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It has been recently shown that there exist universal fundamental limits to the accuracy and efficiency of
the transformation from noisy resource states to pure ones (e.g., distillation) in any well-behaved quantum
resource theory [Fang and Liu, Phys. Rev. Lett. 125, 060405 (2020)]. Here, we develop a novel and
powerful method for analyzing the limitations on quantum resource purification, which not only leads to
improved bounds that rule out exact purification for a broader range of noisy states and are tight in certain
cases, but also enable us to establish a robust no-purification theory for quantum channel (dynamical)
resources. More specifically, we employ the new method to derive universal bounds on the error and cost
of transforming generic noisy channels (where multiple instances can be used adaptively, in contrast to
the state theory) to some unitary resource channel under any free channel-to-channel map. We address
several cases of practical interest in more concrete terms, and discuss the connections and applications of
our general results to distillation, quantum error correction, quantum Shannon theory, and quantum circuit
synthesis.
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I. INTRODUCTION

Quantum technologies, such as quantum computing,
quantum communication, and quantum cryptography, are
an exciting frontier of science, due to their promising
potential of achieving substantial advantages over conven-
tional methods that may spark an important technologi-
cal revolution. However, quantum systems are inherently
highly susceptible to noise and errors in real-world sce-
narios, which often make them unreliable or difficult to
scale up. This poses a serious challenge to realizing the
potential power of quantum technologies in practice. The
noise problem is particularly pressing at the moment, as
we are now at a critical juncture where we are starting
to make real effort to put the theoretically blueprinted
quantum technologies into practice [1,2]. In order to ease
the effects of noise, we would generally need techniques
that can “purify” the noisy systems. To this end, methods
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such as quantum error correction [3] and distillation [4–7]
are developed and have become central research topics in
quantum information.

Behind the power of quantum technologies is the
manipulation and utilization of various forms of quantum
“resources” such as entanglement [8], coherence [9], and
“magic” [7,10]. These different kinds a quantum resources
can be commonly understood and characterized using the
universal framework of “quantum resource theory” (see,
e.g., Ref. [11] for an introduction), which have been under
active development in recent years. Recently, Ref. [12]
revealed a fundamental principle of quantum mechanics
that there exists universal limitations on the accuracy and
efficiency of purifying noisy states in general quantum
resource theories, by employing one-shot resource theory
ideas [13]. However, Ref. [12] is only part of the story and
there are two gaps that we would like to fill to make the
picture more complete. First, the results there assume the
input states to be full-rank and it is not fully understood
whether there are no-purification rules when the input
state is noisy but not of full rank. Second, the approach
developed there is primarily designed for state or static
resources, but given that the manipulation of channel or
dynamical resources plays intrinsic roles in many scenar-
ios including quantum computation, communication, and
error correction, it is also important to understand whether
the no-purification principles extend to quantum channels.
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In this work, we develop a novel approach to estab-
lishing fundamental limits of general quantum resource
purification tasks, which addresses the above problems.
This approach is built upon decompositions of the input
that separate out the free parts. As we demonstrate, such
decompositions link the weight of the free parts, a key
quantity that we call free component, to the optimal error
of purification. We apply this approach to both quantum
states and channel resource theories. For state theories, we
use the new method to derive new bounds on the error
and efficiency of deterministic purification or distillation
tasks, which significantly improve those in Ref. [12]. More
specifically, the new results lift the full-rank assumption
and imply no-purification principles for a broader range
of mixed states. Furthermore, they are quantitatively bet-
ter and are shown to be tight in certain simple cases. We
use several concrete examples to demonstrate the improve-
ments and show that the new bounds are tight in certain
cases. Next, as a major contribution of this work, we
develop a comprehensive no-purification theory for quan-
tum channels (Ref. [12] presents only a zero-error result).
Most importantly, there are two key complications of the
channel theory that does not come up in the state the-
ory: (i) there are several different ways to define channel
fidelity measures; (ii) multiple instances of channels can
be used or consumed in various presumably inequiva-
lent ways, such as in parallel, sequentially, or adaptively.
Using the free-component method, we derive bounds on
the purification errors and costs for all cases. To provide
a more concrete understanding, we discuss the roles and
features of common noise channels in different types of
channel resource theories, as well as providing guidelines
for applying the no-purification bounds to a broad range of
fields of great theoretical and practical interest, including
distillation, quantum error correction, Shannon theory, and
circuit (gate) synthesis.

We emphasize a particularly remarkable and counter-
intuitive feature of the no-purification principles, which
is that they rule out any noisy-to-pure transformation for
noisy input states or channels with free component, where
the noisy inputs can be much more “resourceful” in terms
of common resource measures or operational tasks than the
pure targets. This is in sharp contrast with generic (such as
pure-to-pure) transformation tasks where the transforma-
bility is naturally determined by the resource content in
general. Also notably, our theory is applicable to virtu-
ally all well-defined resource theories (not even requir-
ing the standard convexity assumption), highlighting the
fundamental nature of the no-purification principles.

The paper is organized as follows. In Sec. II, we apply
the free-component method to state theories, and in par-
ticular discuss the improvements over previous results in
Ref. [12]. In Sec. III, we establish the no-purification
theory for quantum channels using the free-component
method. We first present general-form results in Sec. III A,

and then elaborate on specific scenarios and applications in
Sec. III B. Finally in Sec. IV we summarize the work and
discuss future directions.

II. STATE THEORY

We first consider state resource theories, which are built
upon the notions of free states and free operations that
represent the allowed transformation among states. Here,
we consider the most general resource theory framework
with the “minimalist” requirement—the golden rule that
any free operation must map a free state to another free
state, or in other words, cannot create resource (see, e.g.,
Refs. [11,14,15]). This golden rule defines the largest pos-
sible set of operations that encompasses any legitimate set
of free operations, and thus the fundamental limits induced
by it apply universally to any nontrivial resource theory.
Also, for mathematical rigor, we assume that the set of free
states F has the following two reasonable, commonly held
properties: (i) the composition of free states should be free,
namely if ρ1, ρ2 ∈ F then ρ1 ⊗ ρ2 ∈ F ; (ii) F is closed.

The following quantity that we call free component will
play a central role in our theory.

Definition 1 (Free component). The free component of
quantum state ρ is defined as

�ρ := max
{
γ : ρ − γ σ ≥ 0, σ ∈ F

}
. (1)

Equivalently,

�ρ = max
{
γ : ρ = γ σ + (1 − γ )τ , σ ∈ F , τ ∈ D

}
,
(2)

where D is the set of all density matrices. That is, the free
component is directly related to the “weight of resource”
W, which is recently studied in general resource theory
contexts [16,17], by �ρ = 1 − Wρ . Another equivalent
form is �(ρ) = minσ∈F 2Dmax(σ‖ρ) where the max-relative
entropy is defined by Dmax(σ‖ρ) := log min{t : σ ≤ tρ} if
supp(σ ) ⊆ supp(ρ) and +∞ otherwise [18]. Note that, if
F can be characterized by semidefinite conditions (which
is quite common, e.g., in coherence theory F = {σ : σ ≥
0, Tr σ = 1, σ = �(σ)}, where� is the dephasing channel
erasing the off-diagonal entries), then �ρ can be effi-
ciently computed by semidefinite programming (SDP) for
given ρ. In the resource theory of thermodynamics, for
Hamiltonian H and inverse temperature β the Gibbs (ther-
mal) state σ := e−βH/Tr e−βH is the only free state and
we thus have a closed-form formula for free component
as �ρ = 1/λmax(ρ−1σ) (where λmax denotes the largest
eigenvalue) if supp(ρ) ⊇ supp(σ ) and zero otherwise
[19, Theorem 2].

It can be easily seen that the free component obeys the
desirable monotonicity property that it cannot be reduced
by free operations.

010337-2



NO-GO THEOREMS FOR QUANTUM RESOURCE PURIFICATION. . . PRX QUANTUM 3, 010337 (2022)

Proposition 2 (Monotonicity). For any state ρ and any
free operation N , it holds that �ρ ≤ �N (ρ).

Proof. Suppose �ρ is achieved by σ ∈ F . Then by
definition ρ − �ρσ ≥ 0, and thus N (ρ)− �ρN (σ ) ≥ 0.
Since N (σ ) ∈ F by the golden rule, we have that �N (ρ) ≥
�ρ by definition. �

Moreover, it is supermultiplicative under tensor product
of states:

Proposition 3 (Supermultiplicity). For any quantum
states ρ1, ρ2, it holds that �ρ1⊗ρ2 ≥ �ρ1�ρ2 .

Proof. Suppose that the maximization in �ρ1 ,�ρ2 are,
respectively, achieved by σ1, σ2 ∈ F , that is, ρi ≥
�ρiσi, i = 1, 2. It holds that ρ1 ⊗ ρ2 ≥ (�ρ1σ1)⊗ (�ρ2σ2)

= �ρ1�ρ2σ1 ⊗ σ2. Also note that σ1 ⊗ σ2 ∈ F axiomati-
cally. Therefore, �ρ1⊗ρ2 ≥ �ρ1�ρ2 by definition. �

Consider the task of purification, namely transforming a
noisy state ρ to a certain target pure state ψ = |ψ〉〈ψ | up
to some error. Formally, the error of purification is defined
by the infidelity with the target state: for input state ρ,
transformation operation N and target pure state ψ , the
error

ε(ρ
N−→ ψ) := 1 − TrψN (ρ) = 1 − 〈ψ |N (ρ)|ψ〉. (3)

Also, let fψ denote the maximum overlap of pure stateψ =
|ψ〉〈ψ | with free states, namely,

fψ := max
σ∈F

Trψσ = max
σ∈F

〈ψ |σ |ψ〉. (4)

We now prove an improved deterministic no-purification
theorem using a method different from Ref. [12], which
directly connects the accuracy of purifying a noisy state
with its free component.

Theorem 4. Given any state ρ and any pure state ψ ,
there is no free operation that transforms ρ to ψ with
error smaller than �ρ(1 − fψ). That is, it holds for any free
operation N that

ε(ρ
N−→ ψ) ≥ �ρ(1 − fψ). (5)

Proof. By the definition of �ρ , there exists free state
σ ∈ F and state τ such that ρ can be decomposed as

follows:

ρ = �ρσ + (1 − �ρ)τ . (6)

Let N be any free operation. By linearity,

N (ρ) = �ρN (σ )+ (1 − �ρ)N (τ ). (7)

Then it holds that

ε(ρ
N−→ ψ) = 1 − TrN (ρ)ψ (8)

= 1 − �ρ TrN (σ )ψ − (1 − �ρ)TrN (τ )ψ
(9)

≥ 1 − �ρ fψ − (1 − �ρ) (10)

= �ρ(1 − fψ), (11)

where the inequality follows from TrN (σ )ψ ≤ fψ since
N (σ ) ∈ F by the golden rule, and TrN (τ )ψ ≤ 1. �

As first noted in Ref. [12], we can translate the upper
bounds on transformation accuracy into lower bounds on
the “amount” of input resources required to achieve a
certain target, in particular, the cost of many-copy distil-
lation procedures, which are widely considered for various
purposes in quantum computation and information [4–7].
The above Theorem 4 induces the following general lower
bound on distillation overhead.

Corollary 5. Consider distillation procedures represented
by a free operation that transform n copies of noisy states ρ
to a target pure state ψ within error ε. Then n must satisfy

n ≥
[

log
1 − fψ
ε

][
log

1
�ρ

]−1

. (12)

Proof. Suppose the transformation is given by the free
operation N . Then it holds from Theorem 4 that

ε ≥ ε(ρ⊗n N−→ ψ) ≥ �ρ⊗n(1 − fψ). (13)

Note that, due to the supermultiplicity property from
Proposition 3, we get �ρ⊗n ≥ (�ρ)

n. This gives

ε ≥ (�ρ)
n(1 − fψ), (14)

which is equivalent to the above assertion. �
Our new method essentially replaces the minimum

eigenvalue of ρ in the corresponding bounds in Ref. [12]
(which we refer to as the min-eigenvalue bounds) by its
free component, which represents a significant improve-
ment from both qualitative and quantitative perspectives,
as detailed in the following.
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First, the range of applicability of the no-purification
theorem is significantly extended. The proof using the
quantum hypothesis testing relative entropy presented in
Ref. [12] applies only to full-rank input states. However,
Theorem 4 implies that the no-purification rule actually
holds more broadly (see also Ref. [20, Proposition 2]):

Corollary 6. There is no free operation that exactly
transforms a state ρ to any pure state ψ /∈ F if �ρ > 0.

Proof. Since F is closed by assumption and ψ /∈ F , we
have fψ < 1. Then due to Theorem 4, the transforma-
tion error ε > 0, indicating that exact transformation is
impossible. �

Below we give some alternative useful characterizations
of the � > 0 condition.

Proposition 7. For any quantum state ρ, the following
conditions are equivalent:

(a) free component: �ρ > 0;
(b) support: there exists a free state σ ∈ F such that

the support condition supp(ρ) ⊇ supp(σ ) holds;
(c) resource measure: the min-relative entropy of

resource Dmin(ρ) := minσ∈F Dmin(ρ‖σ) = 0,
where Dmin(ρ‖σ) := − log Trρσ is the min-
relative entropy, and ρ is the projector onto
supp(ρ).

Proof. It is easy to see that (a) implies (b) and (b) implies
(c). It remains to show that (c) implies (a). Suppose (c)
holds, then there exists σ ∈ F such that Dmin(ρ‖σ) =
0. By definition, we have Tr(I −ρ)σ = 0. That is,
ker(ρ) ⊥ supp(σ ), and equivalently, supp(ρ) ⊇ supp(σ ).
If ρ = σ , then (a) holds. Otherwise, we have Dmax(σ‖ρ) >
0. [Note that Dmax(σ‖ρ) = 0 if and only if ρ = σ .] This
implies that there exists t > 1 such that σ ≤ tρ. Thus �ρ ≥
1/t > 0, implying (a). �

It is clear that for any pure resource state ψ /∈ F we
have �ψ = 0, so the no-purification bounds can only be
nontrivial for mixed states. Meanwhile, it can be imme-
diately seen [e.g., from (b)] that the � > 0 condition is
weaker than the full-rank condition. In fact, it holds as
long as the support of ρ contains some free state in its
support, which is generically the case for mixed states
in common resource theories. Also note that the � > 0
condition does not necessarily hold for all mixed states.
For a concrete example, consider the coherence theory
defined by an orthonormal basis {|0〉, |1〉, |2〉, |3〉}. Con-
sider the state ρ = (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|)/2 where |ψ1〉 =
(|0〉 + |1〉)/√2, |ψ2〉 = (|2〉 + |3〉)/√2. It can be verified
that ρ is mixed but �ρ = 0 because any decreasing of the
diagonal entries will render the matrix negative. It would

be interesting to further understand and characterize the
� > 0 condition in specific theories.

Furthermore, note that the derivation and results (also
the channel versions below) apply to continuous vari-
able or infinite-dimensional quantum systems: the relevant
quantities, the free component � and the maximum overlap
f , can be defined likewise (supremum instead of maxi-
mum over F ), and the proof steps follow. In particular,
� > 0, f < 1 still indicate no purification. An elementary
continuous variable example will be given later.

We remark that if we only require the purification trans-
formation to succeed with some probability (the proba-
bilistic setting), the � > 0 condition is not sufficient to rule
out purification and it seems that the full-rank condition
cannot be alleviated. For example, consider the following
state with a flag register F:

ρ = p|0〉〈0|F ⊗ ψA + (1 − p)|1〉〈1|F ⊗ τA, (15)

where ψ is the target pure state and τ is a state such that
�τ > 0. Then we have �ρ > 0 (ρ is not full rank), but we
can obtain ψ with probability p simply by measuring F
(which is conventionally free) and postselect on 0.

Second, the new results are quantitatively better than the
corresponding ones in Ref. [12] for full-rank input states.
It is first straightforward to see that �ρ ≥ λmin

ρ , where λmin
ρ

denotes the minimum nonzero eigenvalue of ρ, because
ρ ≥ λmin

ρ · I ≥ λmin
ρ · σ for any state σ where I denotes the

identity matrix on supp(ρ). So by definition, �ρ ≥ λmin
ρ .

In sum, the new free-component bounds cover the min-
eigenvalue bounds. In particular, when the noisy state ρ is
close to the set of free states F , the minimum eigenvalue
λmin
ρ could still be small but �ρ approaches 1. This indi-

cates that the free-component bounds potentially exhibit
much tighter behaviors in the large error regime like when
ρ is close to F . Importantly, the distillation overhead
bound Corollary 5 indicates the key behavior that as ρ
approaches F , it holds that n → ∞, i.e., the number of
copies needed diverges, because �ρ → 1. This cannot be
deduced from the min-eigenvalue bounds in Ref. [12].

Now we discuss the application of our general bounds
in a few important specific scenarios that are of practi-
cal interest in diverse manners, showcasing the versatility
of our theory. In particular, it is concretely demonstrated
that the free-component bounds can strictly outperform
the corresponding min-eigenvalue bounds in Ref. [12] and
notably, could be tight, in key scenarios.
Example 1 (Magic state distillation): Consider T states
|T〉 = T|+〉 = (|0〉 + eiπ/4|1〉)/√2 contaminated by depo-
larizing or dephasing noise, given by

τ = (1 − ζ )|T〉〈T| + ζ
I
2

, (16)

where ζ is the noise rate, as the input. Note that we are
interested in ζ ∈ (0, 1 − 1/

√
2) so that τ is a mixed state
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Z

τ

τ̄

|T 〉
|+〉 T 2|+〉

STAB

FIG. 1. The cross section of the Bloch sphere through the cen-
ter perpendicular to the Z axis. The blue square represents the
corresponding cross section of the stabilizer hull (STAB). τ̄ is
actually |T〉 subject to p = 1 − 1/

√
2 depolarizing noise and lies

on the edge of STAB. τ is the noisy input state that lies between
|T〉 and τ̄ .

outside of the stabilizer hull. On the one hand, it can be
directly checked that λmin

τ = ζ/2. On the other hand, �τ is
bounded as follows. Consider the free state

τ̄ = 1
2
(|+〉〈+| + T2|+〉〈+|T†2

) = 1
4

(
2 1 − i

1 + i 2

)
∈ F ,

which sits at the edge of the stabilizer hull closest to |T〉
(as depicted in Fig. 1). Then by definition we have

�τ ≥ max{γ : τ − γ τ̄ ≥ 0} = max
{
γ :

(
α β

β̄ α

)
≥ 0

}
,

with α = (1/2)(1 − γ ) and β = (1 − ζ/2)e−iπ/4 − γ

(1 − i/4). By solving the determinant we obtain that

�τ ≥ (2 +
√

2)ζ , (17)

when ζ ∈ (0, 1 − 1/
√

2). This implies �τ > λmin
τ , and thus

the previous error bound is outperformed for any pure
target state by a constant factor. As a sanity check, the
bound indeed approaches 1 as ζ → 1 − 1/

√
2, in contrast

to the λmin bound. This indeed implies the expected phe-
nomenon that the total distillation overhead blows up as τ
approaches the stabilizer hull. In particular, for the stan-
dard task of distilling T states, we thus obtain an improved
bound on the average overhead following the proof of
Theorem 3 in Ref. [12].

Corollary 8. Consider the following common formula-
tion of magic state distillation task: given n copies of
noisy states τ [defined in Eq. (16)], output an m-qubit
state σ such that Tr σiT = 〈T|σi|T〉 ≥ 1 − ε, ∀i = 1, . . . , m
where σi = Trī σ is the ith qubit, by some free (stabilizer-
preserving) operation. Then n must satisfy

n ≥
[

log
(4 − 2

√
2)m − 1

(4 − 2
√

2)mmε

][
log

2 − √
2

2ζ

]−1

. (18)

Proof. By applying the union bound, we have 〈T⊗m|σ
|T⊗m〉 ≥ 1 − mε. Recall that �τ ≥ (2 + √

2)ζ in Eq. (17)
and notice that fT⊗m = (4 − 2

√
2)−m [13,21–23]. By plug-

ging everything into Eq. (12) we obtain the claimed
bound. �

Example 2 (Coherence): Consider the maximally coher-
ent qubit state |+〉 = (|0〉 + |1〉)/√2 contaminated by typ-
ical noise channels, including depolarizing, dephasing, and
amplitude damping, as the input.

For the depolarizing noise (here the dephasing noise
has an equivalent effect), the noisy state is given by ρ =
[|0〉〈0| + |1〉〈1| + (1 − μ)(|0〉〈1| + |1〉〈0|)]/2 where μ ∈
(0, 1) is the noise rate. Then λmin

ρ = μ/2, and it can be eas-
ily calculated that �ρ = μ. That is, the new error bound is
twice the min-eigenvalue bound for any pure target state.

For the amplitude damping noise, the free-component
bounds have a more remarkable advantage. Here the noisy
state is given by ρ = [(1 + ν)|0〉〈0| + (1 − ν)|1〉〈1| +√

1 − ν(|0〉〈1| + |1〉〈0|)]/2 where ν ∈ (0, 1) is the noise
rate. Then λmin

ρ = (1/2)(1 − √
1 − ν + ν2). We numeri-

cally solve �ρ , and compare it with λmin
ρ in Fig. 2(b)

(note that the values plotted are all multiplied by a fac-
tor 1/2; see below). Note that, as ν increases, i.e., ρ is
more heavily damped towards the free state |0〉, the error
of purification is expected to grow. As can be seen from
Fig. 2(b), as ν → 1, λmin

ρ vanishes and so do correspond-
ing bounds, but �ρ indeed keeps growing, showcasing an
important scenario where only the free-component bounds
are nontrivial.

Let us explicitly consider |+〉 as the target state. It is
known that the optimal fidelity of transforming ρ to |+〉

0.0

0.1

0.2

0.3

0.4

0.5

Noise rate

Depolarizing and dephasing noise

E
rr

or

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
 Optimal error
 Free-component bound
 Min-eigenvalue bound

Noise rate

Amplitude damping noise(b)(a)

FIG. 2. Comparisons between the optimal achievable error of
a standard purification task and the lower bounds induced by �
(this work) and λmin (Ref. [12]) in coherence theory. The task
is to recover the maximally coherent qubit state |+〉 under typi-
cal noise channels: (a) depolarizing and dephasing; (b) amplitude
damping. The green and blue dashed lines are, respectively, the
free component and min-eigenvalue lower bounds on the error,
and the red line is the minimum error achieved by MIO computed
by SDP Eq. (19). In (a) the green dashed line actually overlaps
with the red line, indicating that the free-component error bound
is tight.
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by free operations (MIO) can be solved by the following
SDP [24, Theorem 3]:

max
{

Tr Gρ : 0 ≤ G ≤ I ,�(G) = I
2

}
, (19)

where � takes the diagonal part of a given matrix. In
Fig. 2, we plot the optimal error obtained by the above SDP
as well as the free component and min-eigenvalue lower
bounds for comparison. In particular, for depolarizing or
dephasing noise, the free-component error bound turns out
to be tight, i.e., is achievable, for any noise rate.
Example 3 (Constrained quantum error correction): Here
we demonstrate how the state no-purification bounds can
be used to find limits on quantum error correction (QEC).
In particular, we consider the broadly important situa-
tions where the QEC procedures are subject to certain
constraints (such as stabilizer or Clifford constraints, sym-
metries) so that resource theory becomes useful. Notice
that the decoding procedures are aimed at recovering
all logical states from noisy physical states, indicating
connections between the no-purification bounds and the
overall recovery accuracy. More specifically, we have the
general result (L, S denote the logical and physical systems,
respectively).

Corollary 9. Suppose the decoding operation is free. Then
given encoding operation EL→S and noise channel NS
acting on the physical system S, the error of the recov-
ery of pure logical state ψL obeys ε ≥ �NS◦EL→S(ψL)(1 −
fψL), based on which we directly obtain bounds on mea-
sures of the overall accuracy of the code, such as the
worst-case error given by maximization over ψL, and the
average-case error given by a certain (e.g., Haar) average
over ψL.

We further remark on the case of covariant (symmetry-
constrained) codes, which play fundamental roles in quan-
tum computing and physics and has drawn considerable
recent interest [25–31]. Suppose we consider some com-
pact continuous symmetry group G. Based on Lemma 2
in Ref. [29,32], it can be seen that when the noise chan-
nel NS is covariant (which is usually the case), then we
can construct a covariant decoding operation that achieves
the optimal error. That is, we can actually remove the free-
ness assumption of the decoder to apply the no-purification
bounds, leading to the following adapted version.

Corollary 10 (Covariant code). Let G be a compact
continuous symmetry group. Let EL→S be a G-covariant
encoding operation. Suppose the noise channel NS is G-
covariant. Then Corollary 9 (where the parameters are
defined in terms of the G-asymmetry theory) holds for any
decoder.

See Sec. III B 2 for related discussions and results in the
channel setting.
Example 4 (Continuous variable): Lastly, we provide
an elementary example of the application to continuous-
variable theories. Consider continuous-variable nonclassi-
cality, a characteristic resource feature in quantum optics
that is closely relevant to, e.g., linear optical quantum com-
putation [33] and metrology [34–36]. Here the coherent
states of light and their probabilistic mixtures are consid-
ered free (classical). The coherent state corresponding to
complex amplitude α ∈ C takes the form

|α〉 = exp
(−|α|2/2)

∞∑

n=0

αn

√
n!

|n〉 (20)

in the number state (Fock) basis {|n〉}. A prototypical
type of nonclassical resource states is the (single-mode)
squeezed states [37,38]

|sr〉 := 1√
cosh r

∞∑

n=0

√
(2n)!
2nn!

(tanh r)n|2n〉 (21)

generated by the squeezing operator S(r) := exp
{
r
[
â2−

(â†)2
]
/2
}

(â and â† are, respectively, the annihilation and
creation operators) acting on the vacuum state |0〉, where
r ≥ 0 is the squeezing parameter. It can be calculated that

〈sr|α〉 =
√

e−|α|2

cosh r

∞∑

n=0

√
(2n)!
2nn!

(tanh r)n × α2n

√
(2n)!

(22)

=
√

e−|α|2

cosh r

∞∑

n=0

[(α2 tanh r)/2]n

n!
(23)

=
√

e−|α|2

cosh r
e(α

2 tanh r)/2, (24)

using which we obtain

fsr := sup
σ∈F

〈sr|σ |sr〉 = sup
α∈C

|〈sr|α〉|2 (25)

= sup
α∈C

e−|α|2

cosh r
eRe(α2)tanh r (26)

= (cosh r)−1, (27)

where we used tanh r < 1. Then, to showcase an example
of a no-purification bound, consider the task of distilling
some squeezed state |sr〉 from noisy state ρ using free,
namely classicality-preserving operations (which, in par-
ticular, include passive linear optical operations) [35,39].
Then Theorem 4 directly implies that the transforma-
tion error ε ≥ �ρ[1 − (cosh r)−1], from which it can be
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observed that the task indeed becomes more demanding
as the squeezing parameter increases. Like the discrete-
variable setting, for specific noise models, it is often easy
to calculate or bound �ρ so that the error bound can be
further specified.

III. CHANNEL THEORY

We now extend the no-purification theory to quantum
channels or dynamical settings. The channel analog of
purification is to transform a noisy channel (or noisy chan-
nels, as will be discussed) to a unitary (noiseless) channel,
or equivalently, to simulate the unitary channel by the
noisy ones. The free-component approach directly enables
us to study these problems in the channel resource theory
setting where the resource objects are quantum channels
instead of states (note that it is not clear how to fully extend
the hypothesis testing approach in Ref. [12] to channels).
It is worth noting again that the structure of channel the-
ories is much richer than the state theories since multiple
instances of channels can be used in different ways, such
as in parallel, sequentially, or adaptively. Here, we first
present error bounds in the most general forms, and then
specifically investigate the adaptive or sequential simu-
lation setting, which represents a fundamental difference
from state theories. To demonstrate the practical relevance
of the general no-go rules and bounds, we discuss them
in more specific contexts, and, in particular, outline the
applications to quantum error correction, gate and circuit
synthesis, and channel capacities.

Note that we often specify the input and output systems
of channels in the subscripts (a channel N from system A
to system B is denoted as NA→B, and if the input and output
systems are the same one A it is simply denoted as NA), but
when there is no ambiguity we omit the labels. Given linear
maps N ,M, the order N − M ≥ 0 means N − M is a
completely positive map. To simplify the notation, given
some input state ρ on A and reference system R, we also
denote the output state of the channel NA→B acting on A by

ρN := NA→B ⊗ idR(ρAR). (28)

In particular, the Choi state of N is given by

�N := NA→B ⊗ idR(�AR), (29)

where �AR = ∑
j |j 〉A|j 〉R/

√
d is the maximally entan-

gled state between A and reference system R of the same
dimension d.

A. General theory and results

1. Setups and basic error bounds

For channel resource theories, the building blocks analo-
gous to free states and free operations are free channels and

free superchannels, where superchannels map channels to
channels. Like the state case, we consider the most general
framework where the free superchannels are required only
to obey the golden rule that any free superchannel must
map a free channel to another free channel. Note again
that this golden rule gives rise to the largest possible set of
superchannels that encompasses any legitimate set of free
superchannels, so that the fundamental limits induced by it
apply universally. We also assume the following two com-
monly held properties of the set of free channels (which
we still denote by F ): (i) the composition of free channels
[for channels there are two fundamental types of composi-
tion—parallel composition (represented by tensor product
⊗), and sequential composition (represented by ◦)] should
be free, that is, if N1,N2 ∈ F , then both N1 ⊗ N2 ∈ F
and N2 ◦ N1 ∈ F hold; (ii) F is closed. We refer readers
to, e.g., Refs. [40,41] for more comprehensive discussions
of the general framework of channel resource theories.

We now define the channel version of free component
as follows.

Definition 11 (Channel free component). The free compo-
nent of quantum channel N is defined as

�N := max
{
γ : N − γM ≥ 0, M ∈ F

}
. (30)

Equivalently,

�N = max
{
γ : N = γM + (1 − γ )R,

M ∈ F ,R ∈ C
}
, (31)

where C is the set of all completely positive and trace-
preserving maps (quantum channels). Since N ≥ γM is
equivalent to �N ≥ γ�M, we also have the relation

�N = ��N , (32)

where on the RHS, �N is the Choi state of N and the free
component � is defined with respect to the set of free states
consisting of the Choi states of all free channels. Similar
to the state case, as long as F can be characterized by
semidefinite conditions, the channel free component �N
can be efficiently computed by SDP.

The channel free component also exhibits monotonicity
and super-multiplicity properties.

Proposition 12 (Monotonicity). For any quantum channel
N and free superchannel , it holds that

�N ≤ �(N ). (33)

Proof. Suppose �N is achieved by M ∈ F . Then by
definition N − �NM ≥ 0, and thus (N )− �N(M)

≥ 0. Since (M) ∈ F by the golden rule, we have that
�(N ) ≥ �N by definition. �
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For channels, we need to consider sequential compo-
sition in addition to parallel composition represented by
tensor product. The channel free component is supermulti-
plicative under both types of composition.

Proposition 13 (Supermultiplicity). For any quantum
channels N1,N2, it holds that

�N1⊗N2 ≥ �N1�N2 , (34)

�N2◦N1 ≥ �N1�N2 . (35)

Proof. Suppose that the maximization in �N1 ,�N2 are,
respectively, achieved by M1,M2 ∈ F , that is, Ni ≥
�NiMi, i = 1, 2. It holds that N1 ⊗ N2 ≥ (�N1M1)⊗
(�N2M2) = �N1�N2M1 ⊗ M2, and similarly, N2 ◦
N1 ≥ (�N2M2) ◦ (�N1M1) = �N1�N2M2 ◦ M1. Also
note that M1 ⊗ M2 ∈ F and M1 ◦ M2 ∈ F axiomat-
ically. Therefore, �N1⊗N2 ≥ �N1�N2 and �N2◦N1 ≥
�N1�N2 by definition. �

Here we are interested in the channel simulation task of
transforming a given quantum channel N to a target uni-
tary channel U via some superchannel up to some error that
is measured by certain choices of channel distances. Let
F(ρ, σ) = ‖√ρ√

σ‖2
1 be the Uhlmann fidelity between

general states ρ and σ . Consider the following three typical
versions of channel fidelity that are commonly used.

(a) Worst-case (entanglement) fidelity:

FW(N ,M) := inf
ρAR

F(ρN , ρM), (36)

where ρN , ρM are, respectively, the channel output
states of N ,M defined in Eq. (28), and the opti-
mization includes system R. Note that it is equiv-
alent to optimize over pure input states due to the
joint concavity of fidelity F [42].

(b) Choi fidelity:

FC(N ,M) := F(�N ,�M), (37)

where �N ,�M are, respectively, the Choi states of
N ,M.

(c) Average-case fidelity [43]:

FA(N ,M) :=
∫

dψ F(N (ψ),M(ψ)), (38)

where the integral is over the Haar measure on the
input state space.

The corresponding versions of infidelity are then

εx(N ,M) := 1 − Fx(N ,M), x ∈ {W, C, A}. (39)

Also, a standard measure of distance between channels is
given by the diamond norm distance:

ε�(N ,M) := 1
2

‖N − M‖� , (40)

where ‖N ‖� := supρAR
‖NA→B ⊗ idR(ρAR)‖1. Again, it is

equivalent to optimize over pure input states due to the
convexity of trace norm ‖ · ‖1. All the above channel
distance measures are symmetric in its arguments.

Note that these channel distance measures are com-
monly used in different scenarios [43]. For example, the
worst-case entanglement fidelity and the diamond norm
error are commonly used in quantum computation sce-
narios like circuit synthesis (see, e.g., Refs. [44,45],
Sec. III B 4) and approximate quantum error correction
(see, e.g., Ref. [46], Sec. III B 2); the Choi fidelity is
used in quantum Shannon theory to evaluate the perfor-
mance of quantum communication (see, e.g., Refs. [47,48],
Sec. III B 3); the average-case fidelity is easier to estimate
in experiments (see, e.g., Refs. [49–52]).

In this work, we are mostly interested in the case where
an argument is a unitary channel U . Note that for pure state
ψ , we have the inequality [3]

1 − F(ρ,ψ) ≤ 1
2
‖ρ − ψ‖1 ≤

√
1 − F(ρ,ψ). (41)

Applying the above result to channels, we can conclude

εW(N ,U) ≤ ε�(N ,U) ≤
√
εW(N ,U). (42)

Also, it is known [43,53] that the average-case fidelity and
the Choi fidelity have the following direct relation:

FA(N ,U) = FC(N ,U)d + 1
d + 1

, (43)

and thus

εA(N ,U) = d
d + 1

εC(N ,U), (44)

where d is the dimension of the input system. Furthermore,
it is clear from definition that

FC(N ,M) ≥ FW(N ,M), (45)

εC(N ,M) ≤ εW(N ,M), (46)

for any channels N ,M. To summarize, for the case of
comparing with unitary channel U , which is of interest in
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this work, the four channel distance measures are ordered
as follows:

ε�(N ,U) ≥ εW(N ,U) ≥ εC(N ,U) = d + 1
d

εA(N ,U).
(47)

We are interested in the task of using channel N to
simulate unitary target channel U via transformation super-
channel . The (different versions of) simulation error is
simply given by

εx(N −→ U) := εx((N ),U), x ∈ {W, C, A, �}. (48)

Also define corresponding versions of the maximum over-
lap of channel N with free channels as

f x
N := max

M∈F
Fx(N ,M), x ∈ {W, C, A}. (49)

Note the following simple fact.

Proposition 14 (Faithfulness). For any quantum channels
N and M, for x ∈ {W, C, A},

Fx(N ,M) = 1 ⇐⇒ N = M, (50)

and as a consequence,

f x
N = 1 ⇐⇒ N ∈ F . (51)

Proof. The first equivalence follows from the fact of state
fidelity that F(ρ, σ) = 1 if and only if ρ = σ . The second
equivalence follows since F is closed by assumption. �

We now present error bounds for these channel error
measures. For the Choi and average-case fidelities, note
the following linearity property.

Lemma 15 (Linearity). Let x ∈ {C, A} and U be a uni-
tary channel. Then Fx(N ,U) is linear in N . That is,
given N = pN1 + (1 − p)N2 for p ∈ [0, 1] and quantum
channels N1,N2, it holds that

Fx(N ,U) = pFx(N1,U)+ (1 − p)Fx(N2,U). (52)

Proof. Consider the Choi fidelity first. We have

FC(pN1 + (1 − p)N2,U)
= F(�pN1+(1−p)N2 ,�U ) (53)

= Tr(�pN1+(1−p)N2�U ) (54)

= p Tr(�N1�U )+ (1 − p)Tr(�N2�U ) (55)

= pFC(N1,U)+ (1 − p)FC(N2,U), (56)

where the second equality follows since the Choi state �U
is a pure state, and the third equality follows from the

linearlity of the trace function. Then due to Eq. (43), we
conclude that FA has the same linearity property. �

Collectively, our best bounds are the following.

Theorem 16. Given any quantum channel N and any uni-
tary target channel U , it holds for any free superchannel
 that

ε�(N −→ U) ≥ εW(N −→ U)
≥ εC(N −→ U) ≥ �N (1 − f C

U ), (57)

and

εA(N −→ U) ≥ �N (1 − f A
U ) = d

d + 1
�N (1 − f C

U ), (58)

where d is the dimension of the input system of U .

Proof. The proof is analogous to that of Theorem 4. By
the definition of �N , there exists free channel M ∈ F and
channel R such that N can be decomposed as follows:

N = �NM + (1 − �N )R. (59)

Let  be any free superchannel. By the linearity of super-
channels,

(N ) = �N(M)+ (1 − �N )(R). (60)

Then for x ∈ {C, A}, it holds that

εx(N −→ U)
= 1 − Fx((N ),U) (61)

= 1 − Fx(�N(M)+ (1 − �N )(R),U) (62)

= 1 − �N Fx ((M),U)− (1 − �N )Fx ((R),U)
(63)

≥ 1 − �N f x
U − (1 − �N ) (64)

= �N (1 − f x
U ), (65)

where the third line follows from the linearity property
Lemma 15, and the inequality follows from the fact that
FC((M),U) ≤ f C

U since (M) ∈ F by the golden
rule, and FC ((R),U) ≤ 1. Then by Eq. (47) we obtain
Eq. (57), and Eq. (58) follows from the relation Eq. (43)
and is essentially the same bound as the last one of Eq. (57)
upto a dimension factor. �

Note that the best bounds we can get for all error mea-
sures are in terms of the Choi overlap f C

U . A natural
question is whether one can directly use f W

U in the bound
for εW, which would improve the bound. The problem is
we do not have a linearity property analogous to Lemma 15
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for the worst-case fidelity FW, so the third line does not go
through.

As long as the target channel U �∈ F , it is clear by
definition that f C

U < 1. That is, for any channel N sat-
isfying the �N > 0 condition and any resource unitary
channel, all the above error bounds are nontrivial and thus
imply a nonzero error.

2. Multiple channel uses and adaptive channel
simulation

Now we discuss the scenario where one takes mul-
tiple noisy channels as inputs and intends to simulate
some unitary channel, which is analogous to the stan-
dard task of distilling high-quality resources from many
noisy resources in the state setting. However, the multi-
ple instance setting represents a very important difference
between channels and states. The composition of multiple
states has a simple parallel structure represented by ten-
sor products. In contrast, multiple channels can be used
sequentially and adaptively, which is not simply described
by tensor products and may be more powerful than the
parallel scheme. Whether the adaptive scheme can outper-
form the parallel one is a crucial problem in many research
areas about quantum channels, such as channel simulation,
discrimination, and estimation (see, e.g., Refs. [54–68]).

First, note that the parallel use of multiple channels
N1, . . . ,Nn is again represented by tensor product and thus
can be simply regarded as a single channel N = ⊗n

i=1 Ni.
Therefore, the results above can be directly applied. In
addition to error bounds, using the supermultiplicity prop-
erty (Proposition 13), we directly bound the cost or over-
head of unitary channel simulation, defined by the number
of instances of a certain channel needed to simulate some
unitary channel, using parallel strategies.

Corollary 17 (Parallel simulation cost). Suppose some
free superchannel transforms n instances of noisy chan-
nels N to target unitary channel U with a certain type
of error εx(N⊗n −→ U) ≤ εx, x ∈ {�, W, C, A}. Then n must
satisfy

n ≥
[

log
1 − f C

U
εx

][
log

1
�N

]−1

, (66)

for any x ∈ {�, W, C}. The bound on n in terms of the
average-case error εA is equivalent to that in terms of the
Choi error εC.

Now we consider the adaptive scheme, which repre-
sents a more general way to use multiple input channels
to simulate an output channel. Here, the action on input
channels N1, . . . ,Nn is represented by a “quantum comb”
[69,70]  with appropriate dimensions realized by chan-
nels P1, . . . ,Pn+1, and the input channels are inserted into

P1 P2 Pn Pn+1

N1 Nn· · ·
· · ·

FIG. 3. Quantum comb. Given input channels N1, . . . ,Nn, the
general map that outputs a channel can be represented by a quan-
tum comb (gray area) realized by channels P1, . . . ,Pn+1, and the
input channels are used by inserting them into the slots.

the slots (as depicted in Fig. 3). In resource theory contexts,
there is again a golden rule on the combs that a free comb
must map free channels to a free channel, that is, if one
inserts free channels N1, . . . ,Nn ∈ F in the slots of comb
n then the overall channel n(N[n]) ∈ F (where N[n] is
short for the channel collection [N1, . . . ,Nn]). Note that,
in the case where the comb is realized by free channels
P1, . . . ,Pn+1 ∈ F (and the identities on the ancilla sys-
tems are considered free), it obviously obey the golden
rule, because axiomatically the composition of free chan-
nels is free. However, the converse is not necessarily true,
that is, the notion of free combs is more general than free
realization.

Note that the channel free component obeys the follow-
ing monotonicity property under free combs.

Proposition 18 (Monotonicity). Given any channels
N1, . . . ,Nn (collectively denoted by N[n]), it holds that, for
any free comb n acting on N[n],

�n(N[n]) ≥
n∏

i=1

�Ni . (67)

Proof. Suppose the quantum combn is realized by chan-
nels Pi with i = 1, . . . , n + 1, as depicted in Fig. 3. We
emphasize that Pi are not necessarily free channels them-
selves; the only requirement here is that the whole comb
obeys the golden rule, i.e., n(M[n]) ∈ F as long as
M[n] = [M1, . . . ,Mn] and Mi ∈ F for i ∈ [n]. Suppose
that the maximization in �Ni is achieved by Mi ∈ F , that
is, Ni ≥ �NiMi, ∀i. Then we have

n(N[n]) = Pn+1

n∏

i=1

(Ni ⊗ idi) ◦ Pi (68)

≥ Pn+1

n∏

i=1

�Ni(Mi ⊗ idi) ◦ Pi (69)

=
n∏

i=1

�Nin(M[n]), (70)
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where the inequality follows from the fact that channel ten-
sorizations and compositions preserve the channel order
Ni ≥ �NiMi. Since n(M[n]) ∈ F by the golden rule,
we get �n(N[n]) ≥ ∏n

i=1 �Ni by definition. �
Now for input channels N[n] = [N1, . . . ,Nn], comb

n and unitary target channel U , the simulation error is
defined as

εx(N[n]
n−→ U) := εx(n(N[n]),U), (71)

for x ∈ {�, W, C, A}.
By a little tweak of the proofs above, we establish

bounds on the error and cost for adaptive simulation, which
match those for the parallel case.

Corollary 19 (Adaptive simulation error). Given any
channels N1, . . . ,Nn (collectively denoted by N[n] and any
unitary target channel U ), it holds that, for any free comb
n acting on N[n],

ε�(N[n]
n−→ U) ≥ εW(N[n]

n−→ U)

≥ εC(N[n]
n−→ U) ≥

n∏

i=1

�Ni(1 − f C
U ),

(72)

and

εA(N[n]
n−→ U) ≥

n∏

i=1

�Ni(1 − f A
U )

= d
d + 1

n∏

i=1

�Ni(1 − f C
U ), (73)

where d is the dimension of the input system of U .

Proof. Simply note that, according to Eq. (70), we have the
following decomposition:

n(N[n]) =
n∏

i=1

�Nin(M[n])+
(

1 −
n∏

i=1

�Ni

)

R, (74)

for some channel R. By following the arguments in the
proof of Theorem 16, one can establish similar error
bounds where �N is replaced by

∏n
i=1 �Ni . �

Therefore, we can establish the same bound on the
simulation cost for the adaptive scheme.

Corollary 20 (Adaptive simulation cost). Suppose some
free comb n transforms n instances of noisy channels N
to target unitary channel U with a certain type of error

εx([N , . . . ,N ]
n−→ U) ≤ εx, x ∈ {�, W, C, A}. Then n must

satisfy

n ≥
[

log
1 − f C

U
εx

][
log

1
�N

]−1

, (75)

for any x ∈ {�, W, C}. The bound on n in terms of the
average-case error εA is equivalent to that in terms of the
Choi error εC.

Note that the adaptive strategies may potentially reduce
the error or cost of simulation compared to parallel ones, so
the adaptive simulation bounds can be regarded stronger.

A general observation is that the simulation cost asymp-
totically scales at least as �(log(1/εx)) as target error
εx → 0 even if we allow adaptive usages of the input
channels, no matter which kind of error measure x is
chosen.

3. No-purification conditions

Here, we discuss the situations where no-go rules are
in place for channel resource purification, i.e., no uni-
tary resource channels can be exactly simulated. For both
the cases of single and multiple input channels, the basic
statement goes as follows.

Corollary 21. There is no free superchannel (or comb)
that exactly transforms channel N (or a collection of
channels {Ni}) to any unitary resource channel U /∈ F if
�N > 0 (or �Ni > 0, ∀i).

Proof. Since F is closed by assumption and U /∈ F , we
have fU < 1. Then due to Theorem 16 the transformation
error (in whichever measure) is strictly positive, indicating
that the exact transformation is impossible. �

Now similar to Proposition 7, we give a series of alterna-
tive characterizations of the � > 0 condition for channels,
which could be illustrative or useful in certain scenarios.

Proposition 22. For any quantum channel N , the follow-
ing conditions are equivalent:

(a) channel free component: �N > 0;
(b) state free component:

(b1) worst case: for any input state ρ, �ρN > 0
(defined with respect to the set of free states {ρM :
M ∈ F });

(b2) Choi state: ��N > 0 (defined with respect
to the set of free states {�M : M ∈ F });

(c) support:
(c1) worst case: there exists M ∈ F such that,

for any ρ, supp(ρN ) ⊇ supp(ρM);

010337-11



KUN FANG and ZI-WEN LIU PRX QUANTUM 3, 010337 (2022)

(c2) Choi state: there exists M ∈ F such that
supp(�N ) ⊇ supp(�M);

(d) resource measure:
(d1) worst case: minM∈F Dmin(N ‖M) = 0,

where Dmin(N ‖M) := supρ Dmin(ρN‖ρM) is the
channel min-entropy between N and M [59,71];

(d2) Choi state: minM∈F Dmin(�N‖�M) = 0.

Proof. First it is clear that (b1), (c1), (d1) are equivalent,
and (b2), (c2), (d2) are equivalent, due to the state theory
result, Proposition 7. The equivalence between (b1), (b2),
and (a) follows from the fact that N ≥ γM is equivalent
to �N ≥ γ�M as well as ρN ≥ γρM for all ρ. �

Worth noting, in the channel theory, the counterparts of
min-relative entropy monotones also nicely contrast noisy
entities with pure ones.

B. Practical scenarios and applications

The above no-purification rules and bounds are given
in general forms so that their range of applicability is as
wide as possible. To provide some concrete understanding
and guideline of their practical relevance, we now discuss
some specific scenarios and applications of interest. We
shall start with a general discussion on typical noise mod-
els and the corresponding no-purification bounds in the
contexts of different kinds of channel resource theories,
and then specifically consider the roles of no-purification
bounds in the contexts of quantum error correction, quan-
tum communication, and circuit synthesis. Note that the
main objective of our discussion here is to establish the
frameworks for linking the no-purification principles to
these practical problems. We shall mostly present general-
form bounds, which are expected to be crude for certain
specific resource features, noise models, system features
etc., leaving refined analyses elsewhere.

1. Channel resource theories and practical noises

At a high level, we have the following two major differ-
ent types of channel resource theories, signified by the role
of the identity channel.

(a) Information preservation theories. In such theories,
one is primarily interested in the noise channels and
their abilities to simulate noiseless channels so as
to preserve or transmit information. Typical scenar-
ios include quantum error correction and quantum
communication. A signature of such theories is that
the identity channel (between certain systems) is
an ideal resource channel, representing no error or
loss of quantum information occurring. The set of
free channels commonly involve e.g., certain con-
stant (replacer) channels, which represent complete
loss of information. Here the free channels are in

general directly induced by physical restrictions on
the implementable operations that, e.g., perform the
tasks of encoding and decoding.

(b) Resource generation theories. Such theories are
commonly based on some resource theory defined
at the level of states (such as entanglement, coher-
ence, magic states). The features of channels and
simulation tasks of interest are related to their abil-
ity of generating the state resource. Here the set of
free channels are derived from state theories and
thus obey the resource nongenerating property (for
example, the identity channel is axiomatically free).
A typical scenario of this kind is synthesis, where
a common task is to simulate, or “synthesize” some
complicated target channel by elementary resource
channels. See further discussions in the next part.

In some sense, theories of the first kind are intrinsically
based on channels, and those of the second kind are
induced by state theories. Such classification may help elu-
cidate the interplay between channel and state resource
theories.

Now we discuss typical noisy channels of interest in
these two different kinds of channel resource theories.

First, consider the first kind, i.e., information preserva-
tion theories, where the identity channel id is a resource.
Here, the simulation capabilities (capacities) of noise chan-
nels themselves are of interest. A general observation is
that, for stochastic noise

Nμ = (1 − μ)id + μN , (76)

where μ ∈ (0, 1) is the noise rate, if the noise channel N is
considered free in the theory in consideration, then �Nμ ≥
μ, which can be directly used to establish bounds on simu-
lation error and cost. We list a few important noise models
that are special cases: (i) depolarizing noise: N (ρ) = I/d
is just a constant channel that outputs the maximally mixed
state; (ii) erasure noise: N (ρ) = |⊥〉〈⊥| is also a constant
channel that outputs an orthogonal garbage state; (for these
two cases N is normally free as it essentially erases infor-
mation completely.) (iii) dephasing noise: N = �, which
erases the off-diagonal entries and thus is typically free
in quantum scenarios since all coherence-related informa-
tion is lost; (iv) Pauli noise: N (ρ) = ∑

i μiPiρPi where
∀i μi ≥ 0,

∑
i μi = μ and Pi’s are nonidentity Pauli oper-

ators (note that this model encompasses the depolarizing
and dephasing noises); here N is a stabilizer operation, and
thus the global Pauli noise has free component in the stabi-
lizer theory, leading to limitations on stabilizer codes. We
shall demonstrate the connections to quantum error correc-
tion in more detail in Sec. III B 2. Quantum communication
is another important scenario of this kind, which we shall
discuss more specifically in Sec. III B 3.
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For the second kind, i.e., resource generation theories,
the input channels of practical interest are usually not
the noise channels themselves but the resource-generating
channels contaminated by noises. For example, consider
Nμ ◦ G = (1 − μ)G + μN ◦ G where Nμ is a stochastic
noise and G is a noiseless resource-generating channel.
Also note that, in contrast to the first kind, the theory is
commonly built upon a clear notion of free states. Then a
general observation for this case is that if N always out-
put a free state, then �Nμ◦G ≥ μ. Again, this holds for the
depolarizing and erasure noises in normal theories where
the maximally mixed state and the garbage state are free
(note that the bound can be loose in, e.g., magic theory; see
Sec. III B 4). Then by definition, it also applies to dephas-
ing noise in theories where the diagonal states are free
(such as coherence and certain asymmetry theories). As
mentioned, a particularly important problem in such the-
ories is gate synthesis. In Sec. III B 4, we shall discuss the
implications of our general results to practical synthesis
problems in more detail.

Notably, certain communication problems and gate syn-
thesis correspond to adaptive channel simulation, which
cannot be understood in the single-channel or parallel
simulation schemes.

2. Quantum error correction

As a cornerstone of quantum computing and informa-
tion [3], quantum error correction (QEC) serves to reduce
noise effects and errors in physical systems by the idea
of encoding the quantum information in a suitable way
so that after noise and errors occur the original logical
information can be restored (decoded). It is clearly impor-
tant to understand various kinds of limits on QEC. Our
results here are relevant to the broadly important scenario
where the QEC procedures and codes obey certain rules or
constraints. Typical examples include the well-studied sta-
bilizer codes [3,72], and covariant codes [25–31], which
has recently drawn considerable interest in quantum com-
puting and physics. In Sec. II we presented general limits
on the QEC accuracy based on understanding the decoding
as a purification task. Here the channel framework pro-
vides an alternate formulation: notice that the QEC task
is essentially to simulate an identity channel on the logi-
cal system; then the channel no-purification bounds induce
fundamental limits on this channel simulation task. As
a result, we have the following general bounds on the
accuracy and cost of constrained QEC when the system
is subject to generic nonunitary noises (L, S denote the
logical and physical systems, respectively):

Corollary 23 (Constrained quantum error correction).
Suppose that the encoder and decoder are free channels
(subject to certain resource theory constraints) . Then
given noise channel NS acting on the physical system

S, the commonly considered overall error measures for
approximate QEC εx, x ∈ {�, W, C} obey

εx(NS
−→ idL) ≥ �NS (1 − f C

idL
). (77)

For example, consider the natural independent noise
model where the noise channel N acts independently and
uniformly on each subsystem (e.g., qubit), i.e., the overall
noise channel has the form NS = N⊗n. Then

εx(NS
−→ idL) ≥ (�N )n(1 − f C

idL
), (78)

and therefore, to achieve target error εx(NS → idL) ≤ εx,
the number of physical subsystems n obeys

n ≥
[

log
1 − f C

idL

εx

][
log

1
�N

]−1

. (79)

In the case of stochastic noise N = (1 − μ)id + μM
where M ∈ F , �N in the above bounds can be replaced
by μ.

As previously noted, this general result applies to the
important cases of stabilizer and covariant QEC, which,
respectively, correspond to Clifford [72] and symmetry
[29] constraints. Note again that, in covariant QEC, under
the commonly held assumption that the noise channel NS
is covariant, we have the stronger conclusion that the error
bound Eq. (77) holds for any decoder, meaning that covari-
ant codes are no better than [�NS (1 − f C

idL
)]-correctable

for any decoder [29, Lemma 2]. For independent Pauli
and erasure noises in the stabilizer case, and depolarizing,
dephasing, and erasure noises in the covariant case, �N
can be replaced by μ in the bounds.

The bounds here are given in the most general forms,
indicating universal limitations on the accuracy and cost
of constrained QEC schemes for any noise channel with
free component like typical global noise channels, which
are naturally important but underinvestigated in the context
of QEC. It would be interesting to perform more refined
analysis of the bounds for specific constraints and noise
models, which we leave for future work.

3. Quantum communication and Shannon theory

The central problem in quantum Shannon theory is
to determine the capability of quantum channels to reli-
ably transmit information. Depending on the purpose of
transmission (e.g., transmitting classical or quantum infor-
mation) and the resources that can be used at hand, there
are many different variants of channel capacities, each of
which corresponds to a channel simulation task in the lan-
guage of resource theory (see, e.g., Refs. [40,56,73–77]).

Here we discuss quantum capacities, which correspond
to the task of transforming a given channel to an identity
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channel between two distinct, distant parties (labs). Note
that we need to distinguish the identity channel shared
between distant labs from the local identity channel whose
input and output systems belong to the same lab. The
former is regarded as the ideal resource while the latter
is completely free. In resource theory language, channel
capacities are determined by the choice of free superchan-
nels or combs , which correspond to specific coding
strategies. Some important cases include the following
[75–77]:

(a) unassisted code: superchannel  can be decom-
posed into an encoder KA→A′ by Alice com-
posed with a decoder DB→B′ by Bob, i.e.,  =
DB→B′KA→A′ ;

(b) entanglement-assisted code: superchannel  acts
as (N )(ρA) = DBB̄→B′NA′→BKAĀ→A′(ρA ⊗ ωĀB̄)

with encoder KAĀ→A′ , decoder DBB̄→B′ and shared
quantum state ωĀB̄;

(c) nonsignalling assisted code: superchannel  is
nonsignalling from Alice and Bob and vice versa;

(d) two-way classical communication assisted code:
quantum comb can be realized by local operations
and classical communication (LOCC) operations
P1, . . . ,Pn+1 between Alice and Bob (see Fig. 3).

Once the free superchannels or combs are set, the set of
free channels is then implicitly defined as the channels that
can be generated via these superchannels or combs. Note
that the first three coding strategies correspond to paral-
lel channel simulation while the last one corresponds to
adaptive channel simulation.

The performance of quantum communication can be
characterized by an achievable triplet (n, k, ε), meaning
that there exists a -assisted coding strategy that uses n
instances of the resource channel to transmit k qubits, or
simulate id2k (identity channel on the system of dimension
2k), within ε error (here we consider Choi error, which is
the standard choice of error measure for quantum com-
munication). Then by Corollary 19, we can obtain the
following bounds on these parameters for general quantum
communication in the nonasymptotic regime.

Corollary 24 (Quantum communication). Suppose (n, k, εC)

is an achievable quantum communication triplet by noise
channel N with an -assisted code. Then the Choi error
εC obeys

εC ≥ (�N )n(1 − f C
id2k
). (80)

In other words, the minimum number of channel uses
required to enable reliable transmission of k qubits within

Choi error εC must satisfy

n ≥
[

log
1 − f C

id2k

εC

][
log

1
�N

]−1

. (81)

We now discuss in more detail the two-way assisted
quantum capacity, which is of particular importance due
to its close relation to the practical scenario of distributed
quantum computing and quantum key distribution. Due to
the notorious difficulty of adaptive communication strate-
gies and the involved structure of LOCC operations, this
quantum communication scenario is not well understood
in spite of its practical importance. The corresponding
asymptotic setting that assumes infinite access to the
resource channels was recently investigated by a relaxation
of LOCC operations to the mathematically more tractable
PPT operations (see e.g., Refs. [76–78]). In this case, we
have the maximum overlap f C

id2k
≤ 1/2k [79]. As the quan-

tum capacity concerns the maximum number of qubits that
can be reliably transmitted per use of the channel, we can
equivalently obtain from Corollary 24 a nontrivial trade-off
(which can be interpreted as a bound on the nonasymptotic
two-way assisted quantum capacity):

k
n

≤ −1
n

log
(

1 − εC

(�N )n

)
if εC ≤ (�N )n. (82)

Also note that, since PPT operations are semidefinite
representable, �N here can be efficiently computed by

�N = max
{

Tr W : �N ≥ W, W ≥ 0,

WTB ≥ 0, TrB WAB = (Tr WAB)IA/|A|}, (83)

where �N is the Choi state of NA→B. Fitting this into
Eq. (82) can help us do analysis beyond the asymptotic
treatment and understand the intricate trade-off between
different operational parameters of concern.

4. Noisy circuit synthesis

The problem of approximating some desired transfor-
mation by quantum circuits consisted of certain elementary
gates, commonly studied under the name of quantum cir-
cuit or gate or unitary synthesis (or sometimes known as
“compiling”), is crucial to the practical implementation
of quantum computation. Depending on the practical set-
ting, it is often the case that some gates are considered
particularly costly as compared to other gates, and thus
we are mostly interested in the amount of costly gates
needed for the desired synthesis task. A key observation
here is that such synthesis tasks can be formalized as adap-
tive channel simulation problems, where free gates form
a comb and the costly gates are input channels that are
inserted into the slots of the comb. A particularly important
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case is “Clifford + T,” where we would like to decom-
pose the target transformation into Clifford gates, which
are assumed to be free since they can be rather easily
implemented fault tolerantly, and the “expensive” T gates
T = |0〉〈0| + eiπ/4|1〉〈1|. Note that the T gates are often
implemented by “state-injection” gadgets [80] that make
use of T states produced by magic state distillation (studied
in Sec. II), which is a resource-intensive procedure. There-
fore, the key figure of merit we would like to optimize is
the number of T gates used (namely the “T count”); see,
e.g., Refs. [81–87] for a host of previous studies related
to this problem. Notably, resource theory is helpful for
finding good bounds on T counts in certain cases [23,88].

Existing literature on the synthesis problem mostly
focuses on the noiseless scenario, where the elementary
gates are unitary. The noisy nature of practical (especially
near-term) devices motivates us to consider the scenario
where certain gates are intrinsically associated with noise
and such noisy gates are the elementary components of the
circuit for synthesis. For example, a key incentive for the
Clifford+T model is that the non-Clifford gates are much
harder to protect compared to Clifford gates, so that one
may want to consider intrinsically noisy non-Clifford gates
(see below). We note that there are fundamental differ-
ences between this noisy synthesis setting and the noiseless
one, as seen later. Now, the central question is how many
noisy resource gates are needed to approximate a target
unitary. Based on the observation mentioned above which
links the synthesis problem to adaptive channel simula-
tion, we establish the following universal lower bounds on
such “noisy gate count” from Corollary 20 (note that for
synthesis problems we often use the diamond norm error).

Corollary 25 (Noisy gate count). Consider the synthesis
task of simulating unitary channel U by channel (noisy
gate) G and arbitrary use of a set of free channels, which
compose a free comb, within diamond norm error ε�. Then
the number of instances of G needed must satisfy

n ≥
[

log
1 − f C

U
ε�

][
log

1
�G

]−1

. (84)

We now investigate the Clifford+T case specifically,
where the T gate is associated with noise, and we are
interested in the number of such noisy T gates, or the
“noisy T count”. Let Cn = {Uj }N

j =1 be the n-qubit Clifford
group consisting of N discrete elements. Let the set of free
channels be the convex hull of Cn, i.e., F = conv(Cn),
meaning that we allow mixtures of Clifford gates. Any
free channel M ∈ F can be written as a convex com-
bination M = ∑N

j =1 pjUj with pj ≥ 0 and
∑N

j =1 pj = 1.
For condition N ≥ γM, we can replace qj = γ pj and
obtain an equivalent condition M ≥ ∑N

j =1 qjUj with qj ≥
0 and γ = ∑N

j =1 qj . Therefore, the free component can be
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FIG. 4. Noisy Clifford+T synthesis. (a) Free component of the
noisy T gate Nμ ◦ T, where T is followed by depolarizing noise
of strengthμ. (b) Lower bounds on the noisy T count (the number
of Nμ ◦ T) needed to simulate a CCZ gate within diamond norm
error ε, depicted for noise rates μ = 0.1, 0.2, 0.3, 0.4.

computed by a semidefinite program

�N = max

⎧
⎨

⎩

N∑

j =1

qj : �N ≥
N∑

j =1

qj�Uj , qj ≥ 0

⎫
⎬

⎭
, (85)

where �N and �Uj are the Choi states of N and Uj ,
respectively. As a concrete example, consider T gate fol-
lowed by depolarizing noise Nμ(ρ) = (1 − μ)ρ + μI/2
as the elementary channel. Its free component �Nμ◦T is
computed by the SDP Eq. (85) where N = 24 (see, e.g.,
Ref. [89] for an explicit enumeration of C1), and depicted
in Fig. 4(a). When μ ≥ 1 − √

3/3 ≈ 0.42 we see that
�Nμ◦T = 1, as Nμ compresses the entire Bloch sphere into
the stabilizer octahedron so any output is a stabilizer state.
Note that this explicit calculation improves the general
bound μ as discussed in Sec. III B 1. In Fig. 4(b), as an
example, we plot the lower bounds on the noisy T count in
order to approximate a CCZ gate, obtained from Corollary
25 [where we used f W

CCZ ≤ 9/16 [23, Eq.(33)] ].
Recently, Ref. [90, Proposition 26] also gave an expres-

sion for the noisy gate counts in magic theory of odd
dimensions using the mana monotone. Note that our result
applies to any dimension, and is expected to outperform
the mana bound especially in the small target error regime.
In particular, our bound implies diverging cost as the target
error ε → 0, which is in line with intuitions, but the mana
bound cannot.

Finally, we remark that the noisy synthesis results
here are fundamentally different from the existing ones
on noiseless synthesis, in spite of some apparent rela-
tions. Most notably, it is known that for any universal
gate set, the number of gates needed to approximate all
unitaries up to error ε (which can essentially be mea-
sured by any channel error measure discussed earlier)
scales at least as �(log(1/ε)) [91] (note that the well-
known Solovay-Kitaev theorem [3,44,45] concerns the
upper bound). Although the �(log(1/ε)) scaling is simi-
lar to our lower bound on noisy gate counts, there are two
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key differences: (i) our noisy synthesis result bounds the
number of resource gates needed and says nothing about
the number of free gates, while the previous noiseless-case
result counts the total number of gates; (ii) our noisy syn-
thesis result is universal for any target resource unitary,
while the previous noiseless-case result examines the worst
case and there could well be target unitaries with lower or
even trivial cost (some target unitaries can be exactly sim-
ulated, such as T in Clifford+T). Relatedly, the geometric
covering argument used in Ref. [91] is not useful for the
noisy case. In general, the noiseless and noisy synthesis
and gate counts are fundamentally disparate problems con-
tingent on different factors. This can again be seen from
Clifford+T, where intricate number theory properties and
techniques play decisive roles in the noiseless case [81–85]
while being irrelevant in the noisy case.

IV. CONCLUDING REMARKS

We introduced a simple, universal framework for
understanding and analyzing the limitations on quantum
resource purification tasks that applies to virtually any
resource theory, based on the notion of “free component”
of noisy resources. We developed the theory in detail for
both quantum states and channels. For the state theory,
our new results significantly improve over corresponding
ones discovered in Ref. [12] in terms of both the regime
of the no-purification rules and the quantitative limits. This
framework also enabled us to quantitatively understand the
no-purification principles for quantum channels or dynam-
ical resources. Specifically, the channel theory involves
complications concerning error measures and the possi-
bility of adaptively using multiple resource instances, as
compared to the state theory. We demonstrated broad theo-
retical and practical relevance of our techniques and results
by discussing their applications to several key areas of
quantum information science and physics. The simplic-
ity and generality of our theory highlight the fundamental
nature of the no-purification principles.

Several technical problems are worth further study.
First, we considered channel simulation with a single target
channel here, but more generally the output can also be a
comb [69]; it would be interesting to further study the no-
purification bounds for such cases and explore their rele-
vance. Second, we formulated the results in terms of deter-
ministic one-shot transformation and only left preliminary
remarks on the probabilistic case; a comprehensive under-
standing of the probabilistic case is left for future work.
Third, it is worth further study purification tasks for contin-
uous variables, especially resource (e.g., non-Gaussianity)
distillation tasks and their applications in optical quantum
information processing, given that there are some sharp
distinctions known concerning the feasibility and behav-
iors of distillation procedures [39,92] between continuous

and discrete variables, but the understanding of the full
correspondence is still preliminary.

Furthermore, it would be interesting to further analyze
our bounds and associated parameters in specific theories
and problems. The discussion on the applications we gave
here mainly serve to establish the general, conceptual con-
nections and are thus preliminary. Further developments
of these connections, taking specific features of the sys-
tem, resource, and noise etc. into account, may be fruitful.
In particular, for the extensively studied topics of quan-
tum error correction and quantum Shannon theory, it would
be interesting to further optimize the bounds and com-
pare them with existing results in specific scenarios. We
eventually hope that our demonstrations here will spark
explorations of further applications or consequences of
the no-purification principles in quantum information and
physics.
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