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The manipulation of quantum “resources” such as entanglement, coherence, and magic states lies at the
heart of quantum science and technology, empowering potential advantages over classical methods. In
practice, a particularly important kind of manipulation is to “purify” the quantum resources since they are
inevitably contaminated by noise and thus often lose their power or become unreliable for direct usage.
Here we prove fundamental limitations on how effectively generic noisy resources can be purified enforced
by the laws of quantum mechanics, which universally apply to any reasonable kind of quantum resource.
More explicitly, we derive nontrivial lower bounds on the error of converting any full-rank noisy state to
any target pure resource state by any free protocol (including probabilistic ones)—it is impossible to
achieve perfect resource purification, even probabilistically. Our theorems indicate strong limits on the
efficiency of distillation, a widely used type of resource purification routine that underpins many key
applications of quantum information science. In particular, this general result induces the first explicit lower
bounds on the resource cost of magic state distillation, a leading scheme for realizing scalable fault-tolerant
quantum computation. Implications for the standard error-correction-based methods are specifically

discussed.
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The field of quantum information takes a pragmatic
approach to examining and utilizing quantum mechanics,
seeking to obtain rigorous understandings of which infor-
mation processing tasks can or cannot be accomplished
according to the laws of nature. Efforts along this line since
the 1980s have revolutionized our perception of physics
and paved the way for many innovative technological
applications such as quantum computation and communi-
cation [1,2]. In particular, the formulations of no-go
(impossibility) theorems have played seminal roles—they
often represent key advances in our understanding of
quantum mechanics and have exerted profound influence
on the development of quantum information science and
technology. A representative example is the no-cloning
theorem [3,4], which directly led to the invention of
quantum error correction [5,6] and laid the foundation
for plenty of other major quantum applications such as
quantum cryptography [7], as well as advancing our under-
standing of the foundations of quantum mechanics [8,9].

At the heart of the desired quantum information process-
ing tasks is the manipulation of various useful quantum
features, the most prominent examples being entanglement
[10], coherence [11], and “magic” [12,13], that emerge as
valuable “resources” that are needed to empower advan-
tages over classical methods. Such resource features can
arise from all kinds of physical or conceptual restrictions on
the feasible operations. A prototypical example is the
“distant labs” paradigm where only local operations within
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the separate labs and classical communication between them
(the so-called “LOCC?”) is allowed, rendering entanglement
a resource that cannot be obtained for free and could, for
instance, enable efficient quantum communication [2,10].

In practice, a particularly important and widely studied
kind of manipulation is to “purify” the quantum resources,
since quantum systems are highly susceptible to faulty
controls and noise effects such as decoherence [2,14] that
may jeopardize the power and reliability of quantum
resources. In particular, a standard procedure of quantum
resource purification is to extract high-quality resource
states better suited for application from a large amount
of raw noisy ones, which is known as distillation. Most
notably, the distillation of entanglement [15—17], coherence
[18-20], and magic states [12] has been extensively studied
as a key subroutine in quantum computation and commu-
nication. Therefore, understanding the limits to the effi-
ciency of purification and distillation tasks is of great
theoretical and practical importance.

To address this problem in a rigorous and general
manner, we shall use the language of quantum resource
theory (see [21] for an introduction of this framework),
where each resource theory is defined by a set of free states
(in contrast to resource states) and a set of free operations.
Again, take the entanglement theory as an example: the set
of free states consists of the separable (unentangled) states,
and LOCC is a standard choice of the set of free operations.
Free states and operations can be flexibly defined, which
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gives rise to a wide variety of meaningful resource theories
as long as they follow a golden rule: any free operation can
only map a free state to another free state. This simple rule
selects the largest possible set of free operations allowed
in resource manipulation since any other operation can by
definition create resources and thus trivialize the theory.
Moreover, note that we are interested in the one-shot
setting, as opposed to the conventional asymptotic setting
here, since only a finite amount of resources is accessible in
reality. We refer readers to Ref. [22] for a general theory of
the rates of one-shot resource manipulation.

In this work, we prove a set of no-go theorems for
quantum resource purification that universally apply to any
reasonable resource theory, manifesting that the production
of any pure resource state with an arbitrarily small error,
however weak this target state is, is generically prohibited
by the golden rule. More formally, we establish quantitative
bounds on the achievable accuracy of any free operation
that is supposed to work with some probability. It turns out
that there is a nontrivial trade-off between the accuracy and
success probability akin to the uncertainty relations. The
proofs follow from analyzing the peculiar properties of the
hypothesis testing relative entropy monotone, a quantity
known to characterize the efficiency of one-shot distillation
in many cases [20,22-27] but not studied in great depth.
Using the above results, we find lower bounds on the
overhead of distillation given by the number of copies of
a certain primitive noisy state that are needed. As a
particularly important application, we derive specific lower
bounds on the overhead of magic state distillation [12], a
leading proposal of fault-tolerant quantum computation
[2,28,29]. The consequent limitations to the common
distillation schemes based on quantum error correction
are discussed in relation to key advances in the search for
better codes [30-33]. Lastly, we provide a no-go theorem
for the simulation of unitary resource channels, which is
analogous to state purification, in accordance with the
recent interest in extending conventional resource theory
approaches for quantum states to quantum channels (see,
e.g., [34—41] for general treatments).

We start by introducing the notations. The sets of free
operations and free states are respectively denoted by O

and F. They obey the golden rule that O C O, where O :=
{E|Vp e F Ep) e F} (commonly known as the set of
resource nongenerating operations in the literature). Note
that virtually no assumptions on the specific properties of
the resource theory are needed in this work, that is, F is
almost completely up to one’s choice as long as there exists
some resource pure state (technically, F is topologically
closed and Jy & F) so that the purification task is well-
defined. Even the convexity of F, which is a common
postulate for general resource theory results and frame-
works (see, e.g., [22,36,42—45]), is not needed.

The general goal of purification tasks is to transform
some noisy primitive state to a pure target resource state by

some protocol represented by a free operation. In this work,
we make a mild assumption that the density matrix
representing the primitive state is full rank, which holds
generically for common noise effects and settings of
practical interest such as multiple noisy qubits. We would
also want to consider protocols that produce desired
outputs with a certain probability as long as we know
when they do so (an important example being magic state
distillation, as we shall discuss later). To encompass such
cases, consider the generalization of O to the class Oy =
{L|V peF,3t>0,6eF st.L(p)=t-6}, which con-
sists of subnormalized quantum operations (suboperations),
i.e., completely positive and trace-nonincreasing maps. A
free probabilistic protocol that transforms p to y with
probability p and accuracy 1 — € (or error €) is modeled
by a quantum operation £4_yp such that E,_xp(ps) =
|0Y(0ly ® La_gz(pa)+[1){1]x ® Ga_p(pa)- Here X is an
external flag register that keeps track of whether the
protocol succeeds (0) or not (1); £ € Oy, (any Oy, C
O,,) is the free suboperation representing the successful
transformation such that £,_z(ps) = prp where p =
TrL(p) and 7 is a density matrix satisfying F(z,y)>1—¢
where F(p, 6) == ||\/p\/o]|} is the fidelity between p and o.
The case where L is a completely positive trace preserving
(CPTP) map and thus p = 1 corresponds to a deterministic
protocol.

Now we are ready to introduce the explicit results. The
following theorem reveals fundamental limitations on the
accuracy and success probability of resource purification.

Theorem 1. Given any full-rank primitive state p & F
and any pure target resource state y & F, the following
relation between the success probability p and transforma-
tion error € must hold for any free probabilistic protocol:

lmin(p)(] _fx//)

= T1HRD)

€
— 1
p , (1)
where Ayi,(p) is the smallest eigenvalue of p, f, :=
max,erTr(yw) is the maximum overlap between y and
free states F, and R(p) := min{s| I s > 0, state o, s.t.(p +
s6)/(1 +s) € F} is the generalized robustness of state p.
For the deterministic case (p = 1), the bound can be
improved to € > Awin(p)(1 = f,,).

Notice that f,, < 1 always holds by its definition, so the
bound is always greater than zero, meaning that there is
always a neighborhood of any y that cannot be reached by
any free protocol. This theorem establishes an “uncertainty
relation” between the accuracy and success probability of
purification characterized by a regime of {e, p} that is not
achievable by any free protocol, as illustrated in Fig. 1. In
particular, by letting ¢ =0, we directly rule out the
possibility of perfect purification:

Corollary 1. Itis impossible to exactly transform a full-
rank primitive state to a pure target resource state by any
free protocol, even probabilistically.

060405-2



PHYSICAL REVIEW LETTERS 125, 060405 (2020)

€

N
I R .
1
1
€(p’1/)) ------------------------
(D) |
1+R(p) ®
"‘
Lott | Tdeal
”ﬂ’ QO‘
0
TP

FIG. 1. Interplay between the transformation error e¢ and
success probability p. The lower right corner represents the
most ideal scenario where ¢ is small and p is large. The red region
and solid lines represent the forbidden regime such that no
purification protocol with the corresponding parameters can exist.

e(p.y) = Amin(p)(1 = £,).

Below we sketch our approach to proving the above
results. See the Supplemental Material [46] for the detailed
proof and extended discussions.

Proof. (Sketch) The cornerstone of our proof is an
information-theoretic quantity called the quantum hypoth-
esis testing relative entropy [48,52], which is defined as
DS, (pllo) = —log min{TrMo|TtpM > 1 —¢,0 <M < 1}
for two quantum states p and o. The induced resource
measure given by D¢, (p) := min,cr DY, (p||®), which was
recently related to the rates of certain one-shot resource
trading tasks [22], is shown to exhibit a peculiar property:
for any full-rank p, it vanishes at ¢ = 0 and is continuous
around it. The proof then follows from suitably combining
this property with the monotonicity of Dy (nonincreasing
under free operations). [

Note that Ref. [53] reached a similar conclusion for time-
translationally invariant operations in coherence theory.
Also note that the full-rank assumption and the error bound
can be improved in certain cases by different proof
methods, which will be elaborated in follow-up works.

Remarkably, the noisy primitive state p could be much
more valuable in terms of other resource measures and
tasks or live in much higher dimensions than the pure target
state . However, the possibility of trading p for y, even
probabilistically, is ruled out. This should be contrasted
with the case of pure input p, where there are no such
limitations. An illustrative toy example in terms of the
theory of coherence is given in Fig. 2, where p is a slightly
noisy version of the maximally coherent state |+) (which
can be arbitrarily close to |+)), while y is a pure target state
very close to the basis (incoherent) state |1). It is clear from
geometrical intuitions that common coherence measures
(see, e.g., [11]) assign much greater value to p than to v,
and it is known that |[4) can be transformed to any other
state, including y [18,54]. However, our results indicate
that there is always a neighborhood of y that cannot be
reached starting from p. This highlights the special role of
Dy among all resource measures and indicates sharp

Q)

FIG. 2. A qubit coherence theory example illustrated using the
Bloch sphere. Here p is a mixed state close to the maximally
coherent state |+, and y is a pure state close to the basis state |1).
Our no-go theorems indicate that an arbitrarily accurate prob-
abilistic transformation from p to y is impossible.

distinctions between pure state transformation problems
and mixed state ones.

The following scheme of resource purification, usually
known as “distillation” or “concentration,” is of the greatest
practical interest: one has access to multiple copies of some
noisy primitive resource state and the goal is to “distill”
certain useful pure resource states to some desired accuracy
by free operations while consuming as few copies of the
primitive state as possible. Most notably, the distillation of
entanglement [15—-17], coherence [18-20], and magic states
[12] has been extensively studied as a key subroutine in
quantum communication and computation. Therefore, the
amount of primitive states needed to accomplish the desired
distillation, namely the resource cost or overhead, is a key
figure of merit for distillation protocols. To present the most
general result, we consider error on the entire output state
(which could be a collection of unit states) for now. As we
now show, our no-go theorems indicate fundamental lower
bounds on the total overhead of distillation.

Theorem 2. Consider the task of distilling some pure
target resource state y, with error at most €, from n copies
of primitive state p. For any full-rank p, there does not exist
any probabilistic protocol with success probability p that
accomplishes the task if the following is not satisfied:

1—
1 2 10Z[14R(H)) /i 7) % (2)
For deterministic case (p = 1), the bound can be improved
to n>logy, ;) (1=1f,)/e
Proof. Let p®" be the primitive state in Theorem 1.
Notice that Ay, (p®") = Amin(p)". For the deterministic
case, Theorem 1 implies that for any full-rank state p,
we have

€2 ﬂmin(f)(@n)(l _fl//) = ﬂmin(ﬁ)n(l _fl//)' (3)

This directly translates to n > log,/; . (1= f,)/e. For
the probabilistic case, note the following: by the definition
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of R(p), there exists some state 7 such that p+R(p)r=
[1+R(p)|w where w € F. By expanding this equation, we
obtain

n __ 1 ~AQn [1+R<ﬁ)]n_1 ’
M RS T AN T T R

where @®" € F axiomatically [42] and 7’ is a density
operator. Therefore, 1+ R(p®") < [1 + R(p)]". Now, by
Theorem 1, for any full-rank state p’, we have

ﬂmin(ﬁ/@m)(l - fl//) > ﬂmin(ﬁ/)”(l - fl//) .

/PR Ey 2T ARG

(5)

This directly translates to Eq. (2). (]
The above theorem indicates that for distillation proto-
cols that succeed with at least a constant probability (that
does not vanish when reducing the target ¢), the total
overhead must scale at least as Q[log(1/¢)] as € — 0.

As an important application, we discuss magic state
distillation [12], which is a major component of the leading
scheme for fault tolerance [2,28,29]. Here, the so-called
Clifford operations are considered free since they admit
fault-tolerant implementations thanks to stabilizer codes
[2,55-57], but meanwhile their computational power is
very limited—due to the celebrated Gottesman—Knill
theorem, they can even be efficiently simulated by classical
computers [2,58,59]. To achieve universal quantum com-
putation, one needs non-Clifford gates such as T =
diag(1, e”/*). A standard approach is to distill high-quality
magic state |T) = (|0) 4+ ¢"/*#[1))/v/2 from sufficiently
many noisy magic states off-line and then use an approximate
|T) state to emulate each low-error logical T gate in the circuit
via a technique called state injection or gadgetization [60].
Since the resource cost of this magic state distillation
component is dominant in the entire scheme, it is crucial
to understand the ultimate limitations to its efficiency.

We now address this problem by tailoring our general
results to the practical magic state distillation settings,
providing the first rigorous understanding of the resources
required for fault-tolerance schemes. (Note that the re-
source theory ideas have advanced our understanding of
magic states and quantum computation in various other
ways [13,27,61-64].) Known protocols for magic state
distillation are commonly based on concatenating error
correction subroutines using stabilizer codes to probabil-
istically produce an output with sufficiently high quality
upon passing the syndrome measurements. The output
could take the form of a large state with each marginal
sufficiently close to a unit target state, in which case we are
also interested in the average overhead, i.e., the total
overhead divided by the number of marginals. Here we
only showcase the T-state result, but the bounds for other
useful magic states (see, e.g., [33]) can be similarly
obtained by plugging in corresponding parameters.

Theorem 3. Consider the following general form of
magic state distillation task: given n copies of full-rank
primitive magic states p, output an m-qubit state 7 such that
Tro,T=(T|t;|T)>1-¢, Vi=1,...,m where 7;=Trz is
the ith qubit. Then the average overhead of any free pro-
babilistic protocol that succeeds with probability p must
obey

1 [(4-2v2)" —1]p
C:=n/m > —lo 5 - (p . 6
e I b vonr s T
Proof. By applying the union bound, we have
(T®™|7|T®") > 1 —me. Also notice that fren =

(4 —2v/2)™™ [22,65-67]. By plugging everything into
Eq. (2), we obtain the claimed bound. [

In the analyses of magic state distillation protocols, one is
particularly interested in the exponent y in the asymptotic
average overhead O[log’(1/¢)] as € — 0. A subtlety of our
lower bound is that the output size m could depend on the
target € for specific protocols. Thus, to understand the
scaling, one needs to take into account the behavior of m
as well. There are two key implications of our bound to code-
based distillation protocols. Assuming nonvanishing success
probability (the passing probability of deeper rounds of
concatenation converges sufficiently fast to one), we con-
clude the following: (i) Itis impossible to construct a protocol
with sublogarithmic average overhead (y < 1) with any
[n, k, d] code such that k < d. This can be seen by plugging
m =k and log(1/€) ~ d” into Eq. (6). This in particular
implies a y > 1 bound for k = 1 codes in response to open
questions raised in, e.g., [30,31]. Note that the best known
such codes allow y — 2 [32,33], so there is still potential
room for improvement. (ii) Any y < 1 protocol must have a
scale (size of the output) that diverges under concatenation. It
was actually believed that no codes allowing y < 1 exist[30],
but the recent breakthrough work by Hastings and Haah [31]
gives a peculiar example of such a code (see also [68]),
prompting the question of whether there is any fundamental
limit. (There, indeed, the codes employed have k > d.) Our
results indicate that, although the average overhead of such a
protocol is considered low, its output size must grow rapidly
as we reduce ¢, which inevitably blows up the overall cost.

Finally, we make a basic extension to the channel resource
theory setting (see, e.g.,[34,39,40]), amore general setting of
surging interest recently, which directly applies to quantum
channels, gates, and dynamical processes, etc. We show that,
under the analogous golden rule, it is generally impossible
to perfectly transform a noisy quantum channel into a unitary
resource channel. A straightforward implication of this result
is that the zero-error quantum capacity of generic noisy
channels, e.g., the depolarizing channel, is zero. See the
Supplemental Material [46] for detailed statements and
proofs. More comprehensive studies of the channel setting
will be left for follow-up.

To conclude, this work establishes quantitative bounds on
the accuracy and efficiency of purifying noisy quantum
resources and thus draws practical boundaries for quantum
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error correction and mitigation, by employing one-shot
quantum resource theory techniques. Our results universally
apply to quantum resources of any reasonable kind. The
bounds depend only on very few parameters that concisely
encode relevant properties of the noise, the target state, and
the resource theory and are thus easy to analyze. Like the no-
cloning theorem, our “no-purification” theorems stem from
fundamental laws of quantum mechanics at bottom. We
demonstrate the power and practical relevance of our general
methods by establishing strong lower bounds on the over-
head of distillation tasks (e.g., magic state distillation), which
provide rigorous understandings of and useful benchmarks
for the resource requirements of practical quantum technol-
ogies, in particular fault-tolerant quantum computation, as
the Heisenberg limit did for quantum metrology.

An important future work is to investigate to what extent
our various bounds can be approached, both by general
means and in specific theories. For instance, it remains to be
checked how close the state-of-the-art entanglement purifi-
cation protocols (see, e.g., [69]) are to the fundamental limits
set here. We also expect our general, primary results to see
improvements in various cases and, more generally, stimulate
further studies on optimal quantum resource purification. It
would also be interesting to further understand the approxi-
mate and probabilistic regimes of unitary channel simulation
due to its connections to the fields of quantum Shannon
theory, gate and circuit synthesis, etc. In sum, a key message
of this work is that the cost of practically implementing
quantum technologies or experiments could not be indefi-
nitely improved in general due to noise effects. As we are
now witnessing an exciting paradigm shift from blueprinting
quantum advantages in theory to actually putting them into
practice [14,70], we anticipate that such a rigorous under-
standing of the fundamental obstacles will serve as an
important guideline and have far-reaching implications for
quantum science and technology.
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