anti-divergence for states is subadditive. As a result, we cannot directly apply Remark 7
as in previous discussions of Remark 12. Nevertheless, the following result shows that the regu-
larization H∗,∞

r does indeed exist for stable sequences and coincides with H∗,∞
r in general.

Lemma 21. Let H be a finite-dimensional Hilbert space, and r > 0 be a real number. Let
A = {An}n∈N and B = {Bn}n∈N be two stable sequences of convex compact sets of quantum
states, where each An,Bn ⊆ D(H⊗n). Then it holds that

H∗,∞
r (A ∥B) = H∗,∞

r (A ∥B). (69)
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Proof. We have the following chain of inequalities:

H∗,∞
r (A ∥B) = lim inf

n→∞

1

n
H∗

n,r(An∥Bn) (70)

= lim inf
n→∞

1

n
H∗
n,r(An∥Bn) (71)

= lim inf
n→∞

1

n
sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
(72)

≥ sup
α>1

lim inf
n→∞

1

n

α− 1

α

(
nr −DS,α(An∥Bn)

)
(73)

= sup
α>1

α− 1

α

(
r − lim sup

n→∞

1

n
DS,α(An∥Bn)

)
(74)

= sup
α>1

α− 1

α

(
r −D∞

S,α(An∥Bn)
)

(75)

= H∗,∞
r (A ∥B), (76)

where the second line follows from Lemma 20, the inequality follows by the fact that for any
sequence of numbers xα,n, lim infn→∞ supα>1 xα,n ≥ supα>1 lim infn→∞ xα,n, the second last
line follows from Remark 7 and the stability of the sequences.

On the other direction, we have

H
∗,∞
r (A ∥B) = lim sup

n→∞

1

n
H∗

n,r(An∥Bn) (77)

= lim sup
n→∞

1

n
H∗
n,r(An∥Bn) (78)

= lim sup
n→∞

1

n
sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
, (79)

where the second line follows from Lemma 20. Note that DS,α(An∥Bn) is subadditive for stable
sequences, so we have 1

nDS,α(An∥Bn) ≥ D∞
S,α(A ∥B) for any n ∈ N. This gives

1

n
sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
≤ sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
. (80)

Then taking the limit of n, we have

H
∗,∞
r (A ∥B) ≤ sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
= H∗,∞

r (A ∥B). (81)

Combining Eq. (76) and Eq. (81), we have the asserted result. ⊓⊔

4 Hypothesis testing between two sets of quantum states

In this section, we derive the asymptotic error exponents for quantum hypothesis testing between
two sets of quantum states. Specifically, we generalize the quantum Hoeffding bound and the
strong converse exponent to the setting where both the null and alternative hypotheses are given
by stable sequences of convex, compact sets of quantum states. We show that the optimal type-I
error exponent, under an exponential constraint on the type-II error, is precisely characterized by
a regularized quantum Hoeffding divergence between the sets. Similarly, we establish a lower
bound on the strong converse exponent, describing the exponential rate at which the optimal type-
I error approaches one. These results extend the classical and quantum i.i.d. cases to a broad class
of composite and correlated hypothesis testing scenarios.
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4.1 Optimal type-I error probability

Recall that the optimal type-I error probability for hypothesis testing between two sets of quantum
states, An and Bn, is defined as

αn,r(An∥Bn) := min
0≤Mn≤I

{
α(An,Mn) : β(Bn,Mn) ≤ 2−nr

}
, (82)

where the measurement Mn is chosen to minimize the worst-case type-I error α(An,Mn), subject
to the constraint that the type-II error β(Bn,Mn) does not exceed the threshold 2−nr. In other
words, the measurement must perform universally well for all states in An and Bn. The following
result shows that the optimal type-I error for hypothesis testing between two sets of quantum states
is precisely determined by the most challenging pair of states from these sets. This implies that
there exists a universal measurement for An and Bn whose performance matches that of the
optimal measurement for the worst-case pair of states.

Lemma 22. Let H be a finite-dimensional Hilbert space, and r > 0 be a real number, n ∈ N. Let
An,Bn ⊆ D(H⊗n) be two convex sets of quantum states. Then it holds that

αn,r(An∥Bn) = sup
ρn∈An
σn∈Bn

αn,r(ρn∥σn). (83)

Proof. We begin by noting the following symmetry role between type-I and type-II errors:

α(An,Mn) = β(An, I −Mn) and β(Bn,Mn) = α(Bn, I −Mn). (84)

This allows us to rewrite the optimization in Eq. (82) as

αn,r(An∥Bn) = min
0≤Mn≤I

{
β(An, I −Mn) : α(Bn, I −Mn) ≤ 2−nr

}
(85)

= min
0≤Mn≤I

{
β(An,Mn) : α(Bn,Mn) ≤ 2−nr

}
(86)

= sup
ρn∈An
σn∈Bn

min
0≤Mn≤I

{
β(ρn,Mn) : α(σn,Mn) ≤ 2−nr

}
(87)

= sup
ρn∈An
σn∈Bn

min
0≤Mn≤I

{
β(ρn, I −Mn) : α(σn, I −Mn) ≤ 2−nr

}
(88)

= sup
ρn∈An
σn∈Bn

min
0≤Mn≤I

{
α(ρn,Mn) : β(σn,Mn) ≤ 2−nr

}
(89)

= sup
ρn∈An
σn∈Bn

αn,r(ρn∥σn), (90)

where the first and fourth equalities use Eq. (84), the second and fifth equalities follow by substi-
tuting Mn to I−Mn in the optimization, the third equality uses [FFF24, Lemma 31] which allows
us to pull out the optimization over An,Bn for the optimal type-II error probability when type-I
error is restricted to a constant threshold, and the last equality is by definition. ⊓⊔

4.2 Quantum Hoeffding bound for sets of quantum states

We now present the main result of this section, which establishes the asymptotic behavior of
the optimal type-I error in the error exponent regime for hypothesis testing between two sets of
quantum states. This theorem generalizes the quantum Hoeffding bound from the i.i.d. case
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to the more general setting of composite and correlated hypotheses. Notably, the result holds
under minimal and standard assumptions, which are satisfied by the frameworks considered in the
generalized quantum Stein’s lemmas [HY24, Lam25, FFF24].

Theorem 23 (Quantum Hoeffding bound for sets of quantum states). Let H be a finite-
dimensional Hilbert space, and r > 0 be a real number. Let A = {An}n∈N and B = {Bn}n∈N
be two stable sequences of convex compact sets of quantum states, where each An,Bn ⊆
D(H⊗n). Then it holds that

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) = H∞

r (A ∥B). (91)

Proof. 1) proof of the lower bound: Recall that for any V,W ∈ H+ and α ∈ (0, 1), it holds
that [ACMT+07],

Tr[V αW 1−α] ≥ TrW{W ≤ V }+TrV {W > V }. (92)

Let ρn ∈ An and σn ∈ Bn. Applying the inequality with the choice V = ρn and W = 2nRσn
with an arbitrary real number R. Then we have

Tr 2nRσn{2nRσn ≤ ρn}+Tr ρn{2nRσn > ρn} ≤ 2n(1−α)RQα(ρn∥σn). (93)

This implies that

Tr ρn{2nRσn > ρn} ≤ 2n(1−α)RQα(ρn∥σn), (94)

Trσn{2nRσn ≤ ρn} ≤ 2−nαRQα(ρn∥σn). (95)

Now, letting the constant

R =
nr + logQα(ρn∥σn)

nα
. (96)

we get

Tr ρn{2nRσn > ρn} ≤ 2
1−α
α

n(r− 1
n
DP,α(ρn∥σn)), (97)

Trσn{2nRσn ≤ ρn} ≤ 2−nr. (98)

Let Mn = {2nRσn ≤ ρn}, which is a valid quantum measurement operator. Then Eq. (98) implies
that it is a feasible solution to the optimization problem in Eq. (5). Therefore, we have

αn,r(ρn∥σn) ≤ 2
1−α
α

n(r− 1
n
DP,α(ρn∥σn)). (99)

This gives

− 1

n
logαn,r(ρn, σn) ≥

α− 1

α

(
r − 1

n
DP,α(ρn∥σn)

)
. (100)

Taking infimum over ρn ∈ An and σn ∈ Bn on both sides, we have

− 1

n
logαn,r(An,Bn) ≥

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
, (101)
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where we use Lemma 22. Taking supremum over α ∈ (0, 1), we have

− 1

n
logαn,r(An,Bn) ≥ sup

α∈(0,1)

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
=

1

n
Hn,r(An∥Bn), (102)

where the equality follows from Lemma 13. Taking limit of n, we have

lim inf
n→∞

− 1

n
logαn,r(An,Bn) ≥ lim inf

n→∞

1

n
Hn,r(An∥Bn) = H∞

r (A ∥B), (103)

where the equality follows from the stability assumption of the sequences and Eq. (39).
2) proof of the upper bound: For any fixed m ∈ N any ρm ∈ Am, σm ∈ Bm, then

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≤ lim inf

n→∞
− 1

mn
logαmn,r(Amn,Bmn) (104)

= lim inf
n→∞

− 1

mn
log sup

ρmn∈Amn
σmn∈Bmn

αmn,r(ρmn, σmn) (105)

≤ lim inf
n→∞

− 1

mn
logαmn,r(ρ

⊗n
m , σ⊗n

m ) (106)

=
1

m
Hm,r(ρm∥σm). (107)

where the first inequality follows as the lower limit of a subsequence is no smaller than the lower
limit of the sequence, the first equality follows from Lemma 22, the second inequality follows by
taking a particular feasible solution and the stability of the sequences, the second equality follows
from the quantum Hoeffding bound between two quantum states (see Eq. (6)). As this holds for
any ρm ∈ Am, σm ∈ Bm, we have

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≤

1

m
Hm,r(Am∥Bm). (108)

Taking limit of m, we get

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≤ lim inf

m→∞

1

m
Hm,r(Am∥Bm) = H∞

r (A ∥B), (109)

where the equality follows from the stability assumption of the sequences and Eq. (39). ⊓⊔

4.3 Strong converse exponent for sets of quantum states

The following result extends the strong converse exponent from the i.i.d. setting to the broader
context of composite and correlated hypotheses and shows that the strong converse exponent is
lower bounded by a regularized quantum Hoeffding anti-divergence between the sets.

Theorem 24 (Strong converse exponent for sets of quantum states). Let H be a finite-dimensional
Hilbert space, and r > 0 be a real number. Let A = {An}n∈N and B = {Bn}n∈N be two stable
sequences of convex compact sets of quantum states, where each An,Bn ⊆ D(H⊗n). Then

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B). (110)

Proof. Let ρn, σn be optimizers for DS,α(An∥Bn), i.e., DS,α(ρn∥σn) = DS,α(An∥Bn). By
standard arguments, e.g. [CMW16, Lemma 5], we have for any 0 ≤ Mn ≤ I , that

1

n
log (1− Tr[(I −Mn)ρn]) ≤

α− 1

α

(
1

n
DS,α(ρn∥σn) +

1

n
log Tr[Mnσn]

)
. (111)
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Since Tr[(I −Mn)ρn] ≤ α(An,Mn) and Tr[Mnσn] ≤ β(Bn,Mn), it follows that

1

n
log (1− α(An,Mn)) ≤

α− 1

α

(
1

n
DS,α(An∥Bn) +

1

n
log β(Bn,Mn)

)
. (112)

For any 0 ≤ Mn ≤ I such that β(Bn,Mn) ≤ 2−nr, we obtain

1

n
log (1− α(An,Mn)) ≤

α− 1

α

(
1

n
DS,α(An∥Bn)− r

)
. (113)

Taking the supremum over all such Mn, we find

− 1

n
log (1− αn,r(An∥Bn)) ≥

α− 1

α

(
r − 1

n
DS,α(An∥Bn)

)
. (114)

This implies

lim inf
n→∞

− 1

n
log (1− αn,r(An∥Bn)) ≥ lim inf

n→∞

α− 1

α

(
r − 1

n
DS,α(An∥Bn)

)
(115)

=
α− 1

α

(
r −D∞

S,α(A ∥B)
)
, (116)

where the equality follows from Remark 7 and the stability of the sequences. Since this holds for
any α > 1, we conclude that

lim inf
n→∞

− 1

n
log (1− αn,r(An∥Bn)) ≥ sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
= H∗,∞

r (A ∥B). (117)

Finally, by Lemma 21, we have the asserted result. ⊓⊔

5 Refining the Stein’s lemma between two sets of quantum states

As discussed in the introduction, the error exponent and strong converse exponent regimes offer
a more refined characterization of the trade-off between type-I and type-II errors than the Stein’s
exponent regime. In this section, we utilize the results developed in this work to refine and ex-
tend the generalized quantum Stein’s lemma established in [FFF24, Theorem 32] for quantum
hypothesis testing between two sets of quantum states.

Assumption 25. Consider a family of sets {An}n∈N satisfying the following properties,

• (A.1) Each An is convex and compact;

• (A.2) Each An is permutation-invariant;

• (A.3) Am ⊗ Ak ⊆ Am+k, for all m, k ∈ N;

• (A.4) (Am)◦+ ⊗ (Ak)
◦
+ ⊆ (Am+k)

◦
+, for all m, k ∈ N,

where the polar set is defined as (C )◦+ := {X ∈ H+ : Tr[XY ] ≤ 1, ∀Y ∈ C }.

The following generalized quantum Stein’s lemma for hypothesis testing between two sets of
quantum states was established in [FFF24, Theorem 32].

Theorem 26 (Generalized quantum Stein’s lemma). Let A = {An}n∈N and B = {Bn}n∈N
be two sequences of sets satisfying Assumption 25 and An ⊆ D(H⊗n), Bn ⊆ H+(H⊗n) and
Dmax(An∥Bn) ≤ cn, for all n ∈ N and a constant c ∈ R+. Then for any ε ∈ (0, 1),

lim
n→∞

− 1

n
log βε(An∥Bn) = D∞(A ∥B). (118)

The above result can be both recovered and strengthened as follows.
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Theorem 27. Let A = {An}n∈N and B = {Bn}n∈N be two sequences of sets satisfying the
same assumptions in Theorem 26. For any 0 < r < D∞(A ∥B), then

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≥ H∞

r (A ∥B) > 0. (119)

For any r > D∞(A ∥B), then

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B) > 0. (120)

This result shows that any type-II error exponent below D∞(A ∥B) is achievable, with the
corresponding type-I error decaying exponentially at a rate at least H∞

r (A ∥B). Conversely, if the
type-II error exponent exceeds D∞(A ∥B), the type-I error inevitably converges to one exponen-
tially, with a rate at least H∗,∞

r (A ∥B). Thus, the regularized quantum relative entropy between
sets, D∞(A ∥B), delineates a sharp threshold for the asymptotic trade-off in hypothesis testing
between two sets of quantum states. In particular, these results apply to adversarial quantum chan-
nel discrimination, which satisfies all the required assumptions [FFF25], thereby providing a more
refined understanding of the trade-off between type-I and type-II errors in this setting.

Proof. By the assumptions on the sequences, we have

D∞(A ∥B) = sup
α∈(0,1)

D∞
M,α(A ∥B) ≤ sup

α∈(0,1)
D∞

P,α(A ∥B) ≤ D∞(A ∥B), (121)

where the first equality follows from [FFF24, Lemmas 27, 28], and the inequalities use that
DM,α(ρ∥σ) ≤ DP,α(ρ∥σ) ≤ D(ρ∥σ) for any α ∈ (0, 1). This implies

sup
α∈(0,1)

D∞
P,α(A ∥B) = D∞(A ∥B). (122)

Note that D∞
P,α(A ∥B) is monotone increasing in α. Therefore, for any 0 < r < D∞(A ∥B),

there exists α ∈ (0, 1) such that r < D∞
P,α(A ∥B). Then

H∞
r (A ∥B) = sup

α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)
> 0, (123)

By Theorem 23 and Lemma 15, we have

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) = H∞

r (A ∥B) ≥ H∞
r (A ∥B) > 0 (124)

which shows that the type-I error decays exponentially, and thus r is an achievable rate. This
recovers the direct part of the generalized quantum Stein’s lemma in Theorem 26.

Since infα>1D
∞
S,α(A ∥B) = D∞(A ∥B) [FFF24, Lemma 27] and D∞

S,α(A ∥B) is monotone
increasing in α, for any r > D∞(A ∥B), there exists α > 1 such that r > D∞

S,α(A ∥B). This
implies that

H∗,∞
r (A ∥B) = sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
> 0. (125)

Applying Theorem 24 and Lemma 21, we obtain

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B) = H∗,∞
r (A ∥B) > 0. (126)

This shows that the type-I error converges to one exponentially, and thus r is not an achievable
rate, recovering the converse part of the generalized quantum Stein’s lemma in Theorem 26. ⊓⊔
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It is worth emphasizing that the quantum Hoeffding bound in Theorem 23 and the strong con-
verse exponent in Theorem 24 hold in great generality and do not require the polar assumption.
However, to recover the Stein’s setting from the error exponent regime, one needs the continuity of
the regularized Petz Rényi divergences, i.e., supα∈(0,1)D

∞
P,α(A ∥B) = D∞(A ∥B). For this, we

adopt the polar assumption in Eq. (121). Therefore, to recover the generalized quantum Stein’s
lemma as in [HY24, Lam25], it suffices to establish the continuity supα∈(0,1)D

∞
P,α(A ∥B) =

D∞(A ∥B) under their respective assumptions. Achieving this would provide an alternative proof
of the generalized quantum Stein’s lemma proposed by Brandão and Plenio [BP10], in addition
to those in [HY24, Lam25], although this approach remains technically challenging. Interest-
ingly, a similar situation also arises in the context of best-case channel discrimination, where the
continuity of the regularized sandwiched Rényi divergence between channels is sufficient to estab-
lish the quantum Stein’s lemma for two quantum channels (particularly the strong converse part);
see [FGW25, Theorem 21] for further details.

6 Discussion

We have established a framework for analyzing the error exponents in quantum hypothesis testing
between two sets of quantum states, extending the classical and quantum i.i.d.settings to composite
and correlated hypotheses. Our main results include a generalization of the quantum Hoeffding
bound and the strong converse exponent to stable sequences of convex, compact sets of quantum
states. We have shown that the optimal type-I error exponent, under an exponential constraint
on the type-II error, is precisely characterized by the regularized quantum Hoeffding divergence
between the sets. Similarly, we derived a lower bound on the strong converse exponent in terms of
the regularized quantum Hoeffding anti-divergence. These results refine the generalized quantum
Stein’s lemma and provide a more detailed understanding of the trade-off between type-I and
type-II errors in discrimination with composite and correlated hypotheses.

Several open questions remain. While we have established that H∞
r (A ∥B) ≥ H∞

r (A ∥B),
proving the equality H∞

r (A ∥B) = H∞
r (A ∥B) in full generality remains open; this would re-

quire a minimax theorem applicable in the regularized setting. Moreover, for the strong converse
exponent, our results provide a lower bound, but establishing a matching upper bound is an impor-
tant challenge for future work. Resolving these questions would yield a complete characterization
of the error exponents for composite and correlated quantum hypothesis testing. Finally, since
the generalized quantum Stein’s lemma implies asymptotic reversibility in the associated resource
theory [FFF24, Section 6], our refined analysis of error exponents may offer new insights into the
rates and convergence properties of resource interconversion. This could potentially enable finer
control over the reversibility and efficiency of resource transformations in the asymptotic regime.
Exploring these connections represents an interesting direction for future research.

Acknowledgements. We thank Masahito Hayashi for suggesting the study of the quantum Ho-
effding setting. K.F. is supported by the National Natural Science Foundation of China (grant No.
92470113 and 12404569), the Shenzhen Science and Technology Program (grant No. JCYJ202408
1311351 9025), the Shenzhen Fundamental Research Program (grant No. JCYJ20241202124023
031), the 1+1+1 CUHK-CUHK(SZ)-GDST Joint Collaboration Fund (grant No. GRD P2025-
022), and the University Development Fund (grant No. UDF01003565).

References

[ACMT+07] K. M. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E. Bagan, L. Masanes, A. Acin,
and F. Verstraete. Discriminating states: The quantum Chernoff bound. Physical
Review Letters, 98(16):160501, 2007.

19



[ANSV08a] K. M. Audenaert, M. Nussbaum, A. Szkoła, and F. Verstraete. Asymptotic error
rates in quantum hypothesis testing. Communications in Mathematical Physics,
279(1):251–283, 2008.

[ANSV08b] K. M. R. Audenaert, M. Nussbaum, A. Szkoła, and F. Verstraete. Asymptotic error
rates in quantum hypothesis testing. Communications in Mathematical Physics,
279(1):251–283, 2008.

[BDB23] S. Ben-David and E. Blais. A new minimax theorem for randomized algorithms.
Journal of the ACM, 70(6):1–58, 2023.

[Bla74] R. Blahut. Hypothesis testing and information theory. IEEE Transactions on Infor-
mation Theory, 20(4):405–417, 1974.

[BP10] F. G. Brandao and M. B. Plenio. A generalization of quantum stein’s lemma. Com-
munications in Mathematical Physics, 295(3):791–828, 2010.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, pages 493–507,
1952.

[CMW16] T. Cooney, M. Mosonyi, and M. M. Wilde. Strong converse exponents for a quan-
tum channel discrimination problem and quantum-feedback-assisted communica-
tion. Communications in Mathematical Physics, 344(3):797–829, 2016.

[FFF24] K. Fang, H. Fawzi, and O. Fawzi. Generalized quantum asymptotic equipartition.
arXiv preprint arXiv:2411.04035, 2024.

[FFF25] K. Fang, H. Fawzi, and O. Fawzi. Adversarial quantum channel discrimination.
arXiv preprint arXiv:2506.03060, 2025.

[FGW25] K. Fang, G. Gour, and X. Wang. Towards the ultimate limits of quantum channel
discrimination and quantum communication. Science China Information Sciences,
68(8):180509, 2025.
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A Useful lemmas

The following lemma is a minimax theorem that account for the infinity values of the function.
Let X be a convex set in a linear space. function f : X → (−∞,−∞] said to be convex, if
f(px + (1 − p)y) ≤ pf(x) + (1 − p)f(y), the multiplication 0 · f(x) is interpreted as 0 and
p ·+∞ = +∞ for p ̸= 0. Similar definiton holds for concave functions.
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Lemma 28. [FR06, Theorem 5.2] Let X be a compact, convex subset of a Hausdorff topological
vector space and Y be a convex subset of the linear space. Let f : X×Y → (−∞,+∞] be lower
semicontinuous on X for fixed y ∈ Y , and assume that f is convex in the first and concave in the
second variable. Then

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y). (127)

The following lemmas are standard results in mathematical analysis and will be used fre-
quently in our proofs. For detailed proofs, see, e.g., [BDB23, Lemma 2.8, 2.9].

Lemma 29. Let X be a nonempty compact topological space, and let f : X → R be a function.
Then if f is upper semicontinuous, it attains its maximum, meaning there is some x ∈ X such that
for all x′ ∈ X , f(x′) ≤ f(x). Similarly, if f is lower semicontinuous, it attains its minimum.

Lemma 30. Let X be a topological space, let I be a set, and let {fi}i∈I be a collection of functions
fi : X → R. Then if each fi is upper semicontinuous, the function f(x) = infi∈I fi(x) is also
upper semicontinuous. Similarly, if each fi is lower semicontinuous, the pointwise supremum is
lower semicontinuous.
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