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Abstract
We consider the problem ofmaximizing a homogeneous polynomial on the unit sphere
and its hierarchy of sum-of-squares relaxations. Exploiting the polynomial kernel
technique, we obtain a quadratic improvement of the known convergence rate by
Reznick and Doherty and Wehner. Specifically, we show that the rate of convergence
is noworse than O(d2/�2) in the regime � = �(d)where � is the level of the hierarchy
and d the dimension, solving a problem left open in the recent paper by de Klerk and
Laurent (arXiv:1904.08828 ). Importantly, our analysis also works for matrix-valued
polynomials on the sphere which has applications in quantum information for the
Best Separable State problem. By exploiting the duality relation between sums of
squares and the Doherty–Parrilo–Spedalieri hierarchy in quantum information theory,
we show that our result generalizes to nonquadratic polynomials the convergence rates
of Navascués, Owari and Plenio.

Mathematics Subject Classification 90C22 · 90C23 · 81P42

1 Introduction

We consider in this paper a fundamental computational task, that of maximizing a
multivariate polynomial p ∈ R[x] in d variables x = (x1, . . . , xd) on the unit sphere:

pmax = max
x∈Sd−1

p(x) (1)

where Sd−1 = {x ∈ R
d : x21 + · · · + x2d = 1}. Optimization problems of the above

form have applications in many areas. For example, computing the largest stable set of
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a graph is a special case of (1) for a suitable polynomial p of degree three, see [13,27].
Computing the 2 → 4 norm of a matrix A corresponds to the maximization of the
degree-four polynomial p(x) = ‖Ax‖44 on the sphere, see e.g., [4] for more on this.
In quantum information, the so-called Best Separable State problem very naturally
relates to polynomial optimization on the sphere, as we explain later.

When p(x) is quadratic, problem (1) reduces to an eigenvalue problem which can
be solved efficiently. However for general polynomials of degree greater than two, the
problem is NP-hard as it contains as a special case the stable set problem [27]. The
sum-of-squares hierarchy is a hierarchy of semidefinite relaxations that approximate
the value pmax by a sequence of semidefinite programs of increasing size [25,31].
In this paper we study the approximation quality of this sequence of semidefinite
relaxations.

1.1 Sum-of-squares hierarchy

The sum-of-squares hierarchy for (1) that we study in this paper is defined by

p� = min
{
γ ∈ R s.t. γ − p is sum-of-squares of degree � on Sd−1

}
. (2)

The sequence (p�)�∈N consists of monotone upper bounds on pmax, i.e., for any �

we have pmax ≤ p� and p� ≤ p�−1. For each �, the value p� can be computed by a
semidefinite program of size d O(�), see e.g., [25,31]. As explained in “Appendix A”,
(2) coincides with the usual sum-of-squares hierarchy defined in terms of Putinar and
Schmüdgen-type Positivstellensatz.

A result of Reznick [34] (see also [19]) shows that p� → pmax as � → ∞. In fact
Reznick shows, assuming pmin = minx∈Sd−1 p(x) = 0, that p�/pmax converges to
1 at the rate d/�, for � large enough. In this paper we show that the sum-of-squares
hierarchy actually converges at the faster rate of (d/�)2. More precisely, we prove the
following

Theorem 1 Assume p(x1, . . . , xd) is a homogeneous polynomial of degree 2n in d
variables with n ≤ d, and let pmin denote the minimum of p on Sd−1. Then for any
� ≥ Cnd

1 ≤ p� − pmin

pmax − pmin
≤ 1 + (Cnd/�)2 (3)

for some constant Cn that depends only on n.

In a recent paper, de Klerk and Laurent [14] proved that a semidefinite hierarchy
of lower bounds on pmax converges at a rate of O(1/�2) and left open the question
of whether the same is true for the hierarchy (p�) of upper bounds. Our Theorem 1
answers this question positively.

1.2 Matrix-valued polynomials

The proof technique we use in this paper actually allows us to get a significant general-
ization of Theorem 1, related to matrix-valued polynomials. Let Sk be the space of real
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symmetric matrices of size k × k, and let Sk[x] be the space of Sk-valued polynomials
in x = (x1, . . . , xd). We will often use the lighter notation F ∈ S[x] when the size k
is unimportant for the discussion. A polynomial F(x1, . . . , xd) ∈ S[x] is positive if
F(x) ≥ 0 for all x ∈ R

d where the inequality is interpreted in the positive semidefi-
nite sense1. We say that F(x) ∈ Sk[x] is a sum of squares if there exist polynomials
U j (x) ∈ R

k×k[x] such that F(x) = ∑
j U j (x)U j (x)T for all x ∈ R

d . We say that

F(x) is �-sos on Sd−1 if it agrees with a sum-of-squares polynomial on the sphere
with degU j ≤ �. We are now ready to state our main theorem on sum of squares
representations for matrix-valued polynomials.

Theorem 2 Assume F(x1, . . . , xd) ∈ S[x] is a homogeneous matrix-valued polyno-
mial of degree 2n in d variables with n ≤ d, such that F(x) is symmetric for all
x. Assume furthermore that 0 ≤ F(x) ≤ I for all x ∈ Sd−1, where I is the identity
matrix. There are constants Cn and C′

n that depend only on n such that for any � ≥ Cnd,

F + C′
n

( d
�

)2
I is �-sos on Sd−1.

Some remarks concerning the statement are in order:

• Theorem 1 is a direct corollary of Theorem 2 where F(x) is the scalar polynomial
given by F(x) = (pmax − p)/(pmax − pmin).

• A remarkable fact of Theorem 2 is that the result is totally independent on the size
of the matrix F(x).

• Theorem 2 can be applied to get sum-of-squares certificates for scalar bihomoge-
neous polynomials on products of two spheres Sk−1 × Sd−1. Indeed, one way to
think about a matrix-valued polynomial F(x1, . . . , xd) ∈ Sk[x] is to consider the
real-valued polynomial p(x, y) = yTF(x)y where x ∈ R

d and y ∈ R
k . This poly-

nomial is bihomogeneous of degree (2n, 2) in the variables (x, y). One important
application of this setting is in quantum information theory for the best separable
state problem which we explain later in Sect. 1.3 and more details can be found in
Sect. 4.

• As stated, Theorem 2 is concerned only with levels � ≥ �(d) of the sum-of-
squares hierarchy. The main technical result we prove in this paper (Theorem 6
below) actually allows us to get a bound on the performance of the sum-of-squares
hierarchy for all values of level �, and not just the regime � ≥ �(d). The bounds
we get however do not have closed-form expressions in general, and they depend
on the eigenvalues of some generalized Toeplitz matrices. For small values of n
(namely 2n = 2 and 2n = 4) our bounds can be computed efficiently though, as
we explain later in Eqs. (17) and (18).

• For more details about the regime � = o(d) of the sum-of-squares hierarchy, we
refer the reader to the recent works [6,8] and references therein.

1.3 The Best Separable State problem in quantum information theory

The notion of entanglement plays a fundamental role in quantum mechanics. The set
of separable states (i.e., non-entangled states) on the Hilbert spaceCd ⊗C

d is defined

1 In the following discussion, the relation X ≥ Y for any two matrices is always interpreted as the positive
semidefinite order, i.e., X − Y is a positive semidefinite matrix.
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as the convex hull of all pure product states

Sep(d) = conv
{

xx† ⊗ yy† : (x, y) ∈ C
d × C

d and ‖x‖ = ‖y‖ = 1
}

. (4)

Here x† = x̄T is the conjugate transpose and ‖x‖2 = x†x = ∑d
i=1 |xi |2. Sep(d) is

a convex subset of the set Herm(d2) of Hermitian matrices of size d2 × d2. A key
computational task in quantum information theory is the so-called Best Separable
State (BSS) problem: given M ∈ Herm(d2), compute

hSep(M) = max
ρ∈Sep(d)

Tr[Mρ] = max
x,y∈Cd

‖x‖=‖y‖=1

∑
1≤i, j,k,l≤d

Mi j,kl xi x̄k y j ȳl . (5)

In words, hSep(M) is the support function of the convex set Sep(d) evaluated at M .
Note that hSep(M) is simply the maximum of the Hermitian polynomial2

pM (x, x̄, y, ȳ) :=
∑

1≤i, j,k,l≤d

Mi j,kl xi x̄k y j ȳl (6)

over the product of spheres SCd × SCd = {(x, y) ∈ C
d × C

d : ‖x‖ = ‖y‖ = 1}. In
that sense the BSS problem is very related to the polynomial optimization problem
(1).

TheDoherty–Parrilo–Spedalieri (DPS) hierarchy [18] is a hierarchy of semidefinite
relaxations to the set of separable states, which is defined in terms of so-called state
extensions (we recall the precise definitions later in the paper). It satisfies

Sep(d) ⊆ · · · ⊆ DPS�(d) ⊆ · · · ⊆ DPS2(d) ⊆ DPS1(d)

whereDPS�(d) is the �’th level of theDPShierarchy. It turns out that theDPShierarchy
can be interpreted, from the dual point of view, as a sum of squares hierarchy. This
duality relation has been mentioned multiple times in the literature, however we could
not find any formal and complete proof of this equivalence. In this paper we give a
proof of this duality relation. To do this, we first need to specify the definition of sum of
squares for Hermitian polynomials. We say that a Hermitian polynomial is a real sum
of squares (rsos) if it can be written as a sum of squares of Hermitian polynomials.3

To state the result it is more convenient to work in the conic setting and we denote
the convex cones associated to Sep and DPSk by SEP and DPSk respectively (these
convex cones simply correspond to dropping a trace normalization condition).

2 A Hermitian polynomial is a polynomial of complex variables and their conjugates that takes only real
values. See Sect. 4.2 for more details.
3 Another common definition is to require that the polynomial is a sum of squares of modulus squares of
(holomorphic) complex polynomials. This is a different condition, and it corresponds from the dual point of
view to the DPS hierarchy without the Positive Partial Transpose conditions. See Sect. 4.2 for more details
on this.
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Theorem 3 (Duality DPS/sum-of-squares) Let SEP(d) be the convex cone of sepa-
rable states on C

d ⊗ C
d , and let DPS�(d) be the convex cone of quantum states

corresponding to the �’th level of the DPS hierarchy. Then we have:

(i) SEP(d)∗ = {
M ∈ Herm(d2) : pM is nonnegative

}
(ii) DPS�(d)∗ = {

M ∈ Herm(d2) : ‖y‖2(�−1) pM is a real sum-of-squares
}
,

where K ∗ denotes the dual cone to K and pM is the Hermitian polynomial of Eq. (6).

Using this connection, our results on the convergence of the sum-of-squares hierar-
chy can be easily translated to bound the convergence rate of the DPS hierarchy. More
precisely, since the polynomial pM of Eq. (6) is bihomogeneous of degree (2, 2) (i.e.,
it is quadratic in x and y independently) we can get a bound on the rate of convergence
of the DPS hierarchy from Theorem 2 where deg F = 2. The rate of convergence we
get in this way actually coincides with the rate of convergence obtained by Navascues,
Owari and Plenio [28], who use a completely different (quantum-motivated) argument
based on the primal definition of the DPS hierarchy using state extensions. From the
sum-of-squares point of view, the theorem of Navascues et al. can thus be seen as a
special case of Theorem 2 when deg F = 2. We conclude by stating the result on the
convergence rate of the DPS hierarchy.

Theorem 4 (Convergence rate of DPS hierarchy, see also [28]) Let M ∈ Herm(d2)

and assume that (x ⊗ y)†M(x ⊗ y) ≥ 0 for all (x, y) ∈ C
d × C

d . Then

hSep(M) ≤ hDPS�
(M) ≤ (1 + Cd2/�2)hSep(M) (7)

for any � ≥ C′d, where C,C′ > 0 are absolute constants.

Remark 1 (Multiplicative vs. additive approximations) The guarantee of Eq. (7) for
hSep(M) is multiplicative. In the quantum literature however, most results produce
guarantees on hSep(M) that are additive, assuming the spectral norm of M is at most
1 [7,22], i.e., those take the form

hSep(M) ≤ hDPS�
(M) ≤ hSep(M) + ε‖M‖ (8)

where ‖M‖ is the spectral norm and ε depends on � and d. We note that multiplicative
guarantees are stronger because hSep(M) ≤ ‖M‖.

One important tool used to get additive guarantees like (8) are de Finetti results
[7,11]. One notable result on additive approximations of hSep(M) is that if M has
the 1-LOCC structure, i.e., M = ∑k

i=1 Xi ⊗ Yi where 0 ≤ Xi ,
∑k

i=1 Xi ≤ I and
0 ≤ Yi ≤ I , then after at most � = O(log d/ε2) we get hDPS�

(M) ≤ hSep(M) + ε

[5].

1.4 Overview of proof

We give a brief overview of the proof of Theorem 2. We will focus on the case where
F(x) is a scalar-valued polynomial for simplicity of exposition.
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Given a univariate polynomial q(t) of degree � consider the kernel K (x, y) =
q(〈x, y〉)2 for (x, y) ∈ Sd−1× Sd−1. Define the integral transform, for h : Sd−1 → R

(K h)(x) =
∫

y∈Sd−1
K (x, y)h(y)dσ(y) ∀x ∈ Sd−1 (9)

where dσ is the rotation-invariant probability measure on Sd−1. As such, we think of
K as a linear map acting on functions on Sd−1. A crucial property of K is that if h ≥ 0
then the function K h is �-sos4 on Sd−1, by construction of K (x, y).

Let F(x) be a scalar-valued polynomial such that 0 ≤ F(x) ≤ 1 on Sd−1. Our
goal is to find δ > 0 such that F̃ = F + δ = F + δ‖x‖2n

2 is �-sos on Sd−1. It can
be shown (details later) that the linear map K defined by (9) is invertible on the space
of homogeneous polynomials on Sd−1. As such we can always write F̃ = K h with
h = K −1 F̃ on Sd−1. If K is close to the identity (i.e., the kernel K (x, y) is close
to a Dirac kernel δ(x, y)) then we expect that h ≈ F̃ , i.e., that ‖h − F̃‖∞ is small.
Since F̃ ≥ δ, if we can guarantee that ‖h − F̃‖∞ ≤ δ it would follow that h ≥ 0,
in which case the equation F̃ = K h = K (K −1 F̃) gives a degree-� sum-of-squares
representation of F̃ on the sphere.

To make the argument above precise we need to measure how close the kernel K is
to the identity. This is best done in the Fourier domain, where we analyze how close
the Fourier coefficients of the the kernel K (x, y) are to 1. The Fourier coefficients of
K (x, y) depend in a quadratic way on the coefficients in the expansion of q(t) in the
basis of Gegenbauer polynomials. We show that there is a choice of q(t) such that the
Fourier coefficients of K (x, y) converge to 1 at the rate d2

�2
, as � → ∞. The kernel

we construct is the solution of an eigenvalue maximization for a generalized Toeplitz
matrix, associated to the family of Gegenbauer polynomials. We use known results on
the roots of such polynomials to obtain the desired rate of convergence.

The idea of proof here is similar to the approaches in Reznick [34], and Doherty
and Wehner [19], and Parrilo [32]. The work of Reznick and Doherty and Wehner
use the kernel K (x, y) = 〈x, y〉2�/c for some normalizing constant c for which the
Fourier coefficients can be computed explicitly.5 The Fourier coefficients of this kernel
happen to converge to 1 at a rate of d

�
, which is slower than the kernels we construct.

Organization

In Sect. 2 we review some background material concerning Fourier decompositions
on the sphere. The proof of Theorem 2 is in Sect. 3. Section 4 is devoted to the Best
Separable State problem in quantum information theory.

4 Because of the integral, K h is an “infinite” sum of squares. Standard convexity results can be used
however to turn this into a finite sum of squares. We provide more details later.
5 The fact that Reznick’s proof is based on this choice of kernel was observed by Blekherman in [9, Remark
7.3].
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2 Background

Spherical harmonics We review the basics of Fourier analysis on the sphere Sd−1.
Any polynomial p of degree n on the sphere has a unique decomposition

p = p0 + p1 + · · · + pn, pi ∈ Hd
i (10)

where each pi is a spherical harmonic of degree i . The decomposition (10) is known
as the Fourier-Laplace decomposition of p. The spaceHd

i is defined as the restriction
on Sd−1 of the set of homogeneous harmonic polynomials of degree i , i.e.,

Hd
i =

⎧⎨
⎩ f |Sd−1 : f ∈ R[x1, . . . , xd ], homogeneous of degree i and 	 f =

d∑
k=1

∂2 f

∂x2k
= 0

⎫⎬
⎭ .

Equivalently, the spacesHd
i are also the irreducible subspaces of L2(Sd−1) under the

action of SO(d). For example Hd
0 is the set of constant functions, Hd

1 is the set of
linear functions, and Hd

2 is the set of traceless quadratic forms. The spaces Hd
i are

mutually orthogonal with respect to the L2 inner product 〈 f , g〉 = ∫
f gdσ where dσ

is the rotation-invariant probability measure on the sphere. Note that if p is an even
polynomial (i.e., p(x) = p(−x)) then the only nonzero harmonic components of p
are the ones of even order.

Integral transformsConsider a general SO(n)-invariant kernel K (x, y) = φ(〈x, y〉)
where φ is some univariate polynomial of degree L . The kernel K acts on functions
f : Sd−1 → R as follows

(K f )(x) =
∫

Sd−1
K (x, y) f (y)dσ(y) ∀x ∈ Sd−1.

To understand the action of K on arbitrary polynomials f , it is very convenient to
decompose φ into the basis of Gegenbauer polynomials (also known as ultraspherical
polynomials) (Ck(t))k∈N which are orthogonal polynomials on [−1, 1] with respect

to the weight (1 − t2)
d−3
2 dt . Using appropriate normalization (which we adopt here)

these polynomials satisfy the following important property:

∫

Sd−1
Ck(〈x, y〉)pi (y)dσ(y) = δik pi (x) ∀x ∈ Sd−1

for any pi ∈ Hd
i . In other words, the kernel (x, y) �→ Ck(〈x, y〉) is a reproducing

kernel for Hd
k . Now going back to the kernel K (x, y) = φ(〈x, y〉), if we expand

φ = λ0C0 + λ1C1 + · · · + λLCL , then it follows that for any polynomial p with
Fourier expansion (10) we have
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(K p)(x) =
∫

y∈Sd−1
K (x, y)p(y)dσ(y) = λ0 p0(x) + λ1 p1(x) + · · · + λL pL(x)

∀x ∈ Sd−1. (11)

The equation above tells us that the harmonic decompositionH0⊕H1⊕ . . . diagonal-
izes K , with the Gegenbauer coefficients (λi )i=0,...,L being the eigenvalues. Equation
(11) is also known as the Funk-Hecke formula. The coefficients (λi )i=1,...,L in the
expansion of φ in the basis of Gegenbauer polynomials are given by the following
integral

λi = ωd−1

ωd

∫ 1

−1
φ(t)

Ci (t)

Ci (1)
(1 − t2)

d−3
2 dt (12)

where ωd is the surface area of Sd−1. If we let w(t) = (1 − t2)
d−3
2 , one can check

that
∫ 1
−1 Ci (t)2w(t)dt = ωd

ωd−1
Ci (1); in other words,

√
ωd−1
ωd

Ci (t)√
Ci (1)

has unit norm with

respect to w(t)dt .

Remark 2 Note that if the univariate polynomial φ(t) is nonnegative on [−1, 1], then
the coefficients λ0, . . . , λL in (12) satisfy λi ≤ λ0 for all i = 0, . . . , L since Ci (t) ≤
Ci (1) for all t ∈ [−1, 1]. We will use this simple property of the coefficients later in
the proof.

Atechnical lemmaThe following lemmawill be important for our proof later. It shows
that the sup-norm of the harmonic components of a polynomial f can be bounded by
a constant independent of the dimension d, times the sup-norm of f .

Proposition 5 For any integer n there exists a constant B2n such that the following
is true. For any homogeneous polynomial f with degree 2n and with decomposition
into spherical harmonics f = ∑n

k=0 f2k on Sd−1 with f j ∈ Hd
j it holds ‖ f2k‖∞ ≤

B2n‖ f ‖∞. Also B2 ≤ 2 and B4 ≤ 10.

Proof The proof is in “Appendix B”.

The remarkable property in the previous proposition is that the constant B2n is inde-
pendent of the dimension d.

Remark 3 When f is a homogeneous polynomial of degree 2n such that 0 ≤ m ≤
f ≤ M on Sd−1, Proposition 5 gives us that ‖ f2k‖∞ ≤ B2n M . However one can get
a better bound by applying Proposition 5 instead to f − ‖x‖2n

2 (m + M)/2; this gives
‖ f2k‖∞ ≤ B2n(M − m)/2 for all k = 1, . . . , n.

3 Proof of main approximation result

In this section we prove our main theorem, Theorem 2. We will actually prove a more
general result giving bounds on the performance of the sum-of-squares hierarchy for
all values of the level �. (In Theorem 2 stated in the introduction, only the regime
� ≥ �(d) was presented.)

For the statement of our theorem we need to introduce two quantities that play an
important role in our analysis.
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• The first quantity, which we denote ρ2n(d, �), is defined as (where n, d, � are
integers)

ρ2n(d, �) = min
q∈R[t],deg(q)=�

λ0=1

2n∑
k=1

|λ−1
2k − 1|. (13)

Here, the minimization is over polynomials q(t) of degree �, and λ2k is the 2k’th
coefficient of φ(t) = (q(t))2 in its Gegenbauer expansion, see Equation (12). In
words, ρ2n(d, �) quantifies how close we can get the Gegenbauer coefficients of
φ(t) = (q(t))2 to 1 (note however that the distance to 1 is measured by |λ−1

2k − 1|
and not linearly).

• The second quantity is the constant B2n introduced in Proposition 5. It is the
smallest constant such that for any homogeneous polynomial f of degree 2n, we
have ‖ f2k‖∞ ≤ B2n‖ f ‖∞ for all k = 0, . . . , n, where f2k are the 2k’th harmonic
components of f . In other words, B2n is an upper bound on the ∞ → ∞ operator
norm of the linear map that projects a homogeneous polynomial of degree 2n onto
its 2k’th harmonic component. Proposition 5 says that such an upper bound that
only depends on n (i.e., independent of d) does exist. One can get explicit upper
bounds on B2n for small values of n. For example one can show that B2 ≤ 2 and
B4 ≤ 10.

We are now ready to state our main theorem:

Theorem 6 Assume F(x1, . . . , xd) is a homogeneous matrix-valued polynomial of
degree 2n in d variables, such that F(x) is symmetric for all x, and 0 ≤ F ≤ I on
Sd−1. Then F + (B2n/2)ρ2n(d, �)I is �-sos on Sd−1.

Furthermore, the quantity ρ2n(d, �) satisfies the following: for any n ≤ d, there
are constants Cn,C′

n such that for � ≥ C′
nd, ρ2n(d, �) ≤ Cn(d/�)2.

Proof (Proof of first part of Theorem 6) We will start by proving the first part of the
theorem. For clarity of exposition,wewill assume that F is a scalar-valued polynomial,
and we explain later why the argument also works for matrices. Let thus F be a
homogeneous polynomial of degree 2n such that 0 ≤ F ≤ 1 on Sd−1. Let

F = F0 + F2 + · · · + F2n (F2k ∈ Hd
2k)

be the decomposition of F into spherical harmonics on Sd−1 (since F is even, only
harmonics of even order are nonzero). Given δ > 0 to be specified later, wewill exhibit
a sum-of-squares decomposition of F̃ = F + δ by writing F̃ = K K −1 F̃ where K is
an integral transform defined as

(K h)(x) :=
∫

Sd−1
φ(〈x, y〉)h(y)dσ(y), ∀x ∈ Sd−1 (14)

where φ(t) = (q(t))2 is a univariate polynomial of degree 2�. Recall that if h ≥ 0
then the function K h is �-sos on Sd−1 by construction, where the “infinite” sum of
squares in the integral can be turned into a finite sum of squares by standard convexity
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results.6 In order for F̃ = K K −1 F̃ to be a valid sum-of-squares decomposition of F̃
on the sphere, we need that K −1 F̃ ≥ 0. The polynomial q(t) will be chosen so that K
is close to a Dirac kernel; when combined with F̃ ≥ δ > 0 we will be able to conclude
that K −1 F̃ ≥ 0 from the fact that ‖F̃ − K −1(F̃)‖∞ ≤ δ.

Let (λi )0≤i≤2� be the coefficients in the Gegenbauer expansion of φ, i.e., φ =
λ0C0 + λ1C1 + · · · + λ2�C2�. By the Funk-Hecke formula we have K −1(F̃) =
λ−1
0 (F0 + δ) + λ−1

2 F2 + · · · + λ−1
2n F2n . Our analysis does not depend on the scaling

of K so we will assume λ0 = 1. Thus we get

‖K −1(F̃) − F̃‖∞ =
∥∥∥∥∥

n∑
k=1

(
1

λ2k
− 1

)
F2k

∥∥∥∥∥
∞

≤
n∑

k=1

∣∣∣∣
1

λ2k
− 1

∣∣∣∣ ‖F2k‖∞

≤ (B2n/2)
n∑

k=1

∣∣∣∣
1

λ2k
− 1

∣∣∣∣

where in the last inequality we used Proposition 5 (see also Remark 3) together with
the fact that 0 ≤ F ≤ 1. It thus follows that if

(B2n/2)
n∑

k=1

|λ−1
2k − 1| ≤ δ (15)

then K −1(F̃) ≥ 0 and the equation F̃ = K K −1(F̃) gives a valid sum-of-squares
decomposition of F̃ = F + δ on the sphere. We have thus proved the first part of
Theorem 1. ��

It now remains to prove the second part of the theorem, which leads us to the
analysis of the quantity ρ2n(d, �). Before doing so, we explain how the proof above
applies in the case where F is a matrix-valued polynomial.

Matrix-valued polynomials Assume F ∈ S[x] homogeneous of degree 2n. We can
decompose each entry of F into spherical harmonics to get F = F0 + F2 +· · ·+ F2n .
Define F̃ = F(x)+δ I for a δ > 0 to be specified later. The steps in the argument above
are identical, where ‖·‖∞ is defined as the maximum of ‖F(x)‖ over x ∈ Sd−1, where
‖F(x)‖ is the spectral norm of F(x), and the bound on ‖F2k‖∞ follows from Propo-
sition 17. If ‖K −1 F̃ − F̃‖∞ ≤ δ then K −1 F̃ ≥ 0 in the positive semidefinite sense.
Letting H = K −1 F̃ ≥ 0, we get F̃(x) = (K H)(x) = ∫

Sd−1 q(〈x, y〉)2H(y)dσ(y) =∫
Sd−1 Uy(x)Uy(x)Tdσ(y)whereUy(x) = q(〈x, y〉)H(y)1/2 is a polynomial of degree

� in x . This is what we wanted.
We now proceed to the analysis of ρ2n(d, �).

6 More precisely, note that one can find a finite number of points y1, . . . , yN ∈ Sd−1 and coeffi-
cients α1, . . . , αN ≥ 0 such that the following is true: for any polynomial P of degree 2� we have∫

Sd−1 P(y)dσ(y) = ∑N
i=1 αi P(yi ). (This essentially follows by Carathéodory’s theorem, see e.g., [2,

Chapter 1].) Then it follows that K h(x) = ∑N
i=1 αi φ(〈x, yi 〉)h(yi ) which implies that K h is a finite sum

of squares since φ(〈x, yi 〉) = q(〈x, yi 〉)2.
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Reformulating ρ2n(d, �) using generalized Toeplitz matrices It will be convenient
to reformulate the optimization problem (13) in terms of certain suitable (generalized)
Toeplitz matrices. We parametrize the degree-� polynomial q(t) as

q(t) =
�∑

i=0

ei
Ci (t)√
Ci (1)

where e0, . . . , e� ∈ R. The presence of the term
√

Ci (1) is for convenience later. The
Gegenbauer coefficients of φ(t) = (q(t))2 are then equal to (cf. Equation (12))

λk = ωd−1

ωd

∫ 1

−1
φ(t)

Ck(t)

Ck(1)
(1 − t2)

d−3
2 dt

=
�∑

i, j=0

ei e j

(
ωd−1

ωd

∫ 1

−1

Ci (t)√
Ci (1)

C j (t)√
C j (1)

Ck(t)

Ck(1)
(1 − t2)

d−3
2 dt

)

= eTT [Ck/Ck(1)] e,

where for h : [−1, 1] → R, T [h] is the (� + 1) × (� + 1) symmetric matrix

T [h]i, j = ωd−1

ωd

∫ 1

−1

Ci (t)√
Ci (1)

C j (t)√
C j (1)

h(t)(1 − t2)
d−3
2 dt .

It can be easily checked that T [1] = I is the identity matrix (this follows from the fact

that the polynomials
√

ωd−1
ωd

Ci√
Ci (1)

have unit norm with respect to the weight function

(1 − t2)(d−3)/2), and so λ0 = eTe = ∑
k e2k . It thus follows that ρ2n(d, �) can be

formulated as:

ρ2n(d, �) = min
e∈R�+1∑

k e2k =1

n∑
k=1

∣∣∣∣∣
(

eTT
[

C2k

C2k(1)

]
e

)−1

− 1

∣∣∣∣∣ . (16)

Case 2n = 2 Let us first analyze the case 2n = 2 which corresponds to quadratic
polynomials. In this case the sum in (16) has simply one term. It is then not difficult
to see that ρ2(d, �) is given by

ρ2(d, �) =
∥∥∥∥T

[
C2

C2(1)

]∥∥∥∥
−1

− 1 (17)

where ‖ · ‖ denotes the spectral norm. Thus we see that ρ2(d, �) can be computed
efficiently by simply evaluating the spectral norm of T [C2/C2(1)]. The latter matrix
can be formed explicitly using known formulas for the integrals of Gegenbauer poly-
nomials (see e.g., [23]). Note that T [C2/C2(1)] is a banded matrix with bandwidth
3.
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Case 2n = 4 We now turn to quartic polynomials. In this case ρ4(d, �) takes the form

ρ4(d, �) = min
e∈R�+1∑

k e2k =1

∣∣∣∣∣
(

eTT
[

C2

C2(1)

]
e

)−1

− 1

∣∣∣∣∣ +
∣∣∣∣∣
(

eTT
[

C4

C4(1)

]
e

)−1

− 1

∣∣∣∣∣ .

(18)
LetR be the joint numerical range (also known as the field of values) of the matrices

T
[

C2
C2(1)

]
and T

[
C4

C4(1)

]
, i.e.,

R =
{(

eTT
[

C2

C2(1)

]
e , eTT

[
C4

C4(1)

]
e

)
: e ∈ R

�+1,

�∑
k=0

e2k = 1

}
.

From results about joint numerical ranges, it is known that R ⊂ R
2 is convex, see

[10] and also [33, Theorem 5.6]. It is not difficult to see then thatR has a semidefinite
representation, and that ρ4(d, �) can be computed using semidefinite programming.

General degree 2n We now analyze the case of general degree 2n. To do this we
formulate a proxy for the optimization problem that defines ρ2n(d, �) that is easier
to analyze. Instead of minimizing

∑2n
k=1 |λ−1

2k − 1| we will seek instead to minimize∑2n
k=1(1 − λ2k). Since λ2k ≤ λ0 = 1, both problems seek to bring the λ2k close to 1,

but the latter problem is easier to analyze because it is linear in the λ2k . Define

ρ̃2n(d, �) = min
e∈R�+1∑

i e2i =1

n∑
k=1

(
1 − eTT [C2k/C2k(1)]e

)
. (19)

Since T is linear, i.e., T [h1 + h2] = T [h1] + T [h2] we get that ρ̃2n(d, �) = n −
nλmax(T [h]) where h = 1

n

∑n
k=1 C2k/C2k(1). It thus remains to analyze λmax(T [h]).

This is what we do next.

Proposition 7 Let h = 1
n

∑n
k=1

C2k
C2k (1)

. Then λmax(T [h]) ≥ 1 − 7n
12

d2

�2
.

Proof We use the following standard result on orthogonal polynomials which gives
the eigenvalues of T [ f ] for any linear polynomial f . (The result below is stated in
full generality for clarity, in our case the (pk) is the family of normalized Gegenbauer
polynomials.)

Proposition 8 (Standard result on orthogonal polynomials) Let (pk)k∈N be a family
of orthogonal polynomials with respect to a weight function w(x) > 0. We assume
the (pk) are normalized, i.e.,

∫
p2kw = 1. Given a linear polynomial f , define the

(� + 1) × (� + 1) matrix

T [ f ]i j =
∫ b

a
pi (t)p j (t) f (t)w(t)dt ∀0 ≤ i, j ≤ �. (20)

Then the eigenvalues of T [ f ] are precisely the f (x�+1,i ) where the (x�+1,i )i=1,...,�+1
are the roots of p�+1.
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Proof This follows from standard results on orthogonal polynomials. When f = 1
then T [ f ] is the identity matrix. When f (t) = t , the matrix T [ f ] is the tridiagonal
matrix that encodes the three-term recurrence formula for the (pk). It is well-known
that the eigenvalues of this tridiagonal matrix are the roots of p�+1. See e.g., [30,
Lemma 3.9]. ��

Our function h(t) = 1
n

∑n
k=1

C2k (t)
C2k (1)

is not linear. However one can verify (see
Proposition 18) that it is lower bounded by its linear approximation at t = 1, i.e., we
have

h(t) ≥ h′(1)(t − 1) + h(1).

It is easy to check that if h1, h2 are two functions such that h1(t) ≥ h2(t) for all
t ∈ [−1, 1], then T [h1] ≥ T [h2] (positive semidefinite order) and thus the largest
eigenvalue of T [h1] is at least the largest eigenvalue of T [h2]. Let h̄(t) = h′(1)(t −
1) + h(1). The largest eigenvalue of T [h̄] is equal to h̄(x�+1,�+1) where x�+1,�+1 is
the largest root of C�+1. It is known [12, Section 2.3 (last displayed equation)] that
x�+1,�+1 satisfies

x�+1,�+1 ≥ 1 − 1

4

d2

�2
.

It thus follows, using the fact that h(1) = 1 and h′(1) > 0, that

λmax(T [h]) ≥ λmax(T [h̄]) = h̄(x�+1,�+1) ≥ −h′(1) d2

4�2
+ 1 ≥ 1 − 7n

12
· d2

�2
,

where in the last inequality we used the exact value of h′(1) given by h′(1) = (n +
1)(3d + 4n − 4)/(3(d − 1)) and the fact that n ≤ d. ��

Our proof of Theorem 6 (i) is now almost complete. We just need to relate ρ̃ back
to ρ. We use the following easy proposition.

Proposition 9 If ρ̃ < 1 then ρ ≤ ρ̃/(1 − ρ̃).

Proof Let (λ2k) be the optimal choice in the solution to ρ̃ (Eq. (19)). Then λ2k =
1−(1−λ2k) ≥ 1− ρ̃ > 0. Thus

∑n
k=1 |λ−1

2k −1| = ∑n
k=1(1−λ2k)/λ2k ≤ ρ̃/(1− ρ̃).

Proposition 7 tells us that ρ̃2n(d, �) ≤ (7n2/12)(d/�)2. For � ≥ 2nd, we will have
ρ̃2n(d, �) ≤ 1/2 and so ρ2n(d, �) ≤ 2ρ̃2n(d, �) ≤ 2n2(d/�)2. This completes the
proof of Theorem 6.

Tightness Our analysis of ρ2n(d, �) in the regime � ≥ �(d) can be shown to be tight.
We show this in the case 2n = 2 below.

Theorem 10 (Tightness of convergence rate) There is an absolute constant C > 0 such
that for � ≥ �(d), ρ2(d, �) ≥ C(d/�)2.
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Proof Given the expression for ρ2(d, �) in (17), we need to produce an upper bound
on ‖T [C2/C2(1)]‖. Note that C2(t)/C2(1) = d

d−1 t2 − 1
d−1 . It thus follows that

T [C2/C2(1)] = d
d−1T [t2] − I

d−1 . We now use the following property of general-
ized Toeplitz matrices constructed from sequences of orthogonal polynomials: If T∞
denotes the semi-infinite version of (20), then T∞[ f ]T∞[g] = T∞[ f g] for any poly-
nomials f , g (this property follows immediately from the fact that the sequence of
orthogonal polynomials (pk)

∞
k=0 is an orthonormal basis of the space of polynomials,

see e.g., [3, Lemma 2.4]). In particular we have T∞[t2] = T∞[t]2. Now noting that
T∞[t] is tridiagonal, we see that T [t2] is a submatrix of (T�+2[t])2, where the subscript
indicates the truncation level (so T�+2[t] is (� + 3) × (� + 3)). Thus it follows that
T [C2/C2(1)] is a submatrix of d

d−1 (T�+2[t])2 − 1
d−1 I . Since (T�+2[t])2 is positive

semidefinite it then follows that

‖T [C2/C2(1)]‖ ≤ d

d − 1
λmax(T�+2[t])2 − 1

d − 1

Recall that λmax(T�+2[t]) is the largest root of C�+3. From [1, Corollary 2.3] we get,
for � ≥ �(d), λmax(T�+2[t])2 ≤ 1 − C(d/�)2 for some constant C. Thus we get
ρ2(d, �) = ‖T [C2/C2(1)]‖−1 − 1 ≥ C(d/�)2 as desired. ��

4 Relation to quantum state extendibility

Quantum entanglement is one of the key ingredients in quantum information process-
ing. Certifying whether a given state is entangled or not is a hard computational task
[20] and considerable effort has been dedicated to this problem, e.g., [21,26]. Of par-
ticular interest is the hierarchy of tests known as the DPS hierarchy [17,18], applying
semidefinite programs to verify quantum entanglement.

In this section, we explore the duality relation between the DPS hierarchy and sums
of squares, and explain how our results from the previous section can be used to bound
the convergence rate of the DPS hierarchy. We show that the result of Navascues et
al. [28] can be seen as the special case of our Theorem 6 when the polynomial F is
quadratic.

4.1 Quantum extendible states

A quantum state is usually represented by a positive semidefinite operator normalized
with unit trace. In this work, we mainly work with unnormalized quantum states and
consider its convex cone. Given Hilbert spacesHA � C

dA andHB � C
dB , denote the

cone of bipartite quantum states as S(HA ⊗HB), i.e., the cone of positive semidefinite
matrices of size dAdB . A bipartite quantum state ρAB ∈ S(HA ⊗HB) is separable if
and only if it can be written as a conic combination of tensor product states, i.e.,

ρAB =
∑

i

pi (xi x†i ) ⊗ (yi y†i ) with pi ≥ 0, xi ∈ HA, yi ∈ HB . (21)
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The convex cone of quantum separable states is denoted as SEP(HA ⊗ HB) and it is
strictly included in S(HA ⊗ HB).

Positive partial transpose Awell-known necessary condition for a state ρAB to be in
SEP is that it has a positive partial transpose (PPT). If we let T denote the transpose
operation on Hermitian matrices of size dB × dB , then for ρAB of the form (21) we
have

(I ⊗ T)(ρAB) =
∑

i

pi (xi x†i ) ⊗ (yi y†i )T =
∑

i

pi (xi x†i ) ⊗ (ȳi ȳi
†) ≥ 0.

If we let PPT (HA ⊗ HB) be the set of states with a positive partial transpose then
we have the inclusions

SEP(HA ⊗ HB) ⊂ PPT (HA ⊗ HB) ⊂ S(HA ⊗ HB).

A well-known result due to Woronowicz [35] asserts we have equality SEP(HA ⊗
HB) = PPT (HA⊗HB) if and only if dimensions ofHA andHB satisfy dA+dB ≤ 5.

ExtendibilityWhen the inclusion SEP �= PPT is strict, one can find more accurate
relaxations of SEP based on the notion of state extendibility. For simplicity of the
following discussion, we introduce the notation [s1 : s2] := {s1, s1 + 1, · · · , s2}
and [s] := [1 : s] for short. Given a separable state expressed as Eq. (21) with7

‖xi‖ = ‖yi‖ = 1 we can consider its extension (on the B subsystem) as:

ρAB[�] =
∑

i

pi xi x†i ⊗
(

yi y†i

)⊗�

. (22)

The new system ρAB[�] lies in S(HA ⊗ HB1 ⊗ · · · ⊗ HB�
) where each HBi � C

dB ;
i.e., it is a Hermitian matrix of size dA(dB)� × dA(dB)�. The system ρAB[�] satisfies a
number of properties, as follows:

(a) Positivity: ρAB[�] is positive semidefinite
(b) Reduction under partial traces: If we trace out8 the systems B2, . . . , B� from

ρAB[�] we get back the original system ρAB . Indeed we have:

TrB[2:�] ρAB[�] =
∑

i

pi xi x†i ⊗yi y†i ·Tr
[
(yi y†i )⊗�−1

]
(∗)=

∑
i

pi xi x†i ⊗yi y†i = ρAB .

(23)
In (∗) we used the fact that ‖yi‖ = 1.

(c) Symmetry: define the symmetric subspace ofH⊗� as

Sym(H⊗�) =
{

Y ∈ H⊗� : P · Y = Y ∀P ∈ S�

}

7 We can always impose such condition without losing generality by changing the coefficients pi accord-
ingly.
8 The partial trace operator is the unique linear map TrB : Herm(HA ⊗ HB ) → Herm(HA) such that
TrB (ρA ⊗ σB ) = Tr(σB )ρA for all ρA ∈ Herm(HA) and σB ∈ Herm(HB ).
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where S� is the symmetric group on � elements which naturally acts on H⊗� by
permutation of the components. The dimension of Sym(H⊗�) is equal to

(
�+d−1

�

)
where d = dimH. If we let � = �† be the projector on the symmetric subspace

of H⊗�
B then one can easily verify that �

(
yy†

)⊗�
� = (

yy†
)⊗�

. It thus follows
that the extension ρAB[�] of Eq. (22) satisfies

(I ⊗ �)ρAB[�](I ⊗ �) = ρAB[�] . (24)

(d) Positive Partial Transpose: If we let T be the transpose map on Hermitian matrices
of size dB × dB then ρAB[�] satisfies

(IA ⊗ TB1 ⊗ · · · TBs︸ ︷︷ ︸
s

⊗IBi+1 ⊗ · · · ⊗ IB�
)(ρAB[�]) ≥ 0 (25)

for any s = 1, . . . , �. For convenience later the state on the left of (25) will be

denoted ρ
TB[s]
AB[�] .

The DPS hierarchy Define now the set DPS�(HA ⊗ HB) as

DPS�(HA ⊗ HB) =
{
ω ∈ S(HA ⊗ HB) s.t. ∃ ωAB[�] ∈ S(HA ⊗ HB1 ⊗ · · ·HB�

)

s.t. conditions (23), (24), (25) are satisfied
}
.

By the previous reasoning, each set DPS�(HA ⊗ HB) is a convex cone containing
SEP(HA ⊗ HB), i.e., we have

SEP ⊆ · · · ⊆ DPS� ⊆ · · · ⊆ DPS2 ⊆ DPS1 ⊆ S.

Note thatDPS1 = PPT . Also it is known that the hierarchy is complete in the sense
that if ρ /∈ SEP then there exists a � ∈ N such that ρ /∈ DPS� [17,18].

Remark 4 (Extendibility without PPT conditions) One can also consider the weaker
hierarchy where the Positive Partial Transpose constraints are dropped:

EXT�(HA ⊗ HB) =
{
ω ∈ S(HA ⊗ HB) s.t. ∃ ωAB[�] ∈ S(HA ⊗ HB1 ⊗ · · ·HB�

)

s.t. conditions (23) and (24) are satisfied
}
.

(26)
It turns out that this weaker hierarchy EXT� is already complete in the sense stated
above. This is usually proven using de Finetti theorems [11,24].

4.2 Hermitian polynomials and sums of squares

In this section we leave the quantum world and introduce some terminology pertain-
ing to Hermitian polynomials. A Hermitian polynomial p(z, z̄) is a polynomial with
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complex coefficients in the variables z = (z1, . . . , zn) and z̄ = (z̄1, . . . , z̄n) such that
p(z, z̄) ∈ R for all z ∈ C

n . If u ∈ N
n we define the monomial zu := zu1

1 · · · zun
n . The

general form of a Hermitian polynomial is

p(z, z̄) =
∑

(u,v)∈A
puvzu z̄v (puv ∈ C and A ⊂ N

n × N
n)

where the coefficients puv satisfy puv = pvu . We say that p(z) is nonnegative if
p(z) ≥ 0 for all z ∈ C

n .

Definition 11 (Hermitian polynomials and sums of squares) Let p(z, z̄) be a nonneg-
ative Hermitian polynomial. We say that p(z, z̄) is a real sum-of-squares (rsos) if we
can write p(z, z̄) = ∑

i gi (z, z̄)2 where gi (z, z̄) are Hermitian polynomials. We say
that p(z, z̄) is a complex sum-of-squares (csos) if we can write p(z, z̄) = ∑

i |qi (z)|2
where qi (z) are (holomorphic) polynomial maps in z (i.e., qi are functions of z alone
and not z̄).

Clearly if p(z, z̄) is csos then it is also rsos since |q(z)|2 = Re[q(z)]2 + Im[q(z)]2
and Re[q(z)] and Im[q(z)] are both Hermitian polynomials. The converse however is
not true. For example p(z, z̄) = (z + z̄)2 is evidently rsos, however it is not csos [16,
Example (a)]. Indeed the zero-set of a csos polynomial must be a complex variety, and
the zero set of p(z, z̄) here is the imaginary axis. Note that a Hermitian polynomial
p(z, z̄) is rsos iff the real polynomial P(a, b) = p(a + ib, a − ib) is a sum-of-squares
(in the usual sense for real polynomials).

4.3 The duality relation

An element M ∈ Herm(dAdB) is in the dual of SEP(HA ⊗ HB) if, and only if the
Hermitian polynomial pM defined by

pM (x, x̄, y, ȳ) :=
∑
i jkl

Mi j,kl xi x̄k y j ȳl , ∀x ∈ C
dA , y ∈ C

dB (27)

is nonnegative for all (x, y) ∈ C
dA ×C

dB . We prove our first main result on the duality
between the DPS hierarchy and sums of squares.

Theorem 12 (Duality between extendibility hierarchy and sums of squares) For M ∈
Herm(dAdB), we let pM be the associated Hermitian polynomial in (27). Then we
have:

(i) SEP∗ = {M ∈ Herm(dAdB) : pM is nonnegative}.
(ii) DPS∗

� = {
M ∈ Herm(dAdB) : ‖y‖2(�−1) pM is rsos

}
.

(iii) EXT ∗
� = {

M ∈ Herm(dAdB) : ‖y‖2(�−1) pM is csos
}
.

Proof Point (i) is immediate and follows from the definition of duality. Points (ii) and
(iii) are proved in “Appendix C”. ��
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Fig. 1 A summary of the duality relations between the DPS hierarchy and sums of squares. The notation
�-SOS is a shorthand for ‖y‖2(�−1) pM is a real sum-of-squares

The above diagram summarizes the situation (Fig. 1).

In terms of the support functions The support function of the set DPS� is defined
as

hDPS�
(M) = max

ρ∈DPS�

Tr[Mρ]

where M ∈ Herm(dAdB). The duality relation of Theorem 12 allows us to express
hDPS�

(M) in the following way:

hDPS�
(M) = min γ s.t. ‖y‖2(�−1)(γ ‖x‖2‖y‖2 − pM ) is rsos.

A somewhat more convenient formulation using matrix polynomials is as follows. For
x ∈ C

d , we let x̃ ∈ R
2d be the vector of real and imaginary components of x . Given

M ∈ Herm(dAdB), let also P̃M (ỹ) ∈ S[ỹ] such that, for any (x, y) ∈ C
dA × C

dB we
have

(x ⊗ y)†M(x ⊗ y) = x̃ T P̃M (ỹ)x̃ .

Then one can show the following equivalent formulation of hDPS�
(M):

hDPS�
(M) = min γ s.t. γ I − P̃M (ỹ) is � − sos on S2dB−1. (28)

This can be proved using the following lemma, which is a straightforward generaliza-
tion of [15, Proposition 2] to the matrix case.

Lemma 13 Let G(y1, . . . , yd) be a homogeneous matrix-valued polynomial of even
degree 2n, such that G(y) is symmetric for all y. Then G is �-sos on Sd−1, if and only
if, ‖y‖2(�−n)G(y) is a sum of squares.

4.4 Convergence rate of the DPS hierarchy

In [28, Theorem 3], Navascues, Owari and Plenio’s proved the following result on the
convergence of the sequence of relaxations (DPS�) to Sep.
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Theorem 14 (NOP09) For any quantum state ρAB ∈ DPS� with reduced state ρA :=
TrB[ρAB], we have

(1 − t)ρAB + tρA ⊗ IB

dB
∈ Sep(d) (29)

where t = O

(
d2

B
�2

)
, dB = dim(HB), and IB is the identity matrix of dimension dB.

Note that the state ρA ⊗ IB/dB is clearly separable. In words, the result above says
that ifρAB inDPS�, then bymovingρAB in the directionρA⊗ IB/dB by t = O(d2

B/�2)

results in a separable state. In terms of the Best Separable State problem, the result
of [28] has the following immediate implication. We show below how we can recover
this result using our Theorem 6 from the previous section.

Theorem 15 Let M ∈ Herm(dAdB) and assume that (x ⊗ y)†M(x ⊗ y) ≥ 0 for all
(x, y) ∈ C

dA × C
dB . Then

hSep(M) ≤ hDPS�
(M) ≤ (1 + Cd2

B/�2)hSep(M)

for any � ≥ C′dB, where C,C′ > 0 is some absolute constant.

Proof We know from (28) that

hDPS�
(M) = min γ s.t. γ I − P̃M (ỹ) is � − sos on ỹ ∈ S2dB−1.

By assumption we have 0 ≤ P̃M (ỹ) ≤ hSep(M)I for all ỹ ∈ S2dB−1. Our Theorem

6 from previous section tells us that for � ≥ CdB , C′d2
B/�2 + hSep(M)I−P̃M

hSep(M)
is �-sos

on S2dB−1. This implies that hDPS�
(M) ≤ hSep(M)(1 + C′d2

B/�2) which is what we
wanted. ��

5 Conclusions

Wehave shown a quadratic improvement on the convergence rate of the SOS hierarchy
on the sphere compared to the previous analysis of Reznick [34] and Doherty and
Wehner [19]. The proof technique also works for matrix-valued polynomials on the
sphere and surprisingly, the bounds we get are independent of the dimension of the
matrix polynomial. In the special case of quadratic matrix polynomials, we recover
the same rate obtained by Navascues, Owari and Plenio [28] using arguments from
quantum information theory.
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A The sum-of-squares hierarchy on the sphere

In this appendix we clarify the sum-of-squares hierarchy that we study, defined in
Eq. (2). Let p(x) = p(x1, . . . , xd) be a homogeneous polynomial of even degree 2n.
The �’th level of the hierarchy for the maximization of p on the sphere Sn−1 is defined
by:

p� = min
{
γ ∈ R s.t. γ − p is a sum of squares of degree � on Sd−1

}
. (30)

The constraint in the equation above means that there exist a sum-of-squares polyno-
mial s(x) such that γ − p = s(x) for all x ∈ Sn−1 (i.e., γ − p(x) is equal to s(x)

in the quotient ring R[x]/I where I is the ideal generated by
∑d

i=1 x2i − 1). Since
two polynomials are equal on Sd−1 if, and only if, their difference is a (polynomial)
multiple of

∑d
i=1 x2i − 1, our hierarchy can be equivalently written as:

p� = min γ

s.t. γ − p(x) = s(x) +
(
1 − ∑d

i=1 x2i

)
h(x)

s ∈ R[x] is a sum of squares, deg s ≤ 2�
h ∈ R[x], deg h ≤ 2� − 2

(31)

The equality γ − p(x) = s(x)+ (1−∑d
i=1 x2i )h(x) in the constraint is an equality of

polynomials in the polynomial ring R[x]. Formulation (31) coincides precisely with
the usual way the sum-of-squares hierarchy is formulated on general semialgebraic
sets (the hierarchies arising from Putinar’s and Schmüdgen-type Positivstellensatz
coincide here because the semialgebraic set Sd−1 is defined using a single polynomial
equation). Also note that since deg p = 2n the first meaningful level of the hierarchy
is � = n; otherwise (31) is not feasible. We finally note that another equivalent way
of writing p� is the following:

p� = min
{
γ ∈ R s.t. ‖x‖2(�−n)

2 (γ ‖x‖2n
2 − p(x)) is a sum of squares in R[x]

}
.

This is proved in [15, Theorem 3].

B Some technical results on polynomials on the sphere

We use the following lemma which appears in [34]. Recall that the Laplacian of a

twice differentiable function f : Rd → R is 	 f = ∑n
i=1

∂2 f
∂x2i

.
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Lemma 16 [34] If f is homogeneous polynomial of degree n on R
d and ‖ f ‖∞ ≤ M,

then ‖	k f ‖∞ ≤ dk(n)2k M, where 	 is the Laplace operator and (n)m := n(n −
1) · · · (n − (m − 1)) is the falling factorial.

Proposition 5 (restatement) For any homogeneous polynomial f with degree 2n,
denote its spherical harmonics decomposition as f = ∑n

k=0 f2k on Sd−1 with
f j ∈ Hd

j . Then for any k, it holds ‖ f2k‖∞ ≤ B2n‖ f ‖∞, where B2n is a constant
that depends only on n (and independent of d). Also B2 ≤ 2 and B4 ≤ 10.

Proof For simplicity of exposition we prove first the cases 2n = 2 and 2n = 4, before
considering the general case. The result is immediate when 2n = 2 with B2 = 2
since the harmonic decomposition of a quadratic polynomial is f = f0 + f2 with
f0 = ∫

Sd−1 f dσ . Then | f0| ≤ ‖ f ‖∞ and ‖ f2‖∞ = ‖ f − f0‖∞ ≤ 2‖ f ‖∞.
The first nontrivial case is 2n = 4. The decomposition of a quartic polynomial

on the sphere is f = f0 + f2 + f4. Clearly ‖ f0‖∞ ≤ ‖ f ‖∞. We thus focus on
bounding ‖ f2‖∞. Since f is homogeneous note that f (x) can be written as f (x) =
‖x‖4 f0 +‖x‖2 f2(x)+ f4(x) for all x ∈ R

d . Using well-known identities concerning
Laplacian one can check that

	( f (x)) = 	(‖x‖4 f0 + ‖x‖2 f2(x) + f4(x))

= 	(‖x‖4) f0 + 	(‖x‖2 f2(x))

= 4(d + 2)‖x‖2 f0 + 	(‖x‖2) f2(x) + 2〈∇‖x‖2,∇ f2(x)〉 + 	( f2(x))

= 4(d + 2)‖x‖2 f0 + 2(d + 2) f2(x).

In the second and the last lines we used that 	 f2k(x) = 0 since the f2k are harmonic.
In the third line we used 	(‖x‖2k) = 2k(2k + d − 2)‖x‖2k−2 and 	(h ◦ g) =
(	h)g+2〈∇h,∇g〉+h(	g). In the last linewe used the identity 〈x,∇g(x)〉 = 2kg(x)

for any homogeneous polynomial g of degree 2k and x ∈ Sd−1. It thus follows that
f2(x) = 1

2d+4	 f (x)− 2‖x‖2 f0. By Lemma 16 we know that ‖	 f ‖∞ ≤ 12d‖ f ‖∞.

It thus follows that ‖ f2‖∞ ≤ 12d
2d+4‖ f ‖∞ + 2‖ f ‖∞ ≤ 8‖ f ‖∞. Finally ‖ f4‖∞ =

‖ f − ( f0 + f2)‖∞ ≤ 10‖ f ‖∞ by the triangle inequality. Thus B4 ≤ 10.
We now proceed to prove the general case. Let f (x) be a homogeneous polynomial

of degree 2n and let f = f0+ f2+· · ·+ f2n be its spherical harmonic decomposition.
Note that f (x) has the following expression f (x) = ∑n

k=0 ‖x‖2(n−k) f2k(x) for all
x ∈ R

d . Since f2k is a spherical harmonic, direct calculations give us

	m(‖x‖2(n−k) f2k(x)
) =

{
rn,d,m,k‖x‖2(n−k−m) f2k(x) if m ≤ n − k

0 otherwise,

where,

rn,d,m,k = 4m(n − k)m (n + k + d/2 − 1)m = O(dm).
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Thus by linearity, we have

	m f (x) =
n−m∑
k=0

	m(‖x‖2(n−k) f2k(x)
) =

n−m∑
k=0

rn,d,m,k‖x‖2(n−k−m) f2k(x) ∀x ∈ R
d .

When restricted on the unit sphere, we have the inequalities

‖ f2(n−m)‖∞ ≤ ‖	m f ‖∞ + ∑n−m−1
k=0 rn,d,m,k‖ f2k‖∞

rn,d,m,n−m

≤ dm(2n)2m‖ f ‖∞ + ∑n−m−1
k=0 rn,d,m,k‖ f2k‖∞

rn,d,m,n−m
,

where the second inequality follows from Lemma 16. For any 0 ≤ k ≤ n − m − 1,
we have

rn,d,m,k

rn,d,m,n−m
= 4m(n − k)m (n + k + d/2 − 1)m

4m(m)m (n + (n − m) + d/2 − 1)m
≤ (n − k)m

(m)m
≤ n! ≤ (2n)!.

Moreover, for any m ≤ n we also have

dm(2n)2m

rn,d,m,n−m
= (d/2)m(2n)2m

2m(m)m (n + (n − m) + d/2 − 1)m
≤ (2n)2m

2m(m)m
≤ (2n)!,

where the first inequality holds since each term in the falling factorial (n + (n − m)

+d/2 − 1)m is no smaller than d/2. Thus we have

‖ f2(n−m)‖∞ ≤ (2n)!
[
‖ f ‖∞ +

n−m−1∑
k=0

‖ f2k‖∞

]
.

By induction, we have the estimation

‖ f2k‖∞ ≤ ‖ f ‖∞(2n)! [1 + (2n)!]k ≤ ‖ f ‖∞(2n)! [1 + (2n)!]n , ∀k.

Thus we have B2n ≤ (2n)! [1 + (2n)!]n independent of d. ��
We can extend Proposition 5 to matrix-valued polynomials on the sphere.

Proposition 17 Let F(x) ∈ Sk[x] be a k × k symmetric matrix-valued polynomial of
degree 2n. Let ‖F‖∞ = maxx∈Sd−1 ‖F(x)‖ where ‖ · ‖ denotes the spectral norm.
If F = F0 + F2 + · · · + F2n is the harmonic decomposition of F, then ‖F2k‖∞ ≤
B2n‖F‖∞ where B2n is the constant from Proposition 5.

Proof We can assume without loss of generality that ‖F‖ = 1. Note that
‖F‖ = maxx∈Sd−1 maxy∈Sk−1 |yTF(x)y|. For any fixed y ∈ Sk−1 define the
real-valued polynomial fy(x) = yTF(x)y. By assumption on F we know that
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‖ fy‖∞ = maxx∈Sd−1 |yTF(x)y| ≤ 1. The spherical harmonic decomposition of
fy is given by fy(x) = ∑2n

k=0 yTF2k(x)y since, for fixed y, yTF2k(x)y is a lin-
ear combination of the entries of F2k which are all in Hd

2k . It thus follows from
Proposition 5 that ‖yTF2k(·)y‖∞ ≤ B2n . This is true for all y ∈ Sk−1 thus we get
maxy∈Sk−1 maxx∈Sd−1 |yTF2k(x)y| ≤ B2n , i.e., ‖F2k‖ ≤ B2n as desired. ��

We will also need the following technical result about Gegenbauer polynomials.

Proposition 18 Let Ci (t) be the Gegenbauer polynomial of degree i . Then for the
curve of Ci lies above its tangent at t = 1, i.e., Ci (t) ≥ C ′

i (1)(t − 1) + Ci (1) for all
t ∈ [−1, 1].
Proof Let l(t) = C ′

i (1)(t − 1) + Ci (1). Let α = max
{

x ∈ (0, 1) : C ′
i (x) = 0

}
. It is

known thatCi (α) < 0 and that |Ci (t)| ≤ |Ci (α)| for all t ∈ [0, α] (see [29, 18.14.16]).
By standard arguments on orthogonal polynomials, we know that C ′′

i ≥ 0 on [α,∞).
Thus the inequality Ci (t) ≥ l(t) is true on t ∈ [α, 1]. For t ∈ [0, α] it also has to be
true since

Ci (t) ≥ −|Ci (α)| = Ci (α) ≥ l(α) ≥ l(t).

Using the fact that C ′
i (1)/Ci (1) = i(i + d − 2)/(d − 1), one can easily check that

l(0) ≤ −Ci (1), and so Ci (t) ≥ −Ci (1) ≥ l(t) for all t ∈ [−1, 0].

C Duality relations DPS and SOS (Theorem 12)

In this section we prove that for any integer � ≥ 1, we have the duality relation

DPS∗
� =

{
M : ‖y‖2(�−1) pM is rsos

}
. (32)

The key is the following lemma which gives a semidefinite programming charac-
terization of the right-hand side of (32).

Lemma 19 For any MAB ∈ Herm(HA ⊗ HB) and integer � ≥ 1, then ‖y‖2(�−1) pM

is a rsos if and only if there exist positive semidefinite operators Ws,AB[�] ≥ 0, s =
0, 1, · · · , � such that

‖y‖2(�−1) pM =
�∑

s=0

(
x ⊗ ȳ⊗s ⊗ y⊗�−s

)†
Ws,AB[�]

(
x ⊗ ȳ⊗s ⊗ y⊗�−s

)
(33)

=
�∑

s=0

(
x ⊗ y⊗�

)†
W

TB[s]
s,AB[�]

(
x ⊗ y⊗�

)
∀x ∈ HA, y ∈ HB . (34)

The proof of the previous lemma is based on analyzing the biquadratic structure
of pM to see which monomials can appear in a sum-of-squares decomposition of
‖y‖2(�−1) pM . The proof is deferred to the end of this section.
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Using Lemma 19, the proof of (32) follows from standard duality arguments which
we now explain.

First, we can dualize the semidefinite programming definition of DPS� to get

DPS∗
� =

{
MAB1 : MAB1 ⊗ IB[2:�] = (

YAB[�] − ��YAB[�]��

) +
�∑

s=0

W
TB[s]
s,AB[�]

where YAB[�] ∈ Herm, Ws,AB[�] ≥ 0,∀s ∈ [0 : �]
}
.

The variable Ws,AB[�] for s = 0 (resp. s = 1, . . . , �) is the dual variable for the
positivity constraint on ρAB[�] (resp. PPT constraint (25)).

Proof of Theorem 12 The proof consists of two directions. Assume M ∈ DPS∗
� . Then

there exists aHermitian operatorYAB[�] , and positive semidefinite operatorsWs,AB[�] ≥
0, s = 0, 1, · · · , � such that

MAB1 ⊗ IB[2:�] = [
YAB[�] − (I ⊗ ��)YAB[�](I ⊗ ��)

] +
�∑

s=0

W
TB[s]
s,AB[�] . (35)

Recalling that�� is the projector onto the symmetric subspace, we have�y⊗� = y⊗�

for any vector y. Thus

(
x ⊗ y⊗�

)† (
YAB[�] − (I ⊗ ��)YAB[�](I ⊗ ��)

) (
x ⊗ y⊗�

)
= 0,

∀ x ∈ HA, y ∈ HB .

Evaluating Eq. (35) on both sides at the state x ⊗ y⊗�, we have

‖y‖2(�−1) pM =
(

x ⊗ y⊗�
)†

MAB1 ⊗ IB[2:�]
(

x ⊗ y⊗�
)

=
�∑

s=0

(
x ⊗ y⊗�

)†
W

TB[s]
s,AB[�]

(
x ⊗ y⊗�

)
. (36)

According to Proposition 19, we have ‖y‖2(�−1) pM is a rsos.
On the other hand, suppose ‖y‖2(�−1) pM is a rsos. FromProposition 19, there exists

positive semidefinite operators Ws,AB[�] ≥ 0, s = 0, 1, · · · , � such that Eq. (36) holds.
Since y⊗� forms a basis on the symmetric subspace of HB1 ⊗ HB2 ⊗ · · · ⊗ HB�

, it
implies that the operators

MAB1 ⊗ IB[2:�] and
�∑

s=0

W
TB[s]
s,AB[�]
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coincide when restricted on the symmetric subspace Sym(H⊗�). That is,

(I ⊗ ��)(MAB1 ⊗ IB[2:�])(I ⊗ ��) = (I ⊗ ��)

(
�∑

s=0

W
TB[s]
s,AB[�]

)
(I ⊗ ��).

Take the Hermitian operator

YAB[�] := MAB1 ⊗ IB[2:�] −
�∑

s=0

W
TB[s]
s,AB[�] .

Then by the definition of YAB[�] , we have ��YAB[�]�� = 0 and

MAB1 ⊗ IB[2:�] = [
YAB[�] − (I ⊗ ��)YAB[�](I ⊗ ��)

] +
�∑

s=0

W
TB[s]
s,AB[�] ,

which implies MAB1 ∈ DPS∗
� . ��

It remains to prove Lemma 19. To have an easier understanding of the result in
Lemma 19, let us first have a look at the special case on the second level of the
hierarchy, i.e, � = 2. This will give us the key idea without loss of generality, and the
higher level case is just a straightforward generalization.

Lemma 19 (special case � = 2) For any Hermitian operator MAB1 , we have
that ‖y‖2 pM is rsos if and only if there exist positive semidefinite operators
W0,AB1B2 , W1,AB1B2 , W2,AB1B2 ≥ 0, such that

‖y‖2 pM (x, x̄, y, ȳ) = (x ⊗ y ⊗ y)†W0,AB1B2(x ⊗ y ⊗ y)

+ (x ⊗ ȳ ⊗ y)†W1,AB1B2(x ⊗ ȳ ⊗ y)

+ (x ⊗ ȳ ⊗ ȳ)†W2,AB1B2(x ⊗ ȳ ⊗ ȳ) ∀x ∈ HA, y ∈ HB .

(37)

Proof If there exist operators W0, W1, W2 ≥ 0 such that Eq. (37) holds, then
‖y‖2 pM can be shown to be rsos by using the spectral decompostion of Wi . For
the converse suppose ‖y‖2 pM is rsos. Then there exist polynomials fm(x, x̄, y, ȳ)

such that ‖y‖2 pM (x, x̄, y, ȳ) = ∑
m fm(x, x̄, y, ȳ)2. Since the monomials of

‖y‖2 pM (x, x̄, y, ȳ) are all of the forms x̄i xm ȳ j yk yr ȳr (they are degree 2 in (x, x̄)

and degree 4 in (y, ȳ), then the possible monomials of fm(x, x̄, y, ȳ) can only be
given by

{
xi y j yk, xi ȳ j yk, xi ȳ j ȳk, x̄i y j yk, x̄i y j ȳk, x̄i ȳ j ȳk

}
.

The existence of any other monomials in fm(x, x̄, y, ȳ), such as xi x j yk , will not be
compatible with the monomials in ‖y‖2 pM (x, x̄, y, ȳ). Thus the most general form
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of fm(x, x̄, y, ȳ) can be written as the linear combinations,

fm(x, x̄, y, ȳ) =
∑
i, j,k

am,0
i, j,k xi y j yk +

∑
i, j,k

am,1
i, j,k xi ȳ j yk +

∑
i, j,k

am,2
i, j,k xi ȳ j ȳk

+
∑
i, j,k

bm,0
i, j,k x̄i ȳ j ȳk +

∑
i, j,k

bm,1
i, j,k x̄i y j ȳk +

∑
i, j,k

bm,2
i, j,k x̄i y j yk .

Since fm(x, x̄, y, ȳ) ∈ R, we have

ām,0
i, j,k = bm,0

i, j,k, ām,1
i, j,k = bm,1

i, j,k, ām,2
i, j,k = bm,2

i, j,k, ∀ i, j, k, m.

Comparing the monomials of
∑

m fm(x, x̄, y, ȳ)2 and x̄i xm ȳ j yk yr ȳr , the terms, such
as

∑
m

⎛
⎝∑

i, j,k

am,0
i, j,k xi y j yk

⎞
⎠
⎛
⎝∑

i, j,k

am,1
i, j,k xi ȳ j yk

⎞
⎠

have to vanish, since the resulting monomial xi y j yk xi ′ ȳ j ′ yk′ is not compatible with
x̄i xm ȳ j yk yr ȳr . After we get rid of those incompatible monomials, we have

∑
m

fm(x, x̄, y, ȳ)2 = 2
∑

m

(∣∣∣
∑
i, j,k

am,0
i, j,k xi y j yk

∣∣∣
2 +

∣∣∣
∑
i, j,k

am,1
i, j,k xi ȳ j yk

∣∣∣
2

+
∣∣∣
∑
i, j,k

am,2
i, j,k xi ȳ j ȳk

∣∣∣
2
)

.

Then we can construct matrices W0, W1, W2 whose elements are respectively given
by

(W0)i, j,k;r ,s,t = 2
∑

m

ām,0
i, j,k am,0

r ,s,t , (W1)i, j,k;r ,s,t = 2
∑

s

ām,1
i, j,k am,1

r ,s,t , (W2)i, j,k;r ,s,t

= 2
∑

s

ām,2
i, j,k am,2

r ,s,t .

By construction, we know that W0, W1, W2 ≥ 0 and

‖y‖2 pM (x, x̄, y, ȳ) = ∑
m fm(x, x̄, y, ȳ)2 = (x ⊗ y ⊗ y)†W0,AB1B2(x ⊗ y ⊗ y)

+ (x ⊗ ȳ ⊗ y)†W1,AB1B2(x ⊗ ȳ ⊗ y)

+ (x ⊗ ȳ ⊗ ȳ)†W2,AB1B2(x ⊗ ȳ ⊗ ȳ),

which completes the proof. ��
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Lemma 19 (general result, restatement)For any Hermitian operator MAB1 and integer
� ≥ 1, we have that ‖y‖2(�−1) pM is rsos if and only if there exist positive semidefinite
operators Ws,AB[�] ≥ 0, s ∈ [0 : �] such that

‖y‖2(�−1) pM =
�∑

s=0

(
x ⊗ ȳ⊗s ⊗ y⊗�−s

)†
Ws,AB[�]

(
x ⊗ ȳ⊗s ⊗ y⊗�−s

)
(38)

=
�∑

s=0

(
x ⊗ y⊗�

)†
W

TB[s]
s,AB[�]

(
x ⊗ y⊗�

)
∀x ∈ HA, y ∈ HB . (39)

Proof Note that the second equality trivially holds due to the equation x†Z x =
(x̄)†ZT(x̄). We will prove the first equality. If Eq. (38) holds for positive semidef-
inite operators Ws,AB[�] , then it is easy to check that ‖y‖2(�−1) pM (x, x̄, y, ȳ) is a rsos
by using the spectral decomposition of Ws,AB[�] .

On the other hand, if ‖y‖2(�−1) pM (x, x̄, y, ȳ) is a rsos, by definition there
exist Hermitian polynomials fm(x, x̄, y, ȳ) such that ‖y‖2(�−1) pM (x, x̄, y, ȳ) =∑

m fm(x, x̄, y, ȳ)2. In the following, we will compare the monomials on both
sides of this equation and explicitly construct Ws,AB[�] from the coefficients of∑

m fm(x, x̄, y, ȳ)2. We first note that the monomials of ‖y‖2(�−1) pM (x, x̄, y, ȳ) are
all of the form

xt x̄t ′
�∏

i=1

yri ȳr ′
i
, (40)

which is of degree 2 and 2� with respect to x and y, respectively. Then the possible
monomials of fm(x, x̄, y, ȳ) can only be of degree 1 and � with respect to x and y,
respectively. That is, the possible monomials are given by

{
xt

s∏
i=1

ȳri

�∏
i=s+1

yri

}�

s=0

and

{
x̄t

s∏
i=1

yri

�∏
i=s+1

ȳri

}�

s=0

,

where we denote the term
∏s2

i=s1
(·) = 1 if s2 < s1. These monomials are basically

formed by the ones with different number of complex conjugation over the symbol y.
Therefore, the most general form of fm(x, x̄, y, ȳ) can be written as a linear combi-
nation of these monomials:

fm(x, x̄, y, ȳ) =
�∑

s=0

∑
t,r[�]

am,s
t,r[�]

(
xt

s∏
i=1

ȳri

�∏
i=s+1

yri

)

+
�∑

s=0

∑
t,r[�]

bm,s
t,r[�]

(
x̄t

s∏
i=1

yri

�∏
i=s+1

ȳri

)
.
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Since fm(x, x̄, y, ȳ) ∈ R for all x, y, we know that the coefficients between the
conjugate monomials have to be conjugate with each other. That is, ām,s

t,r[�] = bm,s
t,r[�]

holds for all m, s, t, r[�]. Comparing the monomials of
∑

m fm(x, x̄, y, ȳ)2 and the
monomials in Eq. (40), we have

‖y‖2(�−1) pM (x, x̄, y, ȳ) =
∑

m

fm(x, x̄, y, ȳ)2

= 2
∑

m

�∑
s=0

∣∣∣∣
∑
t,r[�]

am,s
t,r[�]

(
xt

s∏
i=1

ȳri

�∏
i=s+1

yri

) ∣∣∣∣
2

.

For any s ∈ [0 : �], we construct the matrix Ws whose elements are given by

(Ws)t ′,r ′[�]; t,r[�] := 2
∑

m

ām,s
t ′,r ′[�]

am,s
t,r[�] .

Then we have that Ws ≥ 0, ∀s ∈ [0 : �] and

‖y‖2(�−1) pM (x, x̄, y, ȳ) =
∑

m

fm(x, x̄, y, ȳ)2

=
�∑

s=0

(
x ⊗ ȳ⊗s ⊗ y⊗�−s

)†
Ws

(
x ⊗ ȳ⊗s ⊗ y⊗�−s

)
,

which completes the proof. ��
The above argument also works for csos polynomials with slight modifications.

Lemma 20 For any Hermitian operator MAB1 and integer � ≥ 1, we have that
‖y‖2(�−1) pM is csos if and only if there exists a positive semidefinite operator
WAB[�] ≥ 0, such that

‖y‖2(�−1) pM (x, x̄, y, ȳ) =
(

x ⊗ y⊗�
)†

WAB[�]
(

x ⊗ y⊗�
)

∀x ∈ HA, y ∈ HB .

(41)

Proof If there exists WAB[�] ≥ 0 such that Eq. (41) holds, we can check that
‖y‖2(�−1) pM (x, x̄, y, ȳ) is a csos by using the spectral decomposition of W . On the
other hand, if ‖y‖2(�−1) pM (x, x̄, y, ȳ) is a csos, by definition there exist polynomials
fm(x, y) such that ‖y‖2(�−1) pM (x, x̄, y, ȳ) = ∑

m | fm(x, y)|2. In the following, we
will compare the monomials on both sides of this equation and explicitly construct
WAB[�] from the coefficients of

∑
m | fm(x, y)|2. We first note that the monomials of

‖y‖2(�−1) pM (x, x̄, y, ȳ) are all of the form xt x̄t ′
∏�

i=1 yri ȳr ′
i
, which is of degree 2 and

2� with respect to x and y, respectively. Then the possible monomials of fm(x, y)

can only be of degree 1 and � with respect to x and y, respectively. Furthermore, by
definition fm(x, y) are polynomials with respect to x, y alone, thus the only possible
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monomial of fm(x, y) is xt
∏�

i=1 yri and we have the general form of fm(x, y) as
fm(x, y) = ∑

t,r[�] am
t,r[�]

(
xt
∏�

i=1 yri

)
with coefficients am

t,r[�] . Define the matrix W
with elements

Wt ′,r ′[�]; t,r[�] :=
∑

m

ām
t ′,r ′[�]

am
t,r[�] .

Then we have W ≥ 0, and

‖y‖2(�−1) pM (x, x̄, y, ȳ) =
∑

m

| fm(x, y)|2 =
(

x ⊗ y⊗�
)†

WAB[�]
(

x ⊗ y⊗�
)

,

which completes the proof. ��
Finally the result ofEXT ∗

� = {
M : ‖y‖2(�−1) pM is csos

}
can be proved in a similar

way by using Lemma 20.
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