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Abstract

We study the error exponents in quantum hypothesis testing between two sets of quantum
states, extending the analysis beyond the independent and identically distributed case to en-
compass composite correlated hypotheses. In particular, we introduce and compare two nat-
ural extensions of the quantum Hoeffding divergence and anti-divergence to sets of quantum
states, establishing their equivalence or quantitative relations. In the error exponent regime,
we generalize the quantum Hoeffding bound to stable sequences of convex, compact sets of
quantum states, demonstrating that the optimal Type-I error exponent, under an exponential
constraint on the Type-II error, is precisely characterized by the regularized quantum Hoeffd-
ing divergence between the sets. In the strong converse exponent regime, we provide a general
lower bound on the exponent in terms of the regularized quantum Hoeffding anti-divergence
and a matching upper bound when the null hypothesis is a singleton. The generality of these
results enables applications in various contexts, including (i) refining the generalized quan-
tum Stein’s lemma by [Fang, Fawzi & Fawzi, 2024]; (ii) exhibiting counterexamples to the
continuity of the regularized Petz Rényi divergence and Hoeffding divergence; (iii) obtaining
error exponents for adversarial channel discrimination and resource detection problems.
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1 Introduction

1.1 Quantum hypothesis testing between two quantum states

Distinguishability is a central topic in information theory from both theoretical and practical per-
spectives. A fundamental framework for studying distinguishability is asymmetric hypothesis
testing. In this setting, a source generates a sample x from one of two probability distributions
p ≡ {p(x)}x∈X or q ≡ {q(x)}x∈X . The objective of asymmetric hypothesis testing is to minimize
the Type-II error (decides p when the fact is q) while keeping the Type-I error (decides q when the
fact is p) within a certain threshold. The celebrated Chernoff-Stein’s Lemma [Che52] states that,
for any constant bound on the Type-I error, the optimal Type-II error decays exponentially fast in
the number of samples, and the decay rate is exactly the relative entropy,

D(p∥q) =
∑
x∈X

p(x)[log p(x)− log q(x)]. (1)

In particular, this lemma also states the “strong converse property”, a desirable mathematical
property in information theory [Wol78] that delineates a sharp boundary for the tradeoff between
the Type-I and Type-II errors in the asymptotic regime: any possible scheme with Type-II error
decaying to zero with an exponent larger than the relative entropy will result in the Type-I error
converging to one in the asymptotic limit. Therefore, the Chernoff-Stein’s Lemma provides a
rigorous operational interpretation of the relative entropy and establishes a crucial connection
between hypothesis testing and information theory [Bla74].

A natural question is whether the above result generalizes to the quantum case. Substan-
tial efforts have been made to answer this fundamental question in quantum information com-
munity (see, e.g., [HP91, ON00, Hay02, ANSV08, Hay07, BP10, CMW16, MO15a, WW19a,
WW19b, FFF25, FFF24, HI25]). Consider the problem of distinguishing between two quantum
hypotheses: the system is prepared either in state ρn (the null hypothesis) or in state σn (the alter-
native hypothesis). Operationally, the discrimination is carried out using a two-outcome positive
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operator-valued measure (POVM) {Mn, I−Mn}, with 0 ≤Mn ≤ I . With this choice of test, the
Type-I and Type-II errors are, respectively, given by

(Type-I) α(ρn,Mn) := Tr[ρn(I −Mn)], (Type-II) β(σn,Mn) := Tr[σnMn]. (2)

It is generally impossible to find a quantum measurement that simultaneously makes both errors
vanish; thus, one studies the asymptotic behavior of α and β as n → ∞, expecting a trade-off
between minimizing α and minimizing β. The interplay between these errors can be analyzed in
various operational regimes (see Figure 1): (I) the Stein exponent regime, which focuses on the
exponential decay rate of the Type-II error when the Type-I error is below a constant threshold;
(II) the error exponent regime, which investigates the exponential rate at which the Type-I error
vanishes when the Type-II error is required to decay exponentially at a prescribed rate; and (III)
the strong converse exponent regime, which examines the exponential rate at which the Type-I
error converges to one when the Type-II error decays exponentially at a given rate.

0
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- log (Type-II error)C

(III) Strong converse exponent

(II) Error exponent
(I) Stein’s exponent

Figure 1: Illustration of different study regimes of quantum hypothesis testing. Each curve repre-
sents the tradeoff between the Type-I and Type-II errors for varying block lengths n, with darker
lines corresponding to longer block lengths. (I) represents the Stein exponent regime, (II) repre-
sents the error exponent regime, and (III) represents the strong converse exponent regime.

Stein exponent. In asymmetric hypothesis testing, one aims to minimize the Type-II error while
keeping the Type-I error below a fixed threshold ε ∈ (0, 1). The optimal Type-II error is given by

βε(ρn∥σn) := min
0≤Mn≤I

{β(σn,Mn) : α(ρn,Mn) ≤ ε}. (3)

The quantum version of the Chernoff-Stein’s Lemma (also known as quantum Stein’s lemma)
states that the optimal Type-II error decays exponentially with the number of copies n of the states
when the Type-I error is restricted below a constant threshold and the optimal exponent is given
by the quantum relative entropy D(ρ∥σ) := Tr[ρ(log ρ− log σ)] [HP91, ON00],

lim
n→∞

− 1

n
log βε(ρ

⊗n∥σ⊗n) = D(ρ∥σ), ∀ε ∈ (0, 1). (4)

Error expoent. As a refinement of the quantum Stein’s lemma, one can study the optimal Type-
I error given that the Type-II error decays with a given exponential speed. One is then interested
in the asymptotics of the optimal Type-I error,

αn,r(ρn∥σn) := min
0≤Mn≤I

{α(ρn,Mn) : β(σn,Mn) ≤ 2−nr}, (5)
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with a constant r > 0. When r < D(ρ∥σ), the optimal Type-I error αn,r(ρ
⊗n∥σ⊗n), also decays

with an exponential speed, as was shown in [OH04]. The exact decay rate is determined by the
quantum Hoeffding bound [Hay07, Nag06, ANSV08] as

lim
n→∞

− 1

n
logαn,r(ρ

⊗n, σ⊗n) = Hr(ρ∥σ), (6)

where the quantum Hoeffding divergence is defined as

Hr(ρ∥σ) := sup
α∈(0,1)

α− 1

α
(r −DP,α(ρ∥σ)) , (7)

and DP,α is the Petz Rényi divergence.

Strong converse exponent. On the other hand, when r > D(ρ∥σ), the optimal Type-I error
αn,r(ρ

⊗n∥σ⊗n) goes to 1 exponentially fast [ON00]. The rate of this convergence is [MO15a],

lim
n→∞

− 1

n
log(1− αn,r(ρ

⊗n∥σ⊗n)) = H∗
r (ρ∥σ), (8)

where the Hoeffding anti-divergence is defined as

H∗
r (ρ∥σ) := sup

α>1

α− 1

α
(r −DS,α(ρ∥σ)) , (9)

and DS,α is the sandwiched Rényi divergence.
The results in Eq. (6) and Eq. (8) provide a comprehensive characterization of the asymptotic

trade-off between the Type-I and Type-II error probabilities. In particular, the quantum Stein’s
lemma emerges as a special case in the limit r → D(ρ∥σ).

1.2 Quantum hypothesis testing between two sets of quantum states

While much of the existing literature has focused on i.i.d. sources, practical scenarios often involve
quantum states that are not fully specified (i.e., composite hypotheses [BP10, BBH21, MSW22,
HI25, HT16, DWH25]) such as in adversarial or black-box settings [FFF25, WT24] and exhibit
correlations that preclude a simple tensor product structure (i.e., correlated hypotheses [HMO07,
HMO08, MO15b, HI25]). In this context, the task is to discriminate between two sets of correlated
quantum states (see Figure 2). That is, a tester receives samples prepared according to either the
set An or Bn, and determines, via a quantum measurement {Mn, I −Mn}, from which set the
samples originate.

𝒜n

ℬn

Sample
Tester

ρn ∈ 𝒜n or σn ∈ ℬn

Guess
𝒜n0

1 ℬn

Figure 2: Quantum hypothesis testing between two sets of quantum states An and Bn.

As in standard hypothesis testing, two types of errors can occur: a Type-I error, where a sample
from An is incorrectly classified as coming from Bn, and a Type-II error, where a sample from
Bn is incorrectly classified as coming from An. Since we aim to control the errors for any state
within the given sets, regardless of which one is drawn, the (worst-case) Type-I error is defined by

α(An,Mn) := sup
ρn∈An

Tr[ρn(I −Mn)], (10)
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and the (worst-case) Type-II error is defined by

β(Bn,Mn) := sup
σn∈Bn

Tr[σnMn]. (11)

A few variants of quantum Stein’s lemma has been shown in this worst-case setting under
some structural assumptions on the sets An and Bn [FFF24, HY25, Lam25]. Particularly, the
Stein’s lemma in [FFF24] shows that

lim
n→∞

− 1

n
log βε(An∥Bn) = D∞(A ∥B), ∀ε ∈ (0, 1), (12)

where

βε(An∥Bn) := min
0≤Mn≤I

{β(Bn,Mn) : α(An,Mn) ≤ ε}, (13)

and D(An∥Bn) := infρn∈An,σn∈Bn D(ρn∥σn) is the quantum relative entropy between two sets
of states and D∞(A ∥B) := limn→∞

1
nD(An∥Bn) is the regularization.

1.3 Summary of main results

In this work, we refine the analysis of asymmetric hypothesis testing for composite correlated
hypotheses, as developed in [HY25, Lam25, FFF24], by extending it to the error exponent and
strong converse exponent regimes. Specifically, we consider the optimal Type-I error 1:

αn,r(An∥Bn) := min
0≤Mn≤I

{
α(An,Mn) : β(Bn,Mn) ≤ 2−nr

}
, (14)

and seek to determine the following asymptotic exponents:

(Error exponent) lim
n→∞

− 1

n
logαn,r(An∥Bn) = ? (15)

(Strong converse exponent) lim
n→∞

− 1

n
log(1− αn,r(An∥Bn)) = ? (16)

Due to the uncertainty and correlation inherent in composite correlated hypotheses, several
significant challenges arise when obtaining precise characterizations. First, discrimination strate-
gies must be state-agnostic, ensuring that error probabilities are universally controlled for every
state within the respective sets, regardless of which specific state is encountered. Second, the
optimization problem exhibits a minimax structure, forming a competing scenario that requires
simultaneous maximization over all possible states in the sets and minimization over all possible
quantum measurements. Third, the non-i.i.d. structure significantly complicates the asymptotic
analysis, as standard techniques relying on tensor product structures no longer directly apply.
Fourth, it becomes necessary to define suitable extensions of the quantum Hoeffding divergence
and anti-divergence to sets of quantum states that both recover existing results for i.i.d. sources
and precisely capture the essential features of the general composite correlated setting.

Error exponent. For the error exponent regime, we explore two natural approaches to extend-
ing the quantum Hoeffding divergence (see Figure 3). The first treats the Hoeffding divergence
as a quantum divergence and considers the minimal divergence between the sets, denoted as
Hn,r(An∥Bn). The second approach uses the explicit formula for the Hoeffding divergence
in terms of the Petz Rényi divergences: we first extend the Rényi divergences to sets of quan-
tum states, DP,α(An∥Bn), and then define the Hoeffding divergence accordingly, denoted as
Hn,r(An∥Bn). We show that these two extensions are equivalent for finite n in general, and fur-
ther show the inequalityH∞

r (A ∥B) ≥ H∞
r (A ∥B) for their regularizations. As a main result, we

1Such version of definition is similarly used in [CMW16, HT16, WBHK20].
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prove that the error exponent is completely characterized by the regularized quantum Hoeffding
divergence defined via the first approach.

Hn,r(ρn∥σn) := sup
α∈(0,1)

α − 1
α (nr − DP,α(ρn∥σn))

Hn,r(𝒜n∥ ℬn) := inf
ρn∈𝒜n, σn∈ℬn

Hn,r(ρn∥σn)

H∞
r (𝒜∥ℬ) := lim

n→∞
1
n

Hn,r(𝒜n∥ℬn)

ℌn,r(𝒜n∥ℬn) := sup
α∈(0,1)

α − 1
α (nr − DP,α(𝒜n∥ℬn))

ℌ∞
r (𝒜∥ℬ) := sup

α∈(0,1)
α − 1

α (r − D∞P,α(𝒜∥ℬ))

lim
n→∞

− 1
n

log αn,r(𝒜n∥ℬn)Error exponent

Theorem 5.1

Lemma 3.2

Lemma 3.3

Extension 1 Extension 2

Figure 3: Summary of results in the error exponent regime. Quantitative relationships between
the various quantities are indicated by black arrows: the quantity at the tail of an arrow is always
greater than or equal to the one at the head. A double arrow indicates an equality.

Strong converse exponent. In the strong converse regime, we likewise investigate two natural
extensions of the quantum Hoeffding anti-divergence (see Figure 4). The first approach consid-
ers the maximal anti-divergence between the sets, denoted H∗

n,r(An∥Bn). The second approach
leverages the explicit formula for the anti-divergence in terms of the sandwiched Rényi diver-
gences: we first extend the sandwiched Rényi divergences to sets, DS,α(An∥Bn), and then define
the anti-divergence as H∗

n,r(An∥Bn). We establish that these two approaches are equivalent for
both finite n and in the asymptotic setting. As a main result, we prove that the strong converse
exponent is lower bounded by the regularized quantum Hoeffding anti-divergence in general, and
we provide a matching upper bound when the null hypothesis is a singleton.

Extension 2

lim
n→∞

− 1
n

log(1 − αn,r(𝒜n∥ℬn))Strong converse exponent

Theorem 6.1

Lemma 3.5

Lemma 3.6

H*n,r(ρn∥σn) := sup
α>1

α − 1
α (nr − DS,α(ρn∥σn))

H*n,r(𝒜n∥ ℬn) := sup
ρn∈𝒜n, σn∈ℬn

Hn,r(ρn∥σn)

H*,∞
r (𝒜∥ℬ) := lim

n→∞
1
n

H*n,r(𝒜n∥ℬn)

ℌ*n,r(𝒜n∥ℬn) := sup
α>1

α − 1
α (nr − DS,α(𝒜n∥ℬn))

ℌ*,∞
r (𝒜∥ℬ) := sup

α>1
α − 1

α (r − D∞S,α(𝒜∥ℬ))

Figure 4: Summary of results in the strong converse exponent regime. Quantitative relationships
between the various quantities are indicated by black arrows: the quantity at the tail of an arrow
is always greater than or equal to the one at the head. A double arrow indicates an equality. A
dashed arrow indicates partial progress when An is a singleton.
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Applications. As the error exponent and strong converse expoent regimes provide a finer char-
acterization of the trade-off between Type-I and Type-II errors than the Stein regime, we apply
the results above to refine and extend several existing studies. In particular, we recover the quan-
tum Stein’s lemma for composite correlated hypotheses as established in [FFF24], and further
strengthen it by providing explicit convergence rates for the Type-I error. Note that the Stein
exponent only indicates whether the Type-I error decays, but does not quantify how fast it de-
cays. Specifically, under the same assumptions as in [FFF24], we establish the following refined
asymptotic trade-off between Type-I and Type-II errors:

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≥ H∞

r (A ∥B) > 0, ∀ 0 < r < D∞(A ∥B), (17)

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B) > 0, ∀ r > D∞(A ∥B), (18)

where D∞(A ∥B) is the regularized relative entropy between the sets. These indicate that any
Type-II error exponent r below D∞(A ∥B) is achievable, with the corresponding Type-I error
decaying exponentially at a rate at least H∞

r (A ∥B). Conversely, if the Type-II error exponent r
exceeds D∞(A ∥B), the Type-I error inevitably converges to one exponentially fast, with a rate
at least H∗,∞

r (A ∥B). Thus, the regularized quantum relative entropy delineates a sharp threshold
for the asymptotic trade-off in hypothesis testing between two sets of quantum states.

Besides this, we also provide a few more explicit applications, including: (i) finding coun-
terexamples to the continuity of the regularized Petz Rényi divergence and Hoeffding divergence;
(ii) deriving error exponents for adversarial quantum channel discrimination; and (iii) obtaining
error exponents for resource detection problems in coherence theory and entanglement theory.

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we introduce the notation and re-
view a few quantum divergences, together with their extensions to sets of states. In Section 3
we introduce two natural extensions of the Hoeffding divergence and anti-divergence to sets and
proves their equivalence or quantitative relation. In Section 4 we formulate asymmetric hypothesis
testing for composite correlated hypotheses and show how the worst-case problem reduces to pair-
wise optimizations. Section 5 establishes the quantum Hoeffding bound for composite correlated
hypotheses, while Section 6 studies the strong converse exponent. Section 7 discusses applica-
tions and implications of our results. In Section 8 we conclude the paper and discuss a few open
questions for future exploration. Some technical lemmas are delegated to the appendices.

2 Preliminaries

2.1 Notations

Throughout this work, we adopt the following notational conventions. Finite-dimensional Hilbert
spaces are denoted by H, with |H| indicating their dimension. The set of all linear operators
on H is denoted by L (H), while H (H) and H+(H) denote the sets of Hermitian and positive
semidefinite operators on H, respectively. The set of density operators (i.e., positive semidefinite
operators with unit trace) on H is denoted by D(H). Calligraphic letters such as A , B, and C
are used to represent sets of linear operators. Unless otherwise specified, all logarithms are taken
to base two and denoted by log(x). The positive semidefinite ordering is written as X ≥ Y if and
only if X − Y ≥ 0. The absolute value of an operator X is defined as |X| := (X†X)1/2. For
a Hermitian operator X with spectral decomposition X =

∑
i xiEi, the projection onto the non-

negative eigenspaces is denoted by {X ≥ 0} :=
∑

xi≥0Ei. Similarly, {X > 0} :=
∑

xi>0Ei.
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2.2 Quantum divergences

A functional D : D × H+ → R is called a quantum divergence if it satisfies the data-processing
inequality: for any completely positive and trace-preserving (CPTP) map E and any (ρ, σ) ∈
D × H+, it holds that D(E(ρ)∥E(σ)) ≤ D(ρ∥σ). In the following, we introduce several quantum
divergences that will be used throughout this work. We also define quantum divergences between
two sets of quantum states.

Definition 2.1 (Umegaki relative entropy [Ume54].) For any ρ ∈ D and σ ∈ H+, the Umegaki
relative entropy is defined by

D(ρ∥σ) := Tr[ρ(log ρ− log σ)], (19)

if supp(ρ) ⊆ supp(σ) and ∞ otherwise.

Definition 2.2 (Petz Rényi divergence [Pet86].) Let α ∈ (0, 1) ∪ (1,∞). For any ρ ∈ D and
σ ∈ H+, the Petz Rényi divergence is defined by

DP,α(ρ∥σ) :=
1

α− 1
logQα(ρ∥σ) with Qα(ρ∥σ) := Tr

[
ρασ1−α

]
, (20)

if supp(ρ) ⊆ supp(σ), and ∞ otherwise.

Definition 2.3 (Sandwiched Rényi divergence [MLDS+13, WWY14].) Let α ∈ (0, 1) ∪ (1,∞).
For any ρ ∈ D and σ ∈ H+, the sandwiched Rényi divergence is defined by

DS,α(ρ∥σ) :=
1

α− 1
log Tr

[
σ

1−α
2α ρσ

1−α
2α

]α
, (21)

if supp(ρ) ⊆ supp(σ), and ∞ otherwise.

Definition 2.4 (Quantum divergence between two sets of states.) Let D be a quantum divergence
between two quantum states. Let H be a finite-dimensional Hilbert space. Then for any sets
A ,B ⊆ D(H), the quantum divergence between these two sets is defined by

D(A ∥B) := inf
ρ∈A
σ∈B

D(ρ∥σ). (22)

Let A = {An}n∈N and B = {Bn}n∈N be two sequences of sets of quantum states2, where each
An,Bn ⊆ D(H⊗n). the regularized divergence between these sequences is defined by

D∞(A ∥B) := lim inf
n→∞

1

n
D(An∥Bn), (23)

D∞
(A ∥B) := lim sup

n→∞

1

n
D(An∥Bn). (24)

If the limit exists, we define the regularized divergence as

D∞(A ∥B) := lim
n→∞

1

n
D(An∥Bn). (25)

Remark 2.1 Note that if D is lower semicontinuous (which is true for most quantum divergences
of interest), and A and B are compact sets, the infimum in the above expression is always attained
and can thus be replaced by a minimization [KZ05, Theorem 7.3.1].

In many practical scenarios, the sequences of sets under consideration are not arbitrary but
possess a structure that is compatible with tensor products. This property, known as stability (or
closeness) under tensor product, is formalized as follows.

2We abuse the notation A ,B to refer both to sets of states and to sequences of such sets, depending on the context.
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Definition 2.5 (Stable sequence.) Let A ⊆ H+(H1), B ⊆ H+(H2), and C ⊆ H+(H1 ⊗ H2).
We say that {A ,B,C } is stable under tensor product if, for any X1 ∈ A and X2 ∈ B, it
holds that X1 ⊗ X2 ∈ C . In short, we write A ⊗ B ⊆ C . A sequence of sets {Cn}n∈N with
Cn ⊆ H+(H⊗n) is called stable under tensor product if Cn ⊗ Cm ⊆ Cn+m for all n,m ∈ N.

Remark 2.2 If the divergence D is subadditive under tensor product states, then its extension to
sets of states is also subadditive for stable sequences of sets [FFF24, Lemma 26]. This implies
the existence of the regularized divergence by Fekete’s lemma,

D∞(A ∥B) = D∞(A ∥B) = D∞
(A ∥B) = inf

n∈N

1

n
D(An∥Bn). (26)

3 Hoeffding divergence and anti-divergence for sets of states

In this section, we develop extensions of the quantum Hoeffding divergence and anti-divergence
to sets of quantum states. Two natural approaches arise for this purpose. The first approach treats
the Hoeffding divergence as a quantum divergence and extends it to sets via Definition 2.4. The
second approach leverages the explicit formula for the Hoeffding divergence in terms of the Petz
Rényi divergences. Analogous constructions apply to the Hoeffding anti-divergence.

3.1 Quantum Hoeffding divergence

Definition 3.1 Let H be a finite-dimensional Hilbert space, r > 0 be a real number, and n ∈ N.
Let ρn, σn ∈ D(H⊗n) be two quantum states. The quantum Hoeffding divergence is defined as

Hn,r(ρn∥σn) := sup
α∈(0,1)

α− 1

α
(nr −DP,α(ρn∥σn)) . (27)

Lemma 3.1 (Subadditivity.) For any ρm, σm ∈ D(H⊗m) and ρn, σn ∈ D(H⊗n), it holds that

H(m+n),r(ρm ⊗ ρn∥σm ⊗ σn) ≤ Hm,r(ρm∥σm) +Hn,r(ρn∥σn). (28)

Proof. This can be seen as follows:

H(m+n),r(ρm ⊗ ρn∥σm ⊗ σn)

= sup
α∈(0,1)

α− 1

α
((m+ n)r −DP,α(ρm ⊗ ρn∥σm ⊗ σn)) (29)

= sup
α∈(0,1)

α− 1

α
((m+ n)r −DP,α(ρm∥σm)−DP,α(ρn∥σn)) (30)

≤ sup
α∈(0,1)

α− 1

α
(mr −DP,α(ρm∥σm)) + sup

α∈(0,1)

α− 1

α
(nr −DP,α(ρn∥σn)) (31)

= Hm,r(ρm∥σm) +Hn,r(ρn∥σn), (32)

where the second equality uses the additivity of DP,α under tensor product states, and the inequal-
ity follows from splitting the supremum over α for each term.

Definition 3.2 (Quantum Hoeffding divergence between sets of states.) Let H be a finite-dimensional
Hilbert space, and r > 0 be a real number, n ∈ N. Let An,Bn ⊆ D(H⊗n) be two sets of quantum

9



states. Two variants of the quantum Hoeffding divergence between these sets are defined as

Hn,r(An∥Bn) := inf
ρn∈An
σn∈Bn

Hn,r(ρn∥σn), (33)

Hn,r(An∥Bn) := sup
α∈(0,1)

α− 1

α
(nr −DP,α(An∥Bn)) , (34)

where DP,α(An∥Bn) is defined as in Definition 2.4. Moreover, let A = {An}n∈N and B =
{Bn}n∈N be two sequences of sets of quantum states, where each An,Bn ⊆ D(H⊗n). The
regularized quantum Hoeffding divergences between these sequences are defined as

H∞
r (A ∥B) := lim inf

n→∞

1

n
Hn,r(An∥Bn), (35)

H
∞
r (A ∥B) := lim sup

n→∞

1

n
Hn,r(An∥Bn), (36)

H∞
r (A ∥B) := sup

α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)
, (37)

H
∞
r (A ∥B) := sup

α∈(0,1)

α− 1

α

(
r −D

∞
P,α(A ∥B)

)
, (38)

whereD∞
P,α(A ∥B) andD∞

P,α(A ∥B) are defined as in Definition 2.4. If the limits exist, we define
the regularized quantum Hoeffding divergence as

H∞
r (A ∥B) := lim

n→∞

1

n
Hn,r(An∥Bn), (39)

H∞
r (A ∥B) := sup

α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)
, (40)

where D∞
P,α(A ∥B) is defined as in Definition 2.4.

Remark 3.1 (Attainment.) Since DP,α(ρn∥σn) is lower semicontinuous in (ρn, σn) for any fixed
α [MH23, Proposition III.11], it follows from Lemma A.3 that Hn,r(ρn∥σn) is also lower semi-
continuous in (ρn, σn). Consequently, if An and Bn are compact sets, we know from Lemma A.2
that the infimum in the definition of Hn,r(An∥Bn) is attained.

Remark 3.2 (Limit existence.) The quantum Hoeffding divergence is subadditive under tensor
product by Lemma 3.1. So this property extends to stable sequences of sets by Remark 2.2,

H(m+n),r(Am+n∥Bm+n) ≤ Hm,r(Am∥Bm) +Hn,r(An∥Bn). (41)

As a consequence, the regularized quantum Hoeffding divergence exists and satisfies

H∞
r (A ∥B) = H

∞
r (A ∥B) = H∞

r (A ∥B) = inf
n≥1

1

n
Hn,r(An∥Bn). (42)

Simlarly, due to the additivity of DP,α under tensor product states, the regularized quantum Ho-
effding divergence H∞

r (A ∥B) also exists for stable sequences and satisfies

H∞
r (A ∥B) = H

∞
r (A ∥B) = H∞

r (A ∥B). (43)

The following results establish the relationship between the two variants of the quantum Ho-
effding divergence for sets and sequences of sets.
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Lemma 3.2 (Finite equivalence.) Let H be a finite-dimensional Hilbert space, and r > 0 be a
real number, n ∈ N. Let An,Bn ⊆ D(H⊗n) be two convex compact sets of quantum states. Then

Hn,r(An∥Bn) = Hn,r(An∥Bn). (44)

Proof. This result was previously established in [MSW22, Lemma II.8].

Remark 3.3 (Computability.) For any fixed α ∈ (0, 1), the functionQα(ρn∥σn) is jointly concave
in (ρn, σn). Consequently, the quasi-divergence Qα(An∥Bn) can be efficiently computed using
the QICS package [HSF24], provided that An and Bn admit semidefinite representations. If
the sets An and Bn exhibit additional symmetries, the computational complexity can be further
reduced. With this, Hn,r(An∥Bn) can be efficiently evaluated by scanning over α ∈ (0, 1).

Remark 3.4 (Alternative expression.) By the duality relation of the Petz Rényi divergences, we
have the following alternative expression for the Hoeffding divergence:

Hn,r(An∥Bn) = sup
α∈(0,1)

α− 1

α
(nr −DP,α(An∥Bn)) (45)

= sup
α∈(0,1)

α− 1

α

(
nr +

α

α− 1
DP,1−α(Bn∥An)

)
(46)

= sup
α∈(0,1)

(
α− 1

α
nr +DP,1−α(Bn∥An)

)
(47)

= sup
α∈(0,1)

(
− α

1− α
nr +DP,α(Bn∥An)

)
, (48)

where we replace α by 1− α in the penultimate equality. This alternative formulation is particu-
larly useful when analyzing the Stein’s exponent by taking the limit r → 0.

Lemma 3.3 (Asymptotic relation.) Let H be a finite-dimensional Hilbert space, and r > 0 be a
real number. Let A = {An}n∈N and B = {Bn}n∈N be two stable sequences of convex compact
sets of quantum states, where each An,Bn ⊆ D(H⊗n). Then for any n ∈ N, it holds that

1

n
Hn,r(An∥Bn) ≥ H∞

r (A ∥B) ≥ H∞
r (A ∥B). (49)

Proof. The existence of the regularizations is ensured by Remark 3.2. Then we have the following
chain of inequalities:

H∞
r (A ∥B) = inf

n≥1

1

n
Hn,r(An∥Bn) (50)

= inf
n≥1

sup
α∈(0,1)

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
(51)

≥ sup
α∈(0,1)

inf
n≥1

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
(52)

= sup
α∈(0,1)

α− 1

α

(
r − inf

n≥1

1

n
DP,α(An∥Bn)

)
(53)

= sup
α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)

(54)

= H∞
r (A ∥B), (55)

11



where the first equality follows from Remark 3.2, the second equality follows from Lemma 3.2,
the inequality follows by minimax inequality, the fourth equality follows from Remark 3.2, and
the last equality follows by definition. Moverover, we have

H∞
r (A ∥B) = inf

n≥1

1

n
Hn,r(An∥Bn) ≤

1

n
Hn,r(An∥Bn) =

1

n
Hn,r(An∥Bn). (56)

This completes the proof.

Remark 3.5 If the minimax equality in the above proof can be established, then we would have
H∞

r (A ∥B) = H∞
r (A ∥B). However, this appears to be challenging, as existing minimax the-

orems typically require at least one of the spaces to be compact—a condition that is not directly
satisfied here. Moreover, as we show later that the Petz Rényi divergence and the Hoeffding diver-
gence between two sets can be nonadditive in general (see Section 7.3), which further complicates
the situation. Nevertheless, in the special case where the Petz Rényi divergence is additive for all
α ∈ (0, 1), i.e., 1

nDP,α(An∥Bn) = DP,α(A1∥B1), we have that

H∞
r (A ∥B) = H∞

r (A ∥B) = H1,r(A1∥B1) = H1,r(A1∥B1). (57)

3.2 Quantum Hoeffding anti-divergence

Analogous to the quantum Hoeffding divergence, we can also define the quantum Hoeffding anti-
divergence for sets of quantum states.

Definition 3.3 Let H be a finite-dimensional Hilbert space, r > 0 be a real number, n ∈ N. Let
ρn, σn ∈ D(H⊗n) be two quantum states. The quantum Hoeffding anti-divergence is defined as

H∗
n,r(ρn∥σn) := sup

α>1

α− 1

α
(nr −DS,α(ρn∥σn)) . (58)

Lemma 3.4 (Subadditivity.) For any ρm, σm ∈ D(H⊗m) and ρn, σn ∈ D(H⊗n), it holds that

H∗
(m+n),r(ρm ⊗ ρn∥σm ⊗ σn) ≤ H∗

m,r(ρm∥σm) +H∗
n,r(ρn∥σn). (59)

Proof. This can be seen as follows:

H∗
(m+n),r(ρm ⊗ ρn∥σm ⊗ σn)

= sup
α>1

α− 1

α
((m+ n)r −DS,α(ρm ⊗ ρn∥σm ⊗ σn)) (60)

= sup
α>1

α− 1

α
((m+ n)r −DS,α(ρm∥σm)−DS,α(ρn∥σn)) (61)

≤ sup
α>1

α− 1

α
(mr −DS,α(ρm∥σm)) + sup

α>1

α− 1

α
(nr −DS,α(ρn∥σn)) (62)

= H∗
m,r(ρm∥σm) +H∗

n,r(ρn∥σn), (63)

where the second equality uses the additivity of DS,α under tensor product states, and the inequal-
ity follows from splitting the supremum over α for each term.

Definition 3.4 (Quantum Hoeffding anti-divergence between sets of states.) Let H be a finite-
dimensional Hilbert space, and r > 0 be a real number, n ∈ N. Let An,Bn ⊆ D(H⊗n) be two
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sets of quantum states. Two variants of the quantum Hoeffding anti-divergence between these sets
are defined as 3

H∗
n,r(An∥Bn) := sup

ρn∈An
σn∈Bn

H∗
n,r(ρn∥σn), (64)

H∗
n,r(An∥Bn) := sup

α>1

α− 1

α
(nr −DS,α(An∥Bn)) , (65)

where DS,α(An∥Bn) is defined as in Definition 2.4. Moreover, let A = {An}n∈N and B =
{Bn}n∈N be two sequences of sets of quantum states, where each An,Bn ⊆ D(H⊗n). The
regularized quantum Hoeffding anti-divergences between these sequences are defined as

H∗,∞
r (A ∥B) := lim inf

n→∞

1

n
H∗

n,r(An∥Bn), (66)

H
∗,∞
r (A ∥B) := lim sup

n→∞

1

n
H∗

n,r(An∥Bn), (67)

H∗,∞
r (A ∥B) := sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
, (68)

H
∗,∞
r (A ∥B) := sup

α>1

α− 1

α

(
r −D

∞
S,α(A ∥B)

)
. (69)

where D∞
S,α(A ∥B) and D∞

S,α(A ∥B) are defined as in Definition 2.4. If the limits exist, we define
the regularized Hoeffding divergence as

H∗,∞
r (A ∥B) := lim

n→∞

1

n
H∗

n,r(An∥Bn), (70)

H∗,∞
r (A ∥B) := sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
, (71)

where D∞
S,α(A ∥B) is defined as in Definition 2.4.

Remark 3.6 (Attainment.) It is known that H∗
n,r(ρn∥σn) is upper semicontinuous in (ρn, σn)

[MSW22, Corollary V.16]. So the supremum in H∗
n,r(An∥Bn) is achieved for any compact sets.

The following results aim to establish the relationship between the two variants of the quantum
Hoeffding anti-divergence for sets and sequences of sets.

Lemma 3.5 (Finite equivalence.) Let H be a finite-dimensional Hilbert space, and r > 0 be a
real number, n ∈ N. Let An,Bn ⊆ D(H⊗n) be two sets of quantum states. Then

H∗
n,r(An∥Bn) = H∗

n,r(An∥Bn). (72)

3The anti-divergence is monotone non-decreasing under CPTP maps, so the extension to sets is based on the
supremum rather than the infimum.
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Proof. By definition, we have

H∗
n,r(An∥Bn) = sup

ρn∈An
σn∈Bn

sup
α>1

α− 1

α
(nr −DS,α(ρn∥σn)) (73)

= sup
α>1

sup
ρn∈An
σn∈Bn

α− 1

α
(nr −DS,α(ρn∥σn)) (74)

= sup
α>1

α− 1

α

nr − inf
ρn∈An
σn∈Bn

DS,α(ρn∥σn)

 (75)

= sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
(76)

= H∗
n,r(An∥Bn), (77)

where in the third line we exchange the two suprema.

It is important to note that H∗
n,r(An∥Bn) is defined as a supremum over the feasible states,

which makes its additivity property for stable sequences unclear—even though we know the Ho-
effding anti-divergence for states is subadditive. As a result, we cannot directly apply Remark 2.2
as in previous discussions of Remark 3.2. Nevertheless, the following result shows that the regu-
larization H∗,∞

r indeed exists for stable sequences and coincides with H∗,∞
r in general.

Lemma 3.6 (Asymptotic equivalence.) Let H be a finite-dimensional Hilbert space, and r > 0 be
a real number. Let A = {An}n∈N and B = {Bn}n∈N be two stable sequences of sets of quantum
states, where each An,Bn ⊆ D(H⊗n). Then it holds that

H∗,∞
r (A ∥B) = H∗,∞

r (A ∥B). (78)

Proof. We have the following chain of inequalities:

H∗,∞
r (A ∥B) = lim inf

n→∞

1

n
H∗

n,r(An∥Bn) (79)

= lim inf
n→∞

1

n
H∗
n,r(An∥Bn) (80)

= lim inf
n→∞

1

n
sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
(81)

≥ sup
α>1

lim inf
n→∞

1

n

α− 1

α

(
nr −DS,α(An∥Bn)

)
(82)

= sup
α>1

α− 1

α

(
r − lim sup

n→∞

1

n
DS,α(An∥Bn)

)
(83)

= sup
α>1

α− 1

α

(
r −D∞

S,α(An∥Bn)
)

(84)

= H∗,∞
r (A ∥B), (85)

where the second line follows from Lemma 3.5, the inequality follows by the fact that for any
sequence of numbers xα,n, lim infn→∞ supα>1 xα,n ≥ supα>1 lim infn→∞ xα,n, the second last
line follows from Remark 2.2 and the stability of the sequences.
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In the other direction, we have

H
∗,∞
r (A ∥B) = lim sup

n→∞

1

n
H∗

n,r(An∥Bn) (86)

= lim sup
n→∞

1

n
H∗
n,r(An∥Bn) (87)

= lim sup
n→∞

1

n
sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
, (88)

where the second line follows from Lemma 3.5. Note that DS,α(An∥Bn) is subadditive for stable
sequences, so we have 1

nDS,α(An∥Bn) ≥ D∞
S,α(A ∥B) for any n ∈ N. This gives

1

n
sup
α>1

α− 1

α

(
nr −DS,α(An∥Bn)

)
≤ sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
. (89)

Then taking the limit of n, we have

H
∗,∞
r (A ∥B) ≤ sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
= H∗,∞

r (A ∥B). (90)

Combining Eq. (85) and Eq. (90), we have the asserted result.

4 Hypothesis testing between two sets of quantum states

In this section, we present our main framework for hypothesis testing between sets of quantum
states, extending beyond the traditional i.i.d. setting to handle composite correlated hypotheses.
We also show how the optimal Type-I error for sets reduces to a worst-case optimization over
individual state pairs, providing a key simplification that enables our subsequent analysis.

4.1 Composite correlated hypotheses

While much of the existing literature has focused on i.i.d. sources, practical scenarios often involve
quantum states that are not fully specified (i.e., composite hypotheses [BP10, BBH21, MSW22])
such as in adversarial or black-box settings [FFF25, WT24] and exhibit correlations that preclude
a simple tensor product structure (i.e., correlated hypotheses [HMO07, HMO08, MO15b]). In this
context, the general task is to discriminate between two sets of correlated quantum states. That is,
a tester receives samples prepared according to either the set An or the set Bn, and determines,
via a quantum measurement {Mn, I −Mn}, from which set the samples originate.

As in standard hypothesis testing, two types of errors can occur: a Type-I error, where a sample
from An is incorrectly classified as coming from Bn, and a Type-II error, where a sample from
Bn is incorrectly classified as coming from An. Since we aim to control the errors for any state
within the given sets, regardless of which one is drawn, the (worst-case) Type-I error is defined by

α(An,Mn) := sup
ρn∈An

Tr[ρn(I −Mn)], (91)

and the (worst-case) Type-II error is defined by

β(Bn,Mn) := sup
σn∈Bn

Tr[σnMn]. (92)

4.2 Optimal Type-I error probability

The error exponent and strong converse exponent regimes study the optimal behavior of the Type-
I error provided that the Type-II error exponentially decays. More explicitly, the optimal Type-I
error for hypothesis testing between two sets of quantum states, An and Bn, is defined as

αn,r(An∥Bn) := min
0≤Mn≤I

{
α(An,Mn) : β(Bn,Mn) ≤ 2−nr

}
, (93)
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where the measurementMn is chosen to minimize the worst-case Type-I error α(An,Mn), subject
to the constraint that the Type-II error β(Bn,Mn) decays exponentially at a rate r. In other words,
the measurement must perform universally well for all states in An and Bn.

The following result shows that the optimal Type-I error for hypothesis testing between two
sets of quantum states is precisely determined by the most challenging pair of states from these
sets. This implies that there exists a universal measurement for An and Bn whose performance
matches that of the optimal measurement for the worst-case pair of states.

Lemma 4.1 Let H be a finite-dimensional Hilbert space, and r > 0 be a real number, n ∈ N. Let
An,Bn ⊆ D(H⊗n) be two convex sets of quantum states. Then it holds that

αn,r(An∥Bn) = sup
ρn∈An
σn∈Bn

αn,r(ρn∥σn). (94)

Proof. We begin by noting the following symmetry role between Type-I and Type-II errors:

α(An,Mn) = β(An, I −Mn) and β(Bn,Mn) = α(Bn, I −Mn). (95)

This allows us to rewrite the optimization in Eq. (93) as

αn,r(An∥Bn) = min
0≤Mn≤I

{
β(An, I −Mn) : α(Bn, I −Mn) ≤ 2−nr

}
(96)

= min
0≤Mn≤I

{
β(An,Mn) : α(Bn,Mn) ≤ 2−nr

}
(97)

= sup
ρn∈An
σn∈Bn

min
0≤Mn≤I

{
β(ρn,Mn) : α(σn,Mn) ≤ 2−nr

}
(98)

= sup
ρn∈An
σn∈Bn

min
0≤Mn≤I

{
β(ρn, I −Mn) : α(σn, I −Mn) ≤ 2−nr

}
(99)

= sup
ρn∈An
σn∈Bn

min
0≤Mn≤I

{
α(ρn,Mn) : β(σn,Mn) ≤ 2−nr

}
(100)

= sup
ρn∈An
σn∈Bn

αn,r(ρn∥σn), (101)

where the first and fourth equalities use Eq. (95), the second and fifth equalities follow by substi-
tutingMn to I−Mn in the optimization, the third equality uses [FFF24, Lemma 31] which allows
us to pull out the optimization over An,Bn for the optimal Type-II error probability when Type-I
error is restricted to a constant threshold, and the last equality is by definition.

Remark 4.1 Note that for general sets An and Bn, i.e., not necessarily convex, we have

α(An,Mn) = α(conv(An),Mn) and β(Bn,Mn) = β(conv(Bn),Mn), (102)

where conv(C ) denotes the convex hull of set C . Therefore, we have the relation that

αn,r(An∥Bn) = αn,r(conv(An)∥ conv(Bn)). (103)

5 Quantum Hoeffding bound for composite correlated hypotheses

In this section, we establish the quantum Hoeffding bound for composite correlated hypotheses.
Notably, the result holds under minimal and standard assumptions, which are satisfied by many
frameworks of interest, such as those considered in [HY25, Lam25, FFF24].
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Assumption 5.1 (Assumptions for sets of quantum states.) We denote the following assumptions
for a sequence of sets of quantum states C = {Cn}n∈N where each Cn ⊆ D(H⊗n).

(C1) Convexity: For any n ∈ N, the sets Cn are convex.

(C2) Compactness: For any n ∈ N, the sets Cn are compact.

(C3) Stability under tensor product: For any m,n ∈ N, it holds that Cm ⊗ Cn ⊆ Cm+n.

(C4) Finiteness: DP,α(A1∥B1) <∞ for α ∈ (0, 1). 4

Theorem 5.1 (Quantum Hoeffding bound for composite correlated hypotheses.) Let H be a finite-
dimensional Hilbert space. Let A = {An}n∈N and B = {Bn}n∈N be two sequences of sets of
quantum states, where each An,Bn ⊆ D(H⊗n). Let 0 < r < D∞(A ∥B) be a real number.

• (Lower bound:) If A and B satisfy assumptions (C1) and (C2):

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≥ H∞

r (A ∥B). (104)

• (Upper bound:) If A and B satisfy assumptions (C3) and (C4):

lim sup
n→∞

− 1

n
logαn,r(An∥Bn) ≤ H∞

r (A ∥B). (105)

Consequently, if A and B satisfy (C1), (C2), (C3) and (C4), then the following limit exists and

lim
n→∞

− 1

n
logαn,r(An∥Bn) = H∞

r (A ∥B). (106)

Remark 5.1 By Remark 4.1, we can remove the convexity on An and Bn in Theorem 5.1 and get

lim
n→∞

− 1

n
logαn,r(An∥Bn) = H∞

r (conv(A )∥ conv(B)), (107)

where conv(C ) := {conv(Cn)}n∈N represents the sequences of the convex hulls. This result
strengthens [MSW22, Eq. (II.65)] by establishing the tightness of the regularized Hoeffding bound.
Another related analysis of the Hoeffding bound for composite correlated hypotheses was under-
taken in [HI25, Theorem 2] for the specific case where An is a singleton and Bn is the set of
separable states. However, the lower bound provided therein is not tight in general.

5.1 Proof of the lower bound

Recall that for any V,W ∈ H+ and α ∈ (0, 1), it holds that [ACMT+07],

Tr[V αW 1−α] ≥ TrW{W ≤ V }+TrV {W > V }. (108)

Let ρn ∈ An and σn ∈ Bn. Applying the inequality with the choice V = ρn and W = 2nRσn
with an arbitrary real number R. Then we have

Tr 2nRσn{2nRσn ≤ ρn}+Tr ρn{2nRσn > ρn} ≤ 2n(1−α)RQα(ρn∥σn). (109)

4This is a mild technical assumption, requiring that there exist ρ ∈ A1 and σ ∈ B1 which are not orthogonal.
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This implies that

Tr ρn{2nRσn > ρn} ≤ 2n(1−α)RQα(ρn∥σn), (110)

Trσn{2nRσn ≤ ρn} ≤ 2−nαRQα(ρn∥σn). (111)

Now, letting the constant

R =
nr + logQα(ρn∥σn)

nα
. (112)

we get

Tr ρn{2nRσn > ρn} ≤ 2
1−α
α

n(r− 1
n
DP,α(ρn∥σn)), (113)

Trσn{2nRσn ≤ ρn} ≤ 2−nr. (114)

Let Mn = {2nRσn ≤ ρn}, which is a valid quantum measurement operator. Then Eq. (114)
implies that it is a feasible solution to the optimization problem in Eq. (5). Therefore, we have

αn,r(ρn∥σn) ≤ 2
1−α
α

n(r− 1
n
DP,α(ρn∥σn)). (115)

This gives

− 1

n
logαn,r(ρn, σn) ≥

α− 1

α

(
r − 1

n
DP,α(ρn∥σn)

)
. (116)

Taking infimum over ρn ∈ An and σn ∈ Bn on both sides, we have

− 1

n
logαn,r(An,Bn) ≥

α− 1

α

(
r − 1

n
DP,α(An∥Bn)

)
, (117)

where we use Lemma 4.1 and the assumption (C1). Taking supremum over α ∈ (0, 1), we have

− 1

n
logαn,r(An,Bn) ≥

1

n
Hn,r(An∥Bn) =

1

n
Hn,r(An∥Bn), (118)

where the equality follows from Lemma 3.2 and the assumptions (C1) and (C2).
Taking limit of n, we have

lim inf
n→∞

− 1

n
logαn,r(An,Bn) ≥ lim inf

n→∞

1

n
Hn,r(An∥Bn) = H∞

r (A ∥B). (119)

5.2 Proof of the upper bound

We can easily prove the upper bound for limit inferior as follows. For any fixed m ∈ N any
ρm ∈ Am, σm ∈ Bm, then

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≤ lim inf

n→∞
− 1

mn
logαmn,r(Amn,Bmn) (120)

≤ lim inf
n→∞

− 1

mn
log sup

ρmn∈Amn
σmn∈Bmn

αmn,r(ρmn, σmn) (121)

≤ lim inf
n→∞

− 1

mn
logαmn,r(ρ

⊗n
m , σ⊗n

m ) (122)

=
1

m
Hm,r(ρm∥σm), (123)

where the first inequality follows as the lower limit of a subsequence is no smaller than the lower
limit of the sequence, the second inequality holds trivially as αn,r(An∥Bn) ≥ αn,r(ρn∥σn) for
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any ρn ∈ An, σn ∈ Bn by definition, the third inequality follows by taking a particular feasi-
ble solution and the assumption (C3), the equality follows from the quantum Hoeffding bound
between two quantum states (see Eq. (6)). As this holds for any ρm ∈ Am, σm ∈ Bm, we have

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≤

1

m
Hm,r(Am∥Bm). (124)

Taking limit of m, we get

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≤ lim inf

m→∞

1

m
Hm,r(Am∥Bm) = H∞

r (A ∥B), (125)

where the equality follows from the stability assumption (C3) and Eq. (42).

The above arguement only gives the upper bound for limit inferior by choosing a suitable
subsequence of i.i.d. states. However, we show that the upper bound can be strengthened further
to limit superior by carefully designing a sequence of states whose limit superior is also upper
bounded by the regularized Hoeffding divergence. However, as this sequence is not i.i.d. states
anymore, its analysis is more challenging and requires the Nussbaum-Szkoła distributions [NS09]
and the Gärtner-Ellis theorem [DZ10].

Let the spectral decompositions of ρ and σ be given by

ρ =
d∑

i=1

λi|ui⟩⟨ui| and σ =
d∑

j=1

µj |vj⟩⟨vj |, (126)

where |ui⟩ and |vj⟩ are two orthonormal bases and λi and µj are the corresponding eigenvalues,
respectively. Then the Nussbaum-Szkoła distributions of ρ, σ are defined by

(Pρ,σ)(i, j) = λi|⟨ui|vj⟩|2 and (Qρ,σ)(i, j) = µj |⟨ui|vj⟩|2, (127)

where i, j ∈ {1, · · · , d}.
In the remaining discussion of this section, let log be a logarithm with natural base e for

simplicity. Given a sequence of random variables {Xn}n∈N, the asymptotic cumulant generating
function is defined as

ΛX(t) := lim
n→∞

1

n
logE [exp(ntXn)] , (128)

provided that the limit exists. For our purpose, it is sufficient to use the following variant of the
Gärtner-Ellis theorem due to [Che00, Theorem 3.6] (see also [HT16, Proposition 17]).

Lemma 5.1 Assume that the asymptotic cumulant generating function t 7→ ΛX(t) exists and is
differentiable in some interval (a, b). Then, for any x ∈ (limt→a+ Λ′

X(t), limt→b− Λ′
X(t)),

lim sup
n→∞

− 1

n
log Pr{Xn ≥ x} ≤ sup

t∈(a,b)
{tx− ΛX(t)}. (129)

Lemma 5.2 Let m ∈ N be any integer. Let ρ1 ∈ A1, σ1 ∈ B1 and ρm ∈ Am, σm ∈ Bm be
quantum states such that DP,α(ρ1∥σ1) < ∞ and DP,α(ρm∥σm) < ∞ for any α ∈ (0, 1). We set
k := ⌊n/m⌋ and construct quantum states

ρ(n) := ρ⊗n−km
1 ⊗ ρ⊗k

m and σ(n) := σ⊗n−km
1 ⊗ σ⊗k

m . (130)

Let ϕ(s) := 1
m log ρ1−s

m σsm. If R ∈ (− 1
mD(σm∥ρm), 1

mD(ρm∥σm)), then for any 0 ≤ Tn ≤ I ,

lim sup
n→∞

− 1

n
log
[
Tr e−nRρ(n)(I − Tn) + Trσ(n)Tn

]
≤ max

s∈(0,1)
(1− s)R− ϕ(s). (131)
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Proof. Let P (n) and Q(n) be the Nussbaum-Szkoła distributions of ρ(n) and σ(n). Let

Sn =
{
e−nRP (n) > Q(n)

}
, (132)

be a likelihood ratio test. Consider the random variable

Xn(x) :=
1

n

(
logQ(n)(x)− logP (n)(x)

)
, (133)

where x is drawn from the distribution P (n). Then we have the asymptotic cumulant generating
function of the random variable Xn as,

lim
n→∞

1

n
log
∑
x

P (n)(x) exp (snXn(x))

= lim
n→∞

1

n
log Tr (Q(n))

s
(P (n))

1−s
(134)

= lim
n→∞

1

n
log Tr(σ(n))s(ρ(n))1−s (135)

= lim
n→∞

1

n

(
(n− km) log Tr ρ1−s

1 σs1 + k log Tr ρ1−s
m σsm

)
(136)

= ϕ(s), (137)

where the second equality is a simple fact of the Nussbaum-Szkoła distributions (c.f. [ANSV08,
Proposition 1]). Note that ϕ(s) is differentiable and ϕ′(0) = − 1

mD(ρm∥σm) and ϕ′(1) =
1
mD(σm∥ρm) (see Appendix B). Applying the Gärtner-Ellis theorem in Lemma 5.1 for the ran-
dom variable Xn, interval (0, 1) and x = −R, we have

lim sup
n→∞

− 1

n
log Pr{Xn ≥ −R} ≤ sup

s∈(0,1)
−sR− ϕ(s). (138)

Similarly, consider the random variable

Yn(x) :=
1

n

(
logP (n)(x)− logQ(n)(x)

)
, (139)

where x is drawn from the distribution Q(n). Then we have the asymptotic cumulant generating
function of the random variable Yn as,

lim
n→∞

1

n
log
∑
x

Q(n)(x) exp (tnYn(x))

= lim
n→∞

1

n
log Tr (Q(n))

1−t
(P (n))

t
(140)

= lim
n→∞

1

n
log Tr(σ(n))1−t(ρ(n))t (141)

= lim
n→∞

1

n

(
(n− km) log Tr ρt1σ

1−t
1 + k log Tr ρtmσ

1−t
m

)
(142)

= ϕ(1− t). (143)

Applying again the Gärtner-Ellis theorem in Lemma 5.1 for the random variable Yn, interval (0, 1)
and x = R, we have

lim sup
n→∞

− 1

n
log Pr{Yn ≥ R} ≤ sup

t∈(0,1)
tR− ϕ(1− t). (144)
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By direct calculation, we have the relations

lim sup
n→∞

− 1

n
log Pr{Xn ≥ −R} = lim sup

n→∞
− 1

n
log TrP (n)(I − Sn), (145)

lim sup
n→∞

− 1

n
log Pr{Yn ≥ R} = lim sup

n→∞
− 1

n
log TrQ(n)Sn. (146)

Moreover, the Nussbaum-Szkoła theorem (c.f. [Hay17, Lemma 3.4]) implies that for any test Tn,

Tr e−nRρ(n)(I − Tn) + Trσ(n)Tn ≥ 1

2

(
Tr e−nRP (n)(I − Sn) + TrQ(n)Sn

)
. (147)

Combining Eqs. (138), (144), (145), (146) and (147), we have

lim sup
n→∞

− 1

n
log
[
Tr e−nRρ(n)(I − Tn) + Trσ(n)Tn

]
≤ lim sup

n→∞
− 1

n
log

1

2

[
Tr e−nRP (n)(I − Sn) + TrQ(n)Sn

]
(148)

≤ min

{
R+ sup

s∈(0,1)
−sR− ϕ(s), sup

t∈(0,1)
tR− ϕ(1− t)

}
(149)

= sup
s∈(0,1)

(1− s)R− ϕ(s), (150)

where the last equality follows by replacing t with 1 − s. Finally, as the objective function in
Eq. (150) is concave and its first derivative is given by −R− ϕ′(s), there is a unique critical point
that achieves the maximum if R ∈ (−ϕ′(1),−ϕ′(0)). Therefore, the supremum is attained.

With the above Lemma 5.2, we are ready to show the upper bound for limit superior. That is,
we aim to show that

lim sup
n→∞

− 1

n
logαn,r(An∥Bn) ≤ H∞

r (A ∥B). (151)

For this, we plan to show for any fixed m ∈ N,

lim sup
n→∞

− 1

n
logαn,r(An∥Bn) ≤

1

m
Hm,r(Am∥Bm). (152)

If Hm,r(Am∥Bm) = ∞, the upper bound holds trivially. It remains to show Eq. (152) when
Hm,r(Am∥Bm) <∞. So for any δ > 0, there exist ρm ∈ Am and σm ∈ Bm such that

Hm,r(ρm∥σm) ≤ Hm,r(Am∥Bm) + δ <∞. (153)

This implies that DP,α(ρm∥σm) <∞ for any α ∈ (0, 1). Otherwise, we will have a contradiction
to the finiteness of Hm,r(ρm∥σm) by definition in Eq. (27). Using this choice of ρm and σm, we
construct the sequence of states ρ(n) and σ(n) as in Lemma 5.2.

Combining Lemma 5.2 and Lemma A.4, we have for any test with Trσ(n)Tn ≤ e−nr, that

lim sup
n→∞

− 1

n
log
[
Tr e−nRρ(n)(I − Tn) + Trσ(n)Tn

]
≥ lim sup

n→∞
− 1

n
log
[
Tr e−nRρ(n)(I − Tn) + e−nr

]
(154)

= min

{
r,R+ lim sup

n→∞
− 1

n
log Tr ρ(n)(I − Tn)

}
, (155)

where the equality follows from Lemma A.4. Therefore, by Lemma 5.2, we have

min

{
r,R+ lim sup

n→∞
− 1

n
log Tr ρ(n)(I − Tn)

}
≤ max

s∈(0,1)
(1− s)R− ϕ(s). (156)
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Let r′ < r. From Lemma B.2, we know that the optimization

max
s∈(0,1)

−ϕ(s)− sr′

1− s
(157)

has a unique maximizer sr′ ∈ (0, 1) such that r′ = (sr′ − 1)ϕ′(sr′)− ϕ(sr′). We set

Rr′ :=
ϕ(sr′) + r′

1− sr′
= −ϕ′(sr′). (158)

It is clear that Rr′ ∈ (−ϕ′(1),−ϕ′(0)) = (− 1
mD(σm∥ρm), 1

mD(ρm∥σm)). By the proof of
Lemma 5.2, maxs∈(0,1)(1 − s)R − ϕ(s) is uniquely achieved at point s such that R = −ϕ′(s).
For R = Rr′ , Eq. (158) implies that the maximum is uniquely achieved at s = sr′ . That is,

max
s∈(0,1)

(1− s)Rr′ − ϕ(s) = (1− sr′)Rr′ − ϕ(sr′) = r′. (159)

Then, by Eq. (156) we have

min

{
r,Rr′ + lim sup

n→∞
− 1

n
log Tr ρ(n)(I − Tn)

}
≤ r′. (160)

Then, we have

Rr′ + lim sup
n→∞

− 1

n
log Tr ρ(n)(I − Tn) ≤ r. (161)

Otherwise, it will contradict to the assumption that r′ < r. Thus, we have

lim sup
n→∞

− 1

n
log Tr ρ(n)(I − Tn) ≤ r −Rr′ . (162)

Since sr is continous function in r (see Lemma B.3) and ϕ(s) is a continous function in s (see
Lemma B.1), Rr′ is a continuous function in r′. Therefore,

lim
r′→r−

Rr′ = Rr :=
ϕ(sr) + r

1− sr
. (163)

This gives

lim sup
n→∞

− 1

n
log Tr ρ(n)(I − Tn) ≤ r −Rr. (164)

By direct calculation, the right-hand side gives

r −Rr =
−ϕ(sr)− srr

1− sr
= max

s∈(0,1)

−ϕ(s)− sr

1− s
=

1

m
Hm,r(ρm∥σm), (165)

where the second equality follows from the optimality of sr. By the choice of ρm, σm in Eq. (153),
we have

lim sup
n→∞

− 1

n
log Tr ρ(n)(I − Tn) ≤

1

m
Hm,r(Am∥Bm) +

δ

m
. (166)

This implies that

lim sup
n→∞

− 1

n
logαn,r(ρ

(n)∥σ(n)) ≤ 1

m
Hm,r(Am∥Bm) +

δ

m
. (167)
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As we have the trivial relation that αn,r(An∥Bn) ≥ αn,r(ρn∥σn) for any ρn ∈ An, σn ∈ Bn by
definition, this implies that

lim sup
n→∞

− 1

n
logαn,r(An∥Bn) ≤

1

m
Hm,r(Am∥Bm) +

δ

m
. (168)

As this holds for any δ > 0, we have

lim sup
n→∞

− 1

n
logαn,r(An∥Bn) ≤

1

m
Hm,r(Am∥Bm). (169)

Finally, taking the limit m→ ∞, we have

lim sup
n→∞

− 1

n
logαn,r(An∥Bn) ≤ H∞

r (A ∥B), (170)

where the existence of the limit on the right hand side follows from the stability assumption (C3)
and Eq. (42). This finishes the proof of the upper bound.

6 Strong converse exponent for composite correlated hypotheses

In this section, we extend the strong converse exponent from the i.i.d. setting to the broader context
of composite correlated hypotheses and shows that the strong converse exponent is lower bounded
by a regularized quantum Hoeffding anti-divergence between the sets in general. We also provide
a matching upper bound when the null hypothesis is a singleton i.i.d. state.

For the upper bound, we need to introduce the permutation invariance. Let UAn denote the
natural unitary representation of the permutation group Sn that permutes the subsystems ofAn :=
A1A2 · · ·An. An linear operator XAn ∈ L (An) is called permutation invariant if it satisfies
XAn = UAn(π)XAnUAn(π)† for all π ∈ Sn. A set of quantum state An is called permutation
invariant if ρn ∈ An implies that UAn(π)ρAnUAn(π)† ∈ An for all π ∈ Sn. Let A be a system
with |A| = d. For all n ∈ N there exists a permutaion invariant state ωn

An ∈ D(An), which we
call universal state, such that for all permutation invariant states ρAn ∈ D(An), we have

ρAn ≤ gn,d ω
n
An , with gn,d ≤ (n+ 1)d

2−1. (171)

Note that such a universal state exists and has been explicitly constructed in [HT16].

Assumption 6.1 (Assumptions for sets of quantum states.) We denote the following assumptions
for a sequence of sets of quantum states C = {Cn}n∈N where each Cn ⊆ D(H⊗n).

(C5) Permutation invariance: For any n ∈ N, the sets Cn are permutation invariant.

(C6) Universal state containment: For any n ∈ N, the sets Cn contains a universal state.

Theorem 6.1 (Strong converse exponent for composite correlated hypotheses.) Let H be a finite-
dimensional Hilbert space. Let A = {An}n∈N and B = {Bn}n∈N be two sequences of sets of
quantum states, where each An,Bn ⊆ D(H⊗n). Let r > D∞(A ∥B) be a real number.

• (Lower bound:) Then, regardless of the structure of A and B, we have

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B). (172)

• (Upper bound:) If An = {ρ⊗n} is a singleton i.i.d. state and B satisfies assumptions (C1),
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(C5) and (C6), and moreover, D∞
S,α(A ∥B) exists and is differentiable for α ≥ 1, then

lim sup
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≤ H∗,∞

r (A ∥B). (173)

Consequently, with the same assumptions for the upper bound and additionally assuming that B
satisfies assumption (C3), then the limit exists and is given by

lim
n→∞

− 1

n
log(1− αn,r(An∥Bn)) = H∗,∞

r (A ∥B). (174)

Remark 6.1 This recovers the result of [HT16] by taking An = {ρ⊗n
AB} and Bn = {ρ⊗n

A ⊗ σBn :
σ ∈ D(Bn)}, which satisfy all the required assumptions. It also applies to other interesting cases,
such as the resource theory of coherence and entanglement, as discuss in Section 7.4. Moreover,
by Remark 4.1, the convexity of An and Bn can be removed by replacing the right hand side with
H∗,∞

r (conv(A )∥ conv(B)), where conv(C ) := {conv(Cn)}n∈N denotes the convex hulls.

6.1 Proof of the lower bound

For any δ > 0, let ρn ∈ An, σn ∈ Bn such that

DS,α(ρn∥σn) ≤ DS,α(An∥Bn) + δ. (175)

By standard arguments, e.g. [CMW16, Lemma 5], we have for any 0 ≤Mn ≤ I , that

1

n
log (1− Tr[(I −Mn)ρn]) ≤

α− 1

α

(
1

n
DS,α(ρn∥σn) +

1

n
log Tr[Mnσn]

)
. (176)

Since Tr[(I −Mn)ρn] ≤ α(An,Mn) and Tr[Mnσn] ≤ β(Bn,Mn), it follows that

1

n
log (1− α(An,Mn)) ≤

α− 1

α

(
1

n
DS,α(An∥Bn) + δ +

1

n
log β(Bn,Mn)

)
. (177)

As this holds for any δ > 0, we have

1

n
log (1− α(An,Mn)) ≤

α− 1

α

(
1

n
DS,α(An∥Bn) +

1

n
log β(Bn,Mn)

)
. (178)

For any 0 ≤Mn ≤ I such that β(Bn,Mn) ≤ 2−nr, we obtain

1

n
log (1− α(An,Mn)) ≤

α− 1

α

(
1

n
DS,α(An∥Bn)− r

)
. (179)

Taking the supremum over all such Mn, we find

− 1

n
log (1− αn,r(An∥Bn)) ≥

α− 1

α

(
r − 1

n
DS,α(An∥Bn)

)
. (180)

Since this holds for any α > 1, we have

− 1

n
log (1− αn,r(An∥Bn)) ≥ H∗

n,r(An∥Bn), (181)

where we use the finite equivalence in Lemma 3.5. Taking limit inferior of n on both sides,

lim inf
n→∞

− 1

n
log (1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B). (182)

24



6.2 Proof of the upper bound

Before the proof of the upper bound, we require the following lemma that simplifies the optimiza-
tion over Bn via the universal state. Let X =

∑
λ∈spec(X) λEλ be the spectral decomposition of

the Hermitian operatorX , where Eλ are projectors and spec(X) is its discrete specturm. Then the
pinching map for this spectral decomposition is defined as PX(·) :=

∑
iEi(·)Ei.

Lemma 6.1 Let An = {ρn} be a permutation invariant state and Bn be a convex and permutation
invariant set, which contains a universal state ωn as defined in Eq. (171). Then for any α ≥ 1/2,

1

n
DS,α(Pωn(ρn)∥ωn) =

1

n
DS,α(ρn∥Bn) +O

(
log n

n

)
. (183)

In particular,

lim
n→∞

1

n
DS,α(Pωn(ρn)∥ωn) = D∞

S,α(A ∥B). (184)

Proof. By the permutation invariance and the convexity of the sandwiched Rényi divergence, we
know that DS,α(ρn∥Bn) can be achieved at some permutation invariant state σn ∈ Bn. Note also
that σn ≤ gn,d ωn for any permutation invariant state σn. Therefore, we have

DS,α(Pωn(ρn)∥ωn) ≤ DS,α(ρn∥ωn) ≤ DS,α(ρn∥σn) + log gn,d, (185)

where the first inequality uses the data processing inequality and the second inequality uses the
monotonicity of the sandwiched Renyi divergence under scaling of the second argument. As this
holds for any permutation invariant state σn ∈ Bn, we have

DS,α(Pωn(ρn)∥ωn) ≤ DS,α(ρn∥Bn) + log gn,d. (186)

On the other hand, we have [HT16, Lemma 3],

DS,α(Pωn(ρn)∥ωn) ≥ DS,α(ρn∥ωn)− 2 log |spec(ωn)|, (187)

where |spec(·)| denotes the number of distinct eigenvalues. Since ωn ∈ Bn, we have

DS,α(Pωn(ρn)∥ωn) ≥ DS,α(ρn∥Bn)− 2 log |spec(ωn)|. (188)

As ωn is permutation invariant, we have |spec(ωn)| ≤ (n+ 1)d. This completes the proof.

Remark 6.2 In the above case, D∞
S,α(A ∥B) is a pointwise limit of 1

nDS,α(Pωn(ρn)∥ωn) and the
convergence is uniform in α. Therefore, D∞

S,α(A ∥B) is continuous and monotonely increasing in
α. Similarly, the function tD∞

S,1+t(A ∥B) is continous and convex in t.

Now, we are ready to prove the upper bound. The proof follows the similar idea as in [HT16].
Let Pωn(ρn) be the pinching of ρn with respect to ωn. Then Pωn(ρn) and ωn commute. Let |vxn⟩
be a common orthonormal eignbasis and we define the classical probability distributions

Pn(x) := ⟨vxn |Pωn(ρn)|vxn⟩, Qn(x) := ⟨vxn |ωn|vxn⟩. (189)

Let Xn be a random variable distributed according to Pn and X ′
n be a random variable distributed

according to Qn. Define

Sn := {Pωn(ρn) ≥ exp(λn)ωn}. (190)
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Then we have the relation that

α(ρn, Sn) = Tr[ρn(I − Sn)] (191)

= Tr[Pωn(ρn)(I − Sn)] (192)

= Pr[Pn(Xn) < exp(λn)Qn(Xn)], (193)

where the second equality follows as TrPX(Y )X = TrY X for all Y . Similarly, we have

β(Bn, Sn) = sup
σn∈Bn

Tr[σnSn] (194)

= Tr[σ′nSn] (195)

≤ Tr[gn,d ωnSn] (196)

≤ gn,d Pr[Pn(X
′
n) ≥ exp(λn)Qn(X

′
n)]. (197)

Here we use the fact that Sn is permutation invariant and therefore the optimal solution is achieved
at some permutation invariant state σ′n, which is then upper bounded by gn,d ωn. For arbitrary fixed
s ∈ (1,∞), we choose λn such that

λn :=
1

s

[
ϕ(1− s|Pn∥Qn) + log gn,d + nr

]
. (198)

Consider a random variable

Zn :=
1

n
(logPn(Xn)− logQn(Xn)− λn) . (199)

Recall that for any V,W ∈ H+ and α ∈ (0, 1), it holds that [ACMT+07],

Tr[V αW 1−α] ≥ TrW{W ≤ V }+TrV {W > V }. (200)

Let V = ρn and W = exp(λn)ωn. Then we have

β(Bn, Sn) ≤ gn,dTr[Snωn] ≤ gn,d exp(−sλn) Tr[P s
nQ

1−s
n ]. (201)

Hence, by the choice of λn, we have β(Bn, Sn) ≤ exp(−nr). Morover,

1− α(ρn, Sn) = Pr[Pn(Xn) ≥ exp(λn)Qn(Xn)] = Pr[Zn ≥ 0]. (202)

So the optimal Type-I error satisfies

1− αn,r(ρn∥Bn) ≥ 1− α(ρn, Sn) = Pr[Zn ≥ 0]. (203)

This implies that

lim sup
n→∞

− 1

n
log(1− αn,r(ρn∥Bn)) ≤ lim sup

n→∞
− 1

n
log Pr[Zn ≥ 0]. (204)

In the following, we will use the Gärtner-Ellis theorem to upper bound the right-hand side. For
this, we need to compute the asymptotic cumulant generating function of Zn. For t ≥ −1

2 ,

ΛZ(t) := lim
n→∞

1

n
logE[entZn ] (205)

= lim
n→∞

1

n
log

[∑
x

Pn(x) exp (t (logPn(x)− logQn(x)− λn))

]
(206)

= lim
n→∞

1

n

[
log
∑
x

Pn(x)
1+tQn(x)

−t − t

s
[ϕ(1− s|Pn∥Qn) + log gn,d + nr]

]
(207)

= lim
n→∞

1

n

[
log TrP 1+t

n Q−t
n − t

s
[ϕ(1− s|Pn∥Qn) + log gn,d + nr]

]
(208)

= lim
n→∞

1

n

[
ϕ(−t|Pn∥Qn)−

t

s
[ϕ(1− s|Pn∥Qn) + log gn,d + nr]

]
. (209)
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Denote g(α) := D∞
S,α(A ∥B) for α > 1 and g(1) = D∞(A ∥B). We have the relation that

ϕ(s|Pn∥Qn) = logTr[P 1−s
n Qs

n] = −sD1−s(Pn∥Qn). (210)

This means that

lim
n→∞

1

n
ϕ(−t|Pn∥Qn) = lim

n→∞

1

n
tD1+t(Pn∥Qn) (211)

= lim
n→∞

1

n
tDS,1+t(Pωn(ρn)∥ωn) = tg(1 + t), (212)

where the second equality follows as Pωn(ρn) and ωn commute and the last equality follows from
Lemma 6.1. Similarly, we have

lim
n→∞

1

n
ϕ(1− s|Pn∥Qn) = lim

n→∞

1

n
(s− 1)Ds(Pn∥Qn) (213)

= lim
n→∞

1

n
(s− 1)DS,s(Pωn(ρn)∥ωn) = (s− 1)g(s). (214)

Define the function

f(s, t) := t
(
r − sg(1 + t) + (s− 1)g(s)

)
. (215)

Then we have

ΛZ(t) = −f(s, t)
s

. (216)

As we assume that g(α) is differentiable in α for α ≥ 1. Then f(s, t) is differentiable in both s
and t. Moreover, we have

Λ′
Z(t) = −1

s

(
r − sg(1 + t) + (s− 1)g(s)− tsg′(1 + t))

)
. (217)

Since g(α) is monotonically increasing and differentiable for α ≥ 1, we have for any s > 1,

lim
t→0+

Λ′
Z(t) = −1

s
(r − sg(1) + (s− 1)g(s)) (218)

= g(1)− s− 1

s
g(s)− r

s
(219)

≤ g(1)− s− 1

s
g(1)− r

s
(220)

=
1

s
(g(1)− r) (221)

< 0, (222)

where we use the assumption that r > g(1) = D∞(A ∥B) in the last inequality. On the other
hand, using the convexity of t 7→ ψ(t) := tg(1 + t) and ψ(0) = 0 (see Remark 6.2), we have
ψ(λt) ≤ λψ(t) for all λ ∈ (0, 1). This implies that

ψ′(t) = lim
λ→1−

ψ(t)− ψ(λt)

t(1− λ)
≥ ψ(t)

t
. (223)

and therefore we have tg′(1 + t) ≥ 0. Let t0 be such that r < g(t0 +1). Then for any s ≤ t0 +1,
we find that

lim
t→t−0

Λ′
Z(t) ≥ g(t0 + 1)− s− 1

s
g(s)− r

s
(224)

≥ g(t0 + 1)− s− 1

s
g(t0 + 1)− r

s
(225)

=
1

s
(g(t0 + 1)− r) > 0, (226)

27



where we have used that r < g(t0 + 1). Hence, applying the Gärtner-Ellis theorem in Lemma 5.1
for the random variable Zn on the interval (0, t0) and with the threshold value 0, we have

lim sup
n→∞

− 1

n
log Pr[Zn ≥ 0] ≤ sup

t∈(0,t0)
{−ΛZ(t)} ≤ sup

t∈[0,t0]

f(s, t)

s
. (227)

As this holds for any s ∈ (1, t0 + 1], we have from Eq. (204) that

lim sup
n→∞

− 1

n
log(1− αn,r(ρn∥Bn)) ≤ inf

s∈(1,t0+1]
sup

t∈[0,t0]

f(s, t)

s
. (228)

By the convexity of tg(1 + t) (Remark 6.2), we known that f(s, t) is concave in t and convex in
s. We optimize t over a compact convex set and s over a convex set. Therefore, by the minimax
theorem in [HT16, Proposition 21], we can exchange the order of inf and sup. This gives

inf
s∈(1,t0+1]

sup
t∈[0,t0]

f(s, t)

s
= sup

t∈[0,t0]
inf

s∈(1,t0+1]

f(s, t)

s
(229)

= sup
t∈(0,t0]

inf
s∈(1,t0+1]

f(s, t)

s
(230)

≤ sup
t∈(0,t0]

f(t+ 1, t)

t+ 1
(231)

≤ sup
t>0

f(t+ 1, t)

t+ 1
, (232)

where the second line follows as f(s, 0) = 0 and the penultimate line follows by choosing s =
1 + t. This gives

lim sup
n→∞

− 1

n
log(1− αn,r(ρn∥Bn)) ≤ sup

t>0

f(t+ 1, t)

t+ 1
= H∗,∞

r (A ∥B). (233)

7 Applications

Since the error exponent and strong converse exponent regimes provide a finer characterization
of the trade-off between Type-I and Type-II errors than the Stein regime, we apply our results to
refine and extend several existing studies. Specifically, we: (i) strengthen the generalized quantum
Stein’s lemma in [FFF24] for hypothesis testing between sets of states; (ii) provide counterexam-
ples to the continuity of the regularized Petz Rényi divergence and Hoeffding divergence; (iii)
derive error exponents for adversarial quantum channel discrimination; and (iv) obtain error ex-
ponents for resource detection problems in coherence theory and entanglement theory.

7.1 Refining quantum Stein’s lemma between two sets of quantum states

The following generalized quantum Stein’s lemma for hypothesis testing between two sets of
quantum states was established in [FFF24, Theorem 32].

Theorem 7.1 (Generalized quantum Stein’s lemma.) Let A = {An}n∈N and B = {Bn}n∈N
be two sequences of sets of quantum states satisfying [FFF24, Assumption 24] and An,Bn ⊆
D(H⊗n) and Dmax(An∥Bn) ≤ cn, for all n ∈ N and a constant c ∈ R+. For any ε ∈ (0, 1),

lim
n→∞

− 1

n
log βε(An∥Bn) = D∞(A ∥B). (234)

The above result can be both recovered and strengthened as follows.
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Theorem 7.2 Let A = {An}n∈N and B = {Bn}n∈N be two sequences of sets satisfying the
same assumptions in Theorem 7.1. For any 0 < r < D∞(A ∥B), then

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) ≥ H∞

r (A ∥B) > 0. (235)

For any r > D∞(A ∥B), then

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B) > 0. (236)

This result shows that any Type-II error exponent below D∞(A ∥B) is achievable, with the
corresponding Type-I error decaying exponentially at a rate at least H∞

r (A ∥B). Conversely, if
the Type-II error exponent exceeds D∞(A ∥B), the Type-I error inevitably converges to one ex-
ponentially, with a rate at least H∗,∞

r (A ∥B). Thus, the regularized quantum relative entropy
D∞(A ∥B) delineates a sharp threshold for the asymptotic trade-off in hypothesis testing be-
tween two sets of quantum states. In particular, these results apply to adversarial quantum channel
discrimination, which satisfies all the required assumptions [FFF25]. See Section 7.3 for more
detailed discussion in this setting.

Proof. By the assumptions on the sequences, we have

D∞(A ∥B) = sup
α∈(0,1)

D∞
M,α(A ∥B) ≤ sup

α∈(0,1)
D∞

P,α(A ∥B) ≤ D∞(A ∥B), (237)

where DM,α refers to the measured Rényi divergence. The first equality follows from [FFF24,
Lemmas 27, 28], and the inequalities use that DM,α(ρ∥σ) ≤ DP,α(ρ∥σ) ≤ D(ρ∥σ) for any
α ∈ (0, 1). This implies

sup
α∈(0,1)

D∞
P,α(A ∥B) = D∞(A ∥B). (238)

Note that D∞
P,α(A ∥B) is monotone increasing in α. Therefore, for any 0 < r < D∞(A ∥B),

there exists α ∈ (0, 1) such that r < D∞
P,α(A ∥B). Then

H∞
r (A ∥B) = sup

α∈(0,1)

α− 1

α

(
r −D∞

P,α(A ∥B)
)
> 0, (239)

By Theorem 5.1 and Lemma 3.3, we have

lim inf
n→∞

− 1

n
logαn,r(An∥Bn) = H∞

r (A ∥B) ≥ H∞
r (A ∥B) > 0 (240)

which shows that the Type-I error decays exponentially, and thus r is an achievable rate. This
recovers the direct part of the generalized quantum Stein’s lemma in Theorem 7.1.

Since infα>1D
∞
S,α(A ∥B) = D∞(A ∥B) [FFF24, Lemma 27] andD∞

S,α(A ∥B) is monotone
increasing in α, for any r > D∞(A ∥B), there exists α > 1 such that r > D∞

S,α(A ∥B). This
implies that

H∗,∞
r (A ∥B) = sup

α>1

α− 1

α

(
r −D∞

S,α(A ∥B)
)
> 0. (241)

Applying Theorem 6.1 and Lemma 3.6, we obtain

lim inf
n→∞

− 1

n
log(1− αn,r(An∥Bn)) ≥ H∗,∞

r (A ∥B) = H∗,∞
r (A ∥B) > 0. (242)

This shows that the Type-I error converges to one exponentially, and thus r is not an achievable
rate, recovering the converse part of the generalized quantum Stein’s lemma in Theorem 7.1.
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It is worth emphasizing that the quantum Hoeffding bound in Theorem 5.1 and the strong
converse exponent in Theorem 6.1 (Eq. (172)) hold in great generality and do not require, partic-
ularly, the polar assumption as used in [FFF24]. However, to recover the Stein’s setting from the
error exponent regime, one needs the continuity of the regularized Petz Rényi divergences, i.e.,
supα∈(0,1)D

∞
P,α(A ∥B) = D∞(A ∥B). For this, we require the polar assumption in Eq. (237).

Interestingly, a similar situation also arises in the context of best-case channel discrimination,
where the continuity of the regularized sandwiched Rényi divergence between channels is suffi-
cient to establish the quantum Stein’s lemma for two quantum channels (particularly the strong
converse part); see [FGW25, Theorem 21] for further details.

7.2 Counterexamples for the continiuity of D∞
P,α(A ∥B) at α = 1

As discussed above, our error exponent results can recover the Stein’s exponent provided the
continuity of the regularized Petz Rényi divergence holds at α = 1, i.e.,

sup
α∈(0,1)

D∞
P,α(A ∥B) = D∞(A ∥B). (243)

Therefore, for any sequences of sets A = {An}n∈N and B = {Bn}n∈N that satisfy our error
expoent assumptions but violate the Stein’s lemma, there must be a discontinuity in D∞

P,α(A ∥B)
at α = 1, i.e., a violation of Eq. (243). Such examples can be found in [Hay25].

In this section, we provide a more direct analysis of these counterexamples and introduce
additional ones. We show that such discontinuities can occur in both nonconvex and convex
settings, as well as in scenarios where a composite hypothesis is tested against a simple hypothesis
(see Example 7.1 and Example 7.2), and conversely, where a simple hypothesis is tested against
a composite hypothesis (see Example 7.3). Furthermore, the example presented in [LBR24] for
the nonadditivity of the Petz Rényi divergence between two sets, makes both sides of Eq. (243)
diverge, which is not a valid counterexample for discontinuity

In the following, we denote H(p) := −p log p − (1 − p) log(1 − p) as the binary entropy
function and D(p∥q) := p log p

q + (1 − p) log 1−p
1−q as the classical relative entropy between two

binary distributions (p, 1− p) and (q, 1− q). Denote the set of types with length n by Pn, which
is the set of all empirical distributions. Give P ∈ Pn, the type class of P , denoted as Tn(P ), is the
set of bit strings whose empirical distribution is P . We choose two rational numbers p1 = m1

m and
p2 = m2

m such that p1 < p2 ∈ (0, p3). Let Pj = (pj , 1− pj) be the binary distribution. Consider
a two-dimensional Hilbert space H spanned by {|0⟩, |1⟩} and define the qubit state

ρ(p) := p|0⟩⟨0|+ (1− p)|1⟩⟨1|. (244)

We denote the uniform distribution over Tkm(Pj) in H⊗km by

ρj,km :=
1

|Tkm(Pj)|
∑

xkm∈Tkm(Pj)

|xkm⟩⟨xkm| for j = 1, 2, (245)

where |Tkm(Pj)| =
(
km
kmj

)
is the size of the type class. Note that ρ1,km and ρ2,km are orthogonal,

as their supports are defined by different type classes. We have ρ(pj) = Trkm−1 ρj,km, where the
partial trace can be understood as tracing out any km−1 subsystems, as it gives the same marginal
state. In the following examples, we regard the Hilbert space H⊗m as a one-copy system.

Example 7.1 (Nonconvex sets, An composite and Bn simple i.i.d.) Let ρ(p) and ρj,km defined as
Eqs. (244) and (245), respectively. We define the convex mixiture,

ρkm := λρ1,km + (1− λ)ρ2,km, (246)
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with the choice of λ ∈ (0, 1) such that

min

{
1

2
log

2πm1(m−m1)

m
,
1

2
log

2πm2(m−m2)

m

}
≥ H(λ). (247)

Consider the set of states

An :=

{
ρk1m ⊗ · · · ⊗ ρklm : k1, . . . , kl ≥ 1,

l∑
i=1

ki = n

}
, Bn =

{
ρ(p3)

⊗mn

}
. (248)

Then sequences A := {An} and B := {Bn} are stable under tensor product. But we have

sup
α∈(0,1)

D∞
P,α(A ∥B) < D∞(A ∥B). (249)

Moreover, we have

lim
r→0

H∞
r (B∥A ) < D∞(A ∥B), (250)

lim
r→0

H∞
r (B∥A ) < D∞(A ∥B), (251)

indicating that the Hoeffding bound cannot recover the Stein’s expoent in this case.

Proof. Using the standard result in type method [CT06, Theorem 11.1.2], we have

D(ρ1,km∥ρ(p3)⊗km) = − log

(
km

km1

)
+ km(D(p1∥p3) +H(p1)), (252)

D(ρ2,km∥ρ(p3)⊗km) = − log

(
km

km2

)
+ km(D(p2∥p3) +H(p2)). (253)

As ρ1,km and ρ2,km are orthogonal, we have

D(ρkm∥ρ(p3)⊗km) = λD(ρ1,km∥ρ(p3)⊗km) + (1− λ)D(ρ2,km∥ρ(p3)⊗km)−H(λ). (254)

Note that the binomial coefficient
(
n
l

)
is evaluated as [MS81](

n

l

)
≤
√

n

2πl(n− l)
2nH(l/n), ∀1 ≤ l ≤ n− 1. (255)

Thus, we have

− log

(
km

km1

)
+ kmH(p1)−H(λ) ≥ 1

2
log

2πkm1(m−m1)

m
−H(λ) ≥ 0, (256)

− log

(
km

km2

)
+ kmH(p2)−H(λ) ≥ 1

2
log

2πkm2(m−m2)

m
−H(λ) ≥ 0, (257)

where the last inequality follows from the choice of λ in Eq. (247). Discarding these two positive
terms, we have

D(ρkm∥ρ(p3)⊗km) ≥km((1− λ)D(p2∥p3) + λD(p1∥p3)). (258)

By the additivity of quantum relative entropy, we have

D(ρk1m ⊗ · · · ⊗ ρklm∥ρ(p3)⊗nm) ≥ nm((1− λ)D(p2∥p3) + λD(p1∥p3)). (259)
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This implies that

D(An∥Bn) ≥ nm((1− λ)D(p2∥p3) + λD(p1∥p3)), (260)

D∞(A ∥B) ≥ m((1− λ)D(p2∥p3) + λD(p1∥p3)). (261)

Using k = n in Eq. (254), we obtain

lim
n→∞

1

n
D(ρnm∥ρ(p3)⊗nm) = m((1− λ)D(p2∥p3) + λD(p1∥p3)), (262)

where some terms vanish because of the Stirling’s approximation [CT06, Example 11.1.3]

1

n+ 1
2nH(k/n) ≤

(
n

k

)
≤ 2nH(k/n). (263)

Note that ρnm ∈ An by choosing l = 1, so we have D(An∥Bn) ≤ D(ρnm∥ρ(p3)⊗nm). Com-
bined with Eq. (262), this implies that

D∞(A ∥B) ≤ m((1− λ)D(p2∥p3) + λD(p1∥p3)). (264)

Therefore, we have from Eqs. (261) and (264) that

D∞(A ∥B) = m((1− λ)D(p2∥p3) + λD(p1∥p3)). (265)

We now estimate the Petz Rényi divergence. For α ∈ (0, 1), we have

Tr(ρ1,km)α(ρ(p3)
⊗km)1−α =

[(
km

km1

)
2−km(D(p1∥p3)+H(p1))

]1−α

, (266)

Tr(ρ2,km)α(ρ(p3)
⊗km)1−α =

[(
km

km2

)
2−km(D(p2∥p3)+H(p2))

]1−α

, (267)

by the type method [CT06, Theorem 11.1.2]. Since ρ1,km and ρ2,km are orthogonal, we have

Tr(ρkm)α(ρ(p3)
⊗km)1−α

= λαTr(ρ1,km)α(ρ(p3)
⊗km)1−α + (1− λ)αTr(ρ2,km)α(ρ(p3)

⊗km)1−α. (268)

Using Lemma A.4 and the fact that D(p2∥p3) < D(p1∥p3), we have for any α ∈ (0, 1),

D∞
P,α(A ∥B) ≤ lim

n→∞

1

n
DP,α(ρnm∥ρ(p3)⊗nm) = mD(p2∥p3), (269)

where some terms vanish because of the Stirling’s approximation in Eq. (263).
Combining Eqs.(265) and (269), we have the strict inequality,

sup
α∈(0,1)

D∞
P,α(A ∥B) < D∞(A ∥B). (270)

Now, we further analyze the Hoeffding bound. For r > 0, we have from the alternative
expression of the Hoeffding bound (similar to Remark 3.4) that

Hn,r(ρ(p3)
⊗nm∥ρnm) = sup

α∈(0,1)

(
− α

1− α
nr +DP,α(ρnm∥ρ(p3)⊗nm)

)
. (271)

By Eq. (262), we have for any δ > 0,

1

n
DP,α(ρnm∥ρ(p3)⊗nm) ≤ 1

n
D(ρnm∥ρ(p3)⊗nm) (272)

≤ m((1− λ)D(p2∥p3) + λD(p1∥p3)) + δ =: z, (273)
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for sufficiently large n. Then for any α > tr :=
z

r+z ∈ (0, 1), we can check that

− α

1− α
nr +DP,α(ρnm∥ρ(p3)⊗nm) < 0. (274)

So for r > 0, we have

sup
α∈(0,1)

(
− α

1− α
nr +DP,α(ρnm∥ρ(p3)⊗nm)

)
(275)

= sup
α∈(0,tr]

(
− α

1− α
nr +DP,α(ρnm∥ρ(p3)⊗nm)

)
. (276)

Therefore, we have

Hn,r(ρ(p3)
⊗nm∥ρnm) = sup

α∈(0,tr]

(
− α

1− α
nr +DP,α(ρnm∥ρ(p3)⊗nm)

)
. (277)

This implies that

lim
n→∞

1

n
Hn,r(ρ(p3)

⊗nm∥ρnm)

= lim
n→∞

1

n
sup

α∈(0,tr]

(
− α

1− α
nr +DP,α(ρnm∥ρ(p3)⊗nm)

)
(278)

≤ lim
n→∞

1

n
sup

α∈(0,tr]
DP,α(ρnm∥ρ(p3)⊗nm) (279)

= lim
n→∞

1

n
DP,tr(ρnm∥ρ(p3)⊗nm) (280)

=mD(p2∥p3), (281)

where the inequality follows by throwing away a negative term, the second equality follows by the
monotonicity of Petz Rényi divergence in α and the last equality follows from Eq. (269).

This implies that

H∞
r (B∥A ) ≤ lim

n→∞

1

n
Hn,r(ρ(p3)

⊗nm∥ρnm) ≤ mD(p2∥p3). (282)

Similarly, we have

H∞
r (B∥A ) = sup

α∈(0,1)

(
− α

1− α
r +D∞

P,α(A ∥B)

)
(283)

≤ sup
α∈(0,1)

(
− α

1− α
nr +mD(p2∥p3)

)
= mD(p2∥p3), (284)

where the inequality follows from Eq. (269).
Thus, combining Eqs. (265), (282), and (284), we have

lim
r→0

H∞
r (B∥A ) < D∞(A ∥B), (285)

lim
r→0

H∞
r (B∥A ) < D∞(A ∥B). (286)

This completes the proof.

Here we note that, through additional analysis, we can also establish that D∞
P,α(A ∥B) =

mD(p2∥p3) for α ∈ (0, 1) satisfying

λα2−(1−α)mD(p1∥p3) ≤ (1− (1− λ)α)2−(1−α)mD(p2∥p3). (287)
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Figure 5: Discontinuities in the regularized Petz Rényi divergence and Hoeffding divergence given
in Example 7.1. We choose m1 = 1, m2 = 3, m = 10, p3 = λ = 0.5. Panel (a) shows the upper
bound for Petz Rényi divergence 1

nDP,α(ρnm∥ρ(p3)⊗nm) for different values of n as a function of
α, which can be computed from Eq. (268). The solid line indicates tightness of the upper bound as
analyzed in Eq. (297), and the marked dot at α = 1 corresponds to the regularized relative entropy
in Eq. (265). Panel (b) displays the upper bound for Hoeffding divergence 1

nHn,r(ρ(p3)
⊗nm∥ρnm)

from Eq. (271) for different n as a function of r; for n = ∞, the upper bound from Eq. (282) is
used. The marked dot at r = 0 again indicates the regularized relative entropy from Eq. (265).
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At least, when α is sufficiently close to 1, the above condition holds. Since(
l1 + l2
l

)
=

l∑
l′=0

(
l1

l − l′

)(
l2
l′

)
≥
(

l1
l − l′′

)(
l2
l′′

)
(288)

for l′′ ∈ [0, l], we have (
km

kmj

)l

≤
(
lkm

lkmj

)
≤ 2klmH(pj), (289)

for j = 1, 2, where the second inequality follows from Eq. (255). Then, we have

λα
[(

km

km1

)
2−km(D(p1∥p3)+H(p1))

]1−α

≤ λα2−(1−α)kmD(p1∥p3) (290)

≤ (1− (1− λ)α)2−(1−α)mD(p2∥p3)2−(1−α)(k−1)mD(p1∥p3) (291)

≤ (1− (1− λ)α)2−(1−α)kmD(p2∥p3), (292)

where the first inequality follows from Eq. (289) and the second inequality follows from Eq. (287)
and the fact that D(p2∥p3) < D(p1∥p3). Thus, we have

Tr(ρkm)α(ρ(p3)
⊗km)1−α

≤(1− (1− λ)α)2−(1−α)kmD(p2∥p3) + (1− λ)α2−(1−α)kmD(p2∥p3) (293)

=2−(1−α)kmD(p2∥p3), (294)

where the inequality follows from Eqs. (289) and (292). By the additivity of Petz Rényi diver-
gence, we have

DP,α(ρk1m ⊗ · · · ⊗ ρklm∥ρ(p3)⊗nm) ≥ nmD(p2∥p3). (295)

This implies that

D∞
P,α(A ∥B) ≥ mD(p2∥p3). (296)

Combining Eqs. (269) and (296), we have

D∞
P,α(A ∥B) = mD(p2∥p3), (297)

for Example 7.1 when α satisfies Eq. (287).
An illustation for the discontinuities of the regularized Petz Rényi divergence and the Ho-

effding divergence is shown in Figure. 5, where we can clearly see the discontinuities of both
regularized quantities at α = 1 and r = 0, respectively.

The second example follows the construction in [Hay25, Appendix C], though that reference
omits the technical details which we provide here.

Example 7.2 (Convex sets, An composite and Bn simple i.i.d.) Let ρ(p3) and ρkm defined as in
Example 7.1. Consider the sets Sn := {Trkm−n ρkm : k ∈ N}, where Trkm−n is the partial trace
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over the initial km− n subsystems. Define

An := conv

ρn1 ⊗ · · · ⊗ ρnl
: n1, . . . , nl ≥ 1, ρnj ∈ Snj ,

l∑
j=1

nj = n

 , (298)

and Bn = {ρ(p3)⊗n}. Then the sequences A := {An} and B := {Bn} are convex compact and
stable under tensor product. But we have

sup
α∈(0,1)

D∞
P,α(A ∥B) < D∞(A ∥B). (299)

Moreover, we have

lim
r→0

H∞
r (B∥A ) < D∞(A ∥B), (300)

lim
r→0

H∞
r (B∥A ) < D∞(A ∥B), (301)

indicating that the Hoeffding bound cannot recover the Stein’s expoent in this case.

Proof. Let ρ be any quantum state on n subsystems. We can easily check the identity

D

(
ρ

∥∥∥∥ n⊗
i=1

σi

)
= D

(
ρ

∥∥∥∥ n⊗
i=1

ρi

)
+

n∑
i=1

D(ρi∥σi), (302)

where ρi is the reduced state of ρ on the i-th subsystem. Then we have for any ρ ∈ An,

D(ρ∥ρ(p3)⊗n) = D(ρ∥(Trn−1 ρ)
⊗n) +D((Trn−1 ρ)

⊗n∥ρ(p3)⊗n). (303)

Since Trn−1 ρ = ρ(λp1 + (1− λ)p2), we have

D(ρ∥ρ(p3)⊗n) ≥nD(ρ(λp1 + (1− λ)p2)∥ρ(p3)) = nD(λp1 + (1− λ)p2∥p3). (304)

This implies that

D(An∥Bn) ≥nD(λp1 + (1− λ)p2∥p3). (305)

On the other hand, since ρ(λp1 + (1 − λ)p2)
⊗n ∈ An and ρ(p3)⊗n ∈ Bn, the above bound is

achievable at these states and therefore, we have

D(An∥Bn) = nD(λp1 + (1− λ)p2∥p3) (306)

Thus, we have

D∞(A ∥B) = D(λp1 + (1− λ)p2∥p3) (307)

Since ρkm ⊗ ρn−km ∈ An with 0 ≤ n− km < m, we have

DP,α(An∥Bn) ≤ DP,α(ρkm∥ρ(p3)⊗km) +DP,α(ρn−km∥ρ(p3)⊗n−km). (308)

Using the same calculation as in Eq. (269), we have for α > 0,

D∞
P,α(A ∥B) ≤ D(p2∥p3). (309)

Therefore, we have

sup
α∈(0,1)

D∞
P,α(A ∥B) ≤D(p2∥p3) < D(λp1 + (1− λ)p2∥p3) = D∞(A ∥B). (310)

Finally, the statement for the Hoeffding bounds can be shown in the same way as in Example 7.1.
This completes the proof.
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The next example demonstrates an extreme case where the regularized Petz Rényi divergence
vanishes while the regularized relative entropy diverges.

Example 7.3 (Convex sets, An simple i.i.d. and Bn composite.) Let ρ(p2) and ρ2,km defined as
Eqs. (244) and (245), respectively. Consider the sets

An =

{
ρ(p2)

⊗mn

}
, Bn := conv

{
ρ2,k1m ⊗ · · · ⊗ ρ2,klm : k1, . . . , kl ≥ 1,

l∑
i=1

ki = n

}
.

(311)

Then the sequences A := {An} and B := {Bn} are convex compact and stable under tensor
product. But we have

sup
α∈(0,1)

D∞
P,α(A ∥B) = 0 <∞ = D∞(A ∥B). (312)

Proof. Note that the support of the state ρ2,k1m ⊗ · · · ⊗ ρ2,klm with
∑l

i=1 ki = n is included in
the typical subspace Tnm(P2). The support ρ(p2)⊗nm is full space. Thus, we have

D(An∥Bn) = min
σ∈Bn

D(ρ(p2)
⊗nm∥σ) = ∞, (313)

and therefore,

D∞(A ∥B) = ∞. (314)

For the Petz Rényi divergence, we have

DP,α(ρ(p2)
⊗km∥ρ2,km) =

1

α− 1
log

[
2−kmH(p2)

(
km

km2

)]α
, (315)

by the standard result in type method as in [CT06, Eq. (11.15)]. By the Stirling’s approximation
in Eq. (263), we have

lim
n→∞

1

n
DP,α(ρ(p2)

⊗nm∥ρ2,nm) = 0. (316)

Thus, we have for any α ∈ (0, 1),

D∞
P,α(A ∥B) ≤ lim

n→∞

1

n
DP,α(ρ(p2)

⊗nm∥ρ2,nm) = 0. (317)

As the divergence is always nonnegative, the above equality is attained. Finally, the combination
of Eqs. (314) and (317) implies that

sup
α∈(0,1)

D∞
P,α(A ∥B) = 0 <∞ = D∞(A ∥B). (318)

This complete the proof.

The last example is presented in [LBR24] to demonstrate the nonadditivity of the Petz Rényi
divergence between two sets of quantum states. However, we show that this example does not
give a violation of Eq. (243) as both sides diverge.
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Example 7.4 (Convex sets.) Let An := SEPn be the set of bipartite separable states on n subsys-
tems. Let Bn := {ρ⊗n} with ρ := 1

d(d−1)(I −
∑d

i,j=1 |ij⟩⟨ji|) being the antisymmetric Werner

state on Cd ⊗ Cd. Then the sequences A := {An} and B := {Bn} are convex compact and
stable under tensor product. But we have

sup
α∈(0,1)

D∞
P,α(A ∥B) = D∞(A ∥B) = ∞. (319)

Proof. It has been shown in [LBR24, Eq. (E5)] that for any n ∈ N and α ∈ (0, 1),

DP,α(An∥Bn) =
α

1− α
D(Bn∥An). (320)

This implies

D∞
P,α(A ∥B) =

α

1− α
D∞(B∥A ), (321)

by taking regularization on both sides. Note that we have an explicit lower bound D∞(B∥A ) ≥
log2

√
4/3 > 0 [CSW12, Corollary 3]. Taking supremum over α ∈ (0, 1), we have

sup
α∈(0,1)

D∞
P,α(A ∥B) = sup

α∈(0,1)

α

1− α
D∞(B∥A ) = ∞. (322)

However, as we always have the direction,

sup
α∈(0,1)

D∞
P,α(A ∥B) ≤ D∞(A ∥B), (323)

this implies that

sup
α∈(0,1)

D∞
P,α(A ∥B) = D∞(A ∥B) = ∞. (324)

7.3 Error exponents in adversarial quantum channel discrimination

The adversarial quantum channel discrimination was recently proposed and analyzed in [FFF25],
where a tester interacts with an untrusted quantum device that generates quantum states upon
request. The device guarantees that the states are produced by either a quantum channel N or a
quantum channel M. More formally, let NA→B and MA→B be the two quantum channels to be
distinguished, and let UA→BE and VA→BE denote their respective Stinespring dilations, with E
representing the environmental system. Let CPTP(X : Y ) denote the set of completely positive
and trace-preserving maps from input system X to output system Y .

An adaptive strategy for adversarial discrimination proceeds as follows. Suppose the device
operates as channel N . Initially, the adversary prepares a quantum state via an operation P1 ∈
CPTP(R0E0 : A1R1), where R0 and E0 are trivial (|R0| = |E0| = 1), and sends system A1

through the channel U , generating the output state U ◦ P1 and returning system B1 to the tester.
In the next round, the adversary performs an internal update P2 ∈ CPTP(E1R1 :A2R2), utilizing
information stored in the quantum memoryR1 and the environmental systemE1 from the previous
round. The adversary then sends system A2 through the channel U again, producing the output
state U ◦ P2 ◦ U ◦ P1 and returning system B2 to the tester. This process can be repeated for n
rounds. A non-adaptive strategies for adversarial discrimination is a subclass of adaptive strategies
that disregards the environmental systems Ei and performs no updates between rounds, that is,
taking the operations Pi,Qi (i ≥ 2) simply as identity maps, with the choice Ri = Ai+1 · · ·An.
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After n rounds of state generation, the tester obtains an overall state on B1 · · ·Bn in their
possession as:

ρ[{P i}ni=1] := TrRnEn

n∏
i=1

[
UAi→BiEi ◦ P i

Ri−1Ei−1→AiRi

]
.

Similarly, if the device is governed by M and the internal operations by the adversary are given
by Qi, then the overall state is given by

σ[{Qi}ni=1] := TrRnEn

n∏
i=1

[
VAi→BiEi ◦ Qi

Ri−1Ei−1→AiRi

]
.

The tester needs to perform a binary quantum measurement {Mn, I −Mn} on systems B1 · · ·Bn

to determine which channel was used inside the black box.
Due to limited knowledge of the device’s internal workings and the adversary’s strategies, the

tester only gets partial information, knowing that their state belongs to one of two sets:

An := {ρ[{P i}ni=1] : P i ∈ CPTP(Ri−1Ei−1:AiRi), ∀Ri, ∀i}, (325)

Bn := {σ[{Qi}ni=1] : Qi ∈ CPTP(Ri−1Ei−1:AiRi), ∀Ri, ∀i}, (326)

where the adversary’s internal memory Ri may have arbitrarily large dimension. In particular, for
non-adaptive strategies, where the adversary ignores the environmental systems Ei and performs
no updates between rounds, the sets An and Bn reduce to

A ′
n := {N⊗n(ρn) : ρn ∈ D(A⊗n)}, (327)

B′
n := {M⊗n(σn) : σn ∈ D(A⊗n)}. (328)

It has been shown in [FFF25] that the optimal Stein exponent for both adaptive and non-
adaptive strategies is given by the regularized quantum relative entropy between the two channels:

Dinf,∞(N∥M) := lim
n→∞

1

n
Dinf(N⊗n∥M⊗n), (329)

where the quantum relative entropy between two channels is defined as

Dinf(N∥M) := inf {D(N (ρ)∥M(σ)) : ρ, σ ∈ D(A)} . (330)

Error exponents. We can check that {An}, {A ′
n}, {Bn}, {B′

n} are all stable sequences of con-
vex and compact sets of quantum states (the convexity of {An}, {Bn} is proved in [FFF25]).
Therefore, our result directly apply to adversarial quantum channel discrimination. In particu-
lar, for any 0 < r < Dinf,∞(N∥M), the optimal Type-I error exponent under an exponential
constraint on the Type-II error is given by

lim
n→∞

− 1

n
logαn,r(An∥Bn) = H∞

r (A ∥B), (331)

lim
n→∞

− 1

n
logαn,r(A

′
n∥B′

n) = H∞
r (A ′∥B′) > 0, (332)

where we can ensure the strict positivity as the continuity of the regularized Petz Rényi divergence
holds in this case [FFF25]. It would be interesting to further investigate whether adaptive strategies
can outperform non-adaptive strategies in terms of the error exponent, i.e., whetherH∞

r (A ∥B) <
H∞

r (A ′∥B′) for some channels N ,M and rate r.
The authors in [HT16] consider the error exponent and strong converse exponents for distin-

guishing the null hypothesis A ′′
n = {ρ⊗n

AB} from the composite alternative B′′
n = {ρ⊗n

A ⊗ σBn :
σ ∈ D(Bn)}, which reflects the scenario of correlation detection. This can be modelled as an
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adversarial channel discrimination problem as well. In particular, let Rρ be a replacer channel
that always outputs ρ regardless of the input. Then the above A ′′

n can be regarded as the image
set of the replacer channel (RρAB )

⊗n and B′′
n is the image set of the channel (RρA ⊗ IB)

⊗n. All
assumptions in Theorem 5.1 and Theorem 6.1 are satisfied in this case. Therefore, we can recover
the results in [HT16] as:

lim
n→∞

− 1

n
logαn,r(A

′′
n ∥B′′

n) = sup
α∈(0,1)

α− 1

α
(r − IP,α(A :B)ρ) , (333)

lim
n→∞

− 1

n
log(1− αn,r(A

′′
n ∥B′′

n)) = sup
α>1

α− 1

α
(r − IS,α(A :B)ρ) , (334)

where IP,α(A :B)ρ := DP,α(A ′′
1 ∥B′′

1 ) is the Petz Rényi mutual information and IS,α(A :B)ρ :=
DS,α(A ′′

1 ∥B′′
1 ) is the sandwiched Rényi mutual information, which are both additive.

Examples for nonadditivity. The adversarial channel discrimination also provides a scenario
where we can find nonadditivity examples for the Petz Rényi divergence and Hoeffding divergence
between two sets of quantum state. For this, we consider two qutrit quantum channels. Let
N (·) = Tr[·]ρ to be the replacer channel with

ρ = 0.9 · |ψ⟩⟨ψ|+ 0.1 · I
3
, where |ψ⟩ = 1√

2
(|0⟩+ |2⟩). (335)

Let M be the platypus channel [LLS+23], M(X) =M0XM
†
0 +M1XM

†
1 with Kraus operators

M0 =

√p 0 0
0 0 0
0 1 0

 , M1 =

 0 0 0√
1− p 0 0
0 0 1

 . (336)

In this case, we have the image sets of these channels as

A ′
n = {ρ⊗n}, and B′

n = {M⊗n(σn) : σn ∈ D((C3)⊗n)}. (337)

As these sets are given by semidefinite constraints, we can efficiently evaluate the Petz Rényi diver-
gence and Hoeffding divergence between them via semidefinite programming (see Remark 3.3).
More explicitly, for fixed α ∈ (0, 1), we can efficiently evaluate

DP,α(A
′
n∥B′

n) = inf
σn∈D

DP,α(ρ
⊗n∥M⊗n(σn)), (338)

by the QICS package [HSF24]. Moreover, we can also evaluate the Hoeffding divergence

Hn,r(A
′
n∥B′

n) = Hn,r(A
′
n∥B′

n) = sup
α∈(0,1)

α− 1

α

(
nr −DP,α(A

′
n∥B′

n)
)
, (339)

by scaning the parameter α ∈ (0, 1) with fine grid.
The numerical results are shown in Figure 6 where we use channel parameter s = 0.01 and

scan α ∈ (0, 1) with step size 0.01. Panel (a) displays the Petz Rényi divergenceDP,α(A ′
n∥B′

n)/n
for n = 1, 2, 3 as a function of α, while panel (b) shows the objective function of the Hoeffding
divergence versus α, together with its maximum (i.e., the Hoeffding divergenceHn,r(A ′

n∥B′
n)/n)

for n = 1, 2, 3. Here we choose the rate r = 1. The plots exhibit a clear separation between
different numbers of copies for both the Petz Rényi and Hoeffding divergences, illustrating non-
additivity in this example and justifying the necessity of regularization in our main results.
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Figure 6: Non-additivity for the Petz Rényi divergence and the Hoeffding divergence between
the image set of two channels. Here, we consider the replacer channel N with output state ρ =
0.9 · |ψ⟩⟨ψ|+ 0.1 · I/3, where |ψ⟩ = (|0⟩+ |2⟩)/

√
2, and the platypus channel M with channel

parameter s = 0.01. We plot (a) the Petz Rényi divergenceDP,α(A ′
n∥B′

n)/n and (b) the objective
function in Hoeffding divergence for n = 1, 2, 3 as functions of α ∈ (0, 1), respectively. The
Hoeffding divergence Hn,1(A ′

n∥B′
n)/n is indicated by the maximum value in dashed lines.
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7.4 Error exponents in quantum resource detection

As our results only require minimal assumptions, they can be readily applied to the detection prob-
lem in various quantum resource theories (see e.g. [HI25]), where the stability of the set of free
states is naturally satisfied [BG15, CG19], including entanglement [BP10, FWTD19, RFWG19,
TFG25], coherence [WY16, DFW+18, FWL+18, RFWA18, HFW21], asymmetry [MS13], ther-
modynamics [BHN+15] and purity [HHO03] and magic [BK05, FL20, FL22, FL25]. Our refined
analysis of error exponents can thus provide better understanding of the trade-offs between Type-I
and Type-II errors in hypothesis testing within these resource theories.

We showcase coherence theory and entanglement theory as two illustrative examples with ex-
plicit expressions. These examples have been previously studied in [HI25], but the error exponents
obtained therein are not tight. Here we provide tight characterizations using our results.

Quantum coherence detection. In the resource theory of coherence, the set of free states is
given by the set of incoherent states In, which is convex, compact, and stable under tensor prod-
ucts. Moreover, the Petz Rényi divergence between a quantum state and the set of incoherent states
is known to be additive [ZHC17, Theorem 3]. Therefore, our results yield explicit expressions for
the error exponent in hypothesis testing between a quantum state and the set of incoherent states

lim
n→∞

− 1

n
logαn,r(ρ

⊗n∥In) = sup
α∈(0,1)

α− 1

α
(r − Cα(ρ)) , (340)

where Cα(ρ) := DP,α(ρ∥I1) has closed form expression [CG16] as

Cα(ρ) =
α

α− 1
log Tr

[
(∆(ρα))1/α

]
. (341)

where ∆(·) is the completely dephasing operation in the reference basis.
As for the strong converse exponent, the sandwiched Rényi divergence between these sets is

also additive [ZHC17, Theorem 3] and is given by

C∗
α(ρ) := DS,α(ρ∥I1) = inf

σB∈D(B)
DS,α(ρmc∥IA ⊗ σB), (342)

where ρmc :=
∑

i,j ρij |ii⟩⟨jj| is the associated maximally correlated state if ρ =
∑

i,j ρij |i⟩⟨j|.
The differentiability of C∗

α(ρ) with respect to α has been established in [HT16, Proposition 11].
Therefore, our results yield the strong converse exponent in this case as well:

lim
n→∞

− 1

n
log(1− αn,r(ρ

⊗n∥In)) = sup
α>1

α− 1

α
(r − C∗

α(ρ)) . (343)

Quantum entanglement detection. In the resource theory of entanglement, the set of free states
is the set of separable states SEPn, which is convex, compact, and stable under tensor products. For
a maximally correlated state ρmc :=

∑
i,j ρij |ii⟩⟨jj|—which includes many important cases of

interest, e.g., pure states and mixtures of Bell states—the Petz and sandwiched Rényi divergences
relative to the set of separable states are known to be additive. The error exponent and strong
converse exponent are then analogous to those in the resource theory of coherence. In particular,
the error exponent is given by

lim
n→∞

− 1

n
logαn,r(ρ

⊗n
mc ∥SEPn) = sup

α∈(0,1)

α− 1

α
(r − Eα(ρmc)) , (344)

where Eα(ρmc) := DP,α(ρmc∥SEP1) = DP,α(ρ∥I1) is the Rényi relative entropy of entangle-
ment, which has the closed-form expression [ZHC17, Corollary 1]:

Eα(ρmc) =
α

α− 1
log Tr

[
(∆(ραmc))

1/α
]
. (345)
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Similarly, the strong-converse exponent is given by

lim
n→∞

− 1

n
log(1− αn,r(ρ

⊗n
mc ∥SEPn)) = sup

α>1

α− 1

α
(r − E∗

α(ρmc)) , (346)

where E∗
α(ρmc) := DS,α(ρmc∥SEP1) = DS,α(ρ∥I1) is the sandwiched Rényi relative entropy of

entanglement and we can choose a universal state as the tensor product of the universal state on
An and Bn, respectively. Finally, we note that the same result works if we consider the set of
PPT states as the free states, as the Petz and sandwiched Rényi divergences are the same as those
relative to the set of separable states for maximally correlated states [ZHC17].

8 Discussion

We have established a comprehensive framework for analyzing error exponents in quantum hy-
pothesis testing between two sets of quantum states, extending beyond the conventional i.i.d.
setting to encompass composite correlated hypotheses. Our main contributions include a gen-
eralization of the quantum Hoeffding bound and strong converse exponent to stable sequences
of convex, compact sets of quantum states. These results provide a finer characterization than
the Stein regime, yielding deeper insights into the fundamental trade-offs between Type-I and
Type-II errors in quantum state discrimination with composite correlated hypotheses. The broad
applicability of our framework is demonstrated through concrete applications to adversarial quan-
tum channel discrimination and various quantum resource theories, highlighting its potential for
further advances across quantum information theory.

Several open questions remain. While we showedH∞
r (A ∥B) ≥ H∞

r (A ∥B), proving equal-
ity in full generality remains open and would likely require a minimax theorem suited to the
regularized setting. Extending the strong converse upper bound beyond the current technical re-
strictions is another important challenge. Resolving these issues would complete the asymptotic
characterization of quantum state discrimination for composite, correlated hypotheses. Finally,
since the generalized quantum Stein’s lemma implies asymptotic reversibility in the correspond-
ing resource theory [FFF24, HY25, Lam25], our refined error exponent analysis may shed new
light on conversion rates and convergence properties of resource interconversion, enabling finer
control of asymptotic reversibility and efficiency. We leave these questions for future work.
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Rényi entropies: A new generalization and some properties. Journal of Mathemati-
cal Physics, 54(12), 2013.

[MO15a] M. Mosonyi and T. Ogawa. Quantum hypothesis testing and the operational inter-
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entropy. Communications in Mathematical Physics, 331:593–622, 2014.

[WY16] A. Winter and D. Yang. Operational resource theory of coherence. Physical Review
Letters, 116(12), March 2016.

[ZHC17] H. Zhu, M. Hayashi, and L. Chen. Coherence and entanglement measures based
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A Useful lemmas

The following lemma is a minimax theorem that account for the infinity values of the function.
Let X be a convex set in a linear space. A function f : X → (−∞,−∞] said to be convex,
if f(px + (1 − p)y) ≤ pf(x) + (1 − p)f(y), the multiplication 0 · f(x) is interpreted as 0 and
p · ∞ = ∞ for p ̸= 0. Similar definiton holds for concave functions.
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Lemma A.1 [FR06, Theorem 5.2] Let X be a compact, convex subset of a Hausdorff topological
vector space and Y be a convex subset of the linear space. Let f : X × Y → (−∞,∞] be lower
semicontinuous on X for fixed y ∈ Y , and assume that f is convex in the first and concave in the
second variable. Then

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y). (347)

The following lemmas are standard results in mathematical analysis and will be used fre-
quently in our proofs. For detailed proofs, see, e.g., [BDB23, Lemma 2.8, 2.9].

Lemma A.2 Let X be a nonempty compact topological space, and let f : X → R be a function.
Then if f is upper semicontinuous, it attains its maximum, meaning there is some x ∈ X such that
for all x′ ∈ X , f(x′) ≤ f(x). Similarly, if f is lower semicontinuous, it attains its minimum.

Lemma A.3 Let X be a topological space, let I be a set, and let {fi}i∈I be a collection of func-
tions fi : X → R. Then if each fi is upper semicontinuous, the function f(x) = infi∈I fi(x) is
also upper semicontinuous. Similarly, if each fi is lower semicontinuous, the pointwise supremum
is lower semicontinuous.

Lemma A.4 For two scalar sequences xn, yn > 0 with lim supn→∞− log xn

n = xR and
limn→∞− log yn

n = yR, then lim supn→∞− 1
n log(xn + yn) = min{xR, yR}.

Proof. For any scalars x, y > 0, we can verify that [ANSV08],

max{log x, log y} ≤ log(x+ y) ≤ max{log x, log y}+ 1. (348)

Therefore, we have

lim sup
n→∞

− 1

n
log(xn + yn) ≤ lim sup

n→∞
− 1

n
log xn = xR, (349)

lim sup
n→∞

− 1

n
log(xn + yn) ≤ lim sup

n→∞
− 1

n
log yn = yR. (350)

This gives lim supn→∞− 1
n log(xn + yn) ≤ min{xR, yR}. For the other direction, by the defi-

nition of xR, for any ε > 0, there exists an infinite subsequence nm such that − 1
nm

log xnm ≥
xR− ε. As the limit of yn exists, we know that for this subsequence − 1

nm
log ynm ≥ yR− ε. This

implies that

min

{
− 1

nm
log xnm ,−

1

nm
log ynm

}
≥ min{xR, yR} − ε (351)

Therefore, we have

lim sup
n→∞

− 1

n
log(xn + yn) ≥ lim sup

n→∞
− 1

n
max{log xn, log yn} (352)

= lim sup
n→∞

min

{
− 1

n
log xn,−

1

n
log yn

}
(353)

≥ lim sup
m→∞

min

{
− 1

nm
log xnm ,−

1

nm
log ynm

}
(354)

≥ min{xR, yR} − ε. (355)

As this holds for any ε > 0, we have

lim sup
n→∞

− 1

n
log(xn + yn) ≥ min{xR, yR}. (356)

This completes the proof.
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Note that the existence of the limit for one sequence is necessary in Lemma A.4. Consider
the case where xn = 1 if n is odd and xn = 2n if n is even; and yn = 2n if n is odd and
yn = 1 if n is even. Then we have lim supn→∞− 1

n log xn = lim supn→∞− 1
n log yn = 0, but

lim supn→∞− 1
n log(xn+yn) = −1. This gives a counterexample to Lemma A.4 if the limit does

not exist for either sequence.

B Mathematical properties of ϕ(s)

In this section, we discuss some useful properties of the function 5 ϕ(s|ρ∥σ) := log Tr ρ1−sσs.
These results can be found in the book [Hay17, Chapter 3] and we list them here for complete-
ness. Let Pρ,σ and Qρ,σ denote the Nussbaum-Szkoła distributions for ρ and σ. These classical
distributions preserve many important information of the original quantum states, including

D(ρ∥σ) = D(Pρ,σ∥Qρ,σ), and ϕ(s|ρ∥σ) = ϕ(s|Pρ,σ∥Qρ,σ). (357)

Due to the second equality, we may simplify the notation as ϕ(s) when there is no confusion.
Moreover, the Hoeffding divergence can also be expressed as

H1,r(ρ∥σ) = max
s∈(0,1)

−ϕ(s)− sr

1− s
. (358)

Lemma B.1 Let ρ, σ ∈ H+. Then the first and second derivatives of ϕ(s|ρ∥σ) with respective to
s are given by [Hay17, Exercise 3.5],

ϕ′(s|ρ∥σ) = Tr ρ1−sσs(log σ − log ρ)

Tr ρ1−sσs
, (359)

ϕ′′(s|ρ∥σ) = Tr ρ1−s(log σ − log ρ)σs(log σ − log ρ)

Tr ρ1−sσs
− (Tr ρ1−sσs(log ρ− log σ))2

(Tr ρ1−sσs)2
. (360)

In particular, ϕ′(0∥ρ∥σ) = −D(ρ∥σ) and ϕ′(1|ρ∥σ) = D(σ∥ρ). Moreover, using Schwarz
inequality, we know that ϕ′′(s|ρ∥σ) ≥ 0 and therefore ϕ(s|ρ∥σ) is convex in s ∈ R.

Proof. For the first derivative, we have

ϕ′(s|ρ∥σ) = (Tr ρ1−sσs)′

Tr ρ1−sσs
(361)

=
Tr[(ρ1−sσs)′]

Tr ρ1−sσs
(362)

=
Tr[(ρ1−s)′σs + ρ1−s(σs)′]

Tr ρ1−sσs
(363)

=
Tr[−ρ1−s(log ρ)σs + ρ1−sσs(log σ)]

Tr ρ1−sσs
(364)

=
Tr[−(log ρ)ρ1−sσs + ρ1−sσs(log σ)]

Tr ρ1−sσs
(365)

=
Tr ρ1−sσs(log σ − log ρ)

Tr ρ1−sσs
(366)

5Note that this definition differs slightly from the one in the main text Lemma 5.2, but they are equivalent up to a
constant factor. Thus, all subsequent results work as the same.
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For the second derivative, we have first that

(Tr ρ1−sσs(log σ − log ρ))′ = Tr[(ρ1−sσs(log σ − log ρ))′] (367)

= Tr[(ρ1−sσs)′(log σ − log ρ)] (368)

= Tr[−ρ1−s(log ρ)σs + ρ1−sσs(log σ)](log σ − log ρ) (369)

= Tr[−ρ1−s(log ρ)σs + ρ1−s(log σ)σs](log σ − log ρ) (370)

= Tr[ρ1−s(log σ − log ρ)σs(log σ − log ρ)]. (371)

The we have the second derivative as

ϕ′′(s|ρ∥σ)

=
(Tr ρ1−sσs(log σ − log ρ))′(Tr ρ1−sσs)− (Tr ρ1−sσs(log σ − log ρ))(Tr ρ1−sσs)′

(Tr ρ1−sσs)2
(372)

=
Tr[ρ1−s(log σ − log ρ)σs(log σ − log ρ)]

Tr ρ1−sσs
− (Tr ρ1−sσs(log ρ− log σ))2

(Tr ρ1−sσs)2
. (373)

By the Schwarz inequality |Tr(XY †)|2 ≤ |Tr(XX†)||Tr(Y Y †)|, we have

(Tr ρ1−sσs(log ρ− log σ))2 ≤ Tr[ρ1−s(log σ − log ρ)σs(log σ − log ρ)] Tr[ρ1−sσs], (374)

by consideing X = ρ(1−s)/2(log σ − log ρ)σs/2 and Y = ρ(1−s)/2σs/2. This implies that
ϕ′′(s|ρ∥σ) ≥ 0 and therefore ϕ(s|ρ∥σ) is convex in s ∈ R.

The following result can be found in [Hay17, Exercise 3.45].

Lemma B.2 Let r < D(ρ∥σ). There exists a unique maximum achieved at sr ∈ (0, 1) for

sup
0≤s≤1

f(s), with f(s) :=
−sr − ϕ(s|ρ∥σ)

1− s
. (375)

Moreover, the optimal solution sr satisfies

r = (sr − 1)ϕ′(sr)− ϕ(sr). (376)

Proof. Let P,Q be the Nussbaum-Szkoła distributions and let Ps(x) := P (x)1−sQ(x)se−ϕ(s).
Then the derivative of f(s) is given by

f ′(s) =
−r + (s− 1)ϕ′(s)− ϕ(s)

(1− s)2
. (377)

The sign of f ′(s) depends on the sign of its nominator g(s) := −r + (s − 1)ϕ′(s) − ϕ(s). By
taking the derivative of g(s), we have

g′(s) = (s− 1)ϕ′′(s) < 0, for s ∈ (0, 1). (378)

This means that g(s) is strictly decreasing in s ∈ (0, 1). We also have [Hay17, Exercise 3.45] that,

• D(Ps∥P1) = (s− 1)ϕ′(s)− ϕ(s) and D(Ps∥P0) = sϕ′(s)− ϕ(s).

• d
dsD(Ps∥P1) = (s− 1)ϕ′′(s) < 0 and d

dsD(Ps∥P0) = sϕ′′(s) > 0 for s ∈ (0, 1).

• Let r < D(P∥Q). Then there uniquely exists sr ∈ (0, 1) such that D(Psr∥P1) = r.

The last item implies that there exists a unique critical point sr ∈ (0, 1) such that g(sr) = −r +
D(Psr∥P1) = 0. Together with the monotonicity of g(s), we know that g(s) > 0 for s < sr and
g(s) < 0 for s > sr. This implies that f ′(s) > 0 for s < sr and f ′(s) < 0 for s > sr. So f(s) is
increasing for s < sr and decreasing for s > sr. This shows that f(s) attains its maximum at sr.
Moreover, we can show that f(sr) = D(Psr∥P ).
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The following shows that the optimal solution sr is differentiable in r.

Lemma B.3 The optimal solution sr is differentiable in r and [Hay17, Exercise 3.51],

dsr
dr

=
1

(sr − 1)ϕ′′(sr)
. (379)

Proof. We have the following

1 =
dr

dr
(380)

=
d

dr
((sr − 1)ϕ′(sr)− ϕ(sr)) (381)

=
dsr
dr

· d
ds

((s− 1)ϕ′(s)− ϕ(s))|s=sr (382)

=
dsr
dr

· ((sr − 1)ϕ′′(sr)), (383)

where the third line uses the chain rule of differentiation. This implies the desired result.
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