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The ability to distill quantum coherence is pivotal for optimizing the performance of quantum
technologies; however, such a task cannot always be accomplished with certainty. Here we develop a
general framework of probabilistic distillation of quantum coherence in a one-shot setting, establishing
fundamental limitations for different classes of free operations. We first provide a geometric interpretation
for the maximal success probability, showing that under maximally incoherent operations (MIO) and
dephasing-covariant incoherent operations (DIO) the problem can be simplified into efficiently computable
semidefinite programs. Exploiting these results, we find that DIO and its subset of strictly incoherent
operations have equal power in the probabilistic distillation of coherence from pure input states, while MIO
are strictly stronger. We then prove a fundamental no-go result: Distilling coherence from any full-rank
state is impossible even probabilistically. We further find that in some conditions the maximal success
probability can vanish suddenly beyond a certain threshold in the distillation fidelity. Finally, we consider
probabilistic coherence distillation assisted by a catalyst and demonstrate, with specific examples, its
superiority to the unassisted and deterministic cases.
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Quantum coherence is a physical resource that is
essential for various tasks in quantum computing (e.g.,
the Deutsch-Jozsa algorithm [1]), cryptography (e.g.,
quantum key distribution [2]), information processing
(e.g., quantum state merging [3], state redistribution [4],
and channel simulation [5]), thermodynamics [6], metrol-
ogy [7], and quantum biology [8]. A series of efforts have
been devoted to building a resource framework of coher-
ence in recent years [8–12], characterizing, in particular, the
state transformations and operational uses of coherence in
fundamental resource manipulation protocols [3,13–17].
As in any physical resource theory, a central problem of the
resource theory of quantum coherence is distillation: the
process of extracting canonical units of coherence, as
represented by the maximally coherent state jΨmi, from
a given quantum state using a choice of free operations.
The usual asymptotic approach to studying the problem

in the quantum information theory is to assume that there is
an unbounded number of independent and identically
distributed copies of a quantum state available and that
the transformation error asymptotically goes to zero
[13,18–20]. In reality, these assumptions become unphys-
ical due to our limited access to a finite number of copies of
a given state, making it necessary to look at nonasymptotic
regimes [16,17]. Furthermore, since loss and decoherence
severely restrict our ability to manipulate large quantum
systems, one needs to allow for a finite error in the
distillation protocol. In this respect, deterministic protocols

such as those studied in Ref. [17] may be insufficient to
reach a target fidelity for desired applications. It is thus of
importance to consider a more general probabilistic frame-
work, in which the distillation will succeed only with some
probability. Here, the allowed error can be characterized by
two key parameters: the success probability of the one-shot
distillation process and the fidelity between the extracted
state and the target state jΨmi. To have a systematic
understanding of coherence distillation with finite resour-
ces and be able to implement practical schemes for this
task, it is crucial to describe and optimize the interplay
between these two parameters.
In this Letter, we develop the framework of probabilistic

coherence distillation, characterizing the relation between
the maximum success probability and the fidelity of
distillation in the one-shot setting. We describe qualitative
and quantitative aspects of this task under several repre-
sentative choices of free operations, providing insights into
their fundamental limitations and capabilities for coherence
manipulation. In particular, we achieve a complete char-
acterization of probabilistic coherence distillation with pure
input states. The main results of our study are presented as
theorems in the following, with all proofs delegated to
Supplemental Material [21]. Before proceeding, we note
that, previously, the framework of probabilistic state trans-
formations has been employed in characterizing entangle-
ment distillation [18,26–29] as well as related settings in
the resource theory of thermodynamics [30] and recently
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found use in the investigation of practical entanglement
distillation schemes [31]. Our work fills an important gap in
the literature by establishing the probabilistic toolbox for
the key resource of quantum coherence.
Framework of probabilistic coherence distillation.—

The free states in the resource theory of quantum coher-
ence, so-called incoherent states I , are the density oper-
ators which are diagonal in a given reference orthonormal
basis fjiig. We will use Δð·Þ ≔ P

i jiihijjiihij to denote the
diagonal map (completely dephasing channel) in this basis.
The resource theory of coherence is known not to admit a
unique physically motivated choice of allowed free oper-
ations [8,13,25,32,33], necessitating the investigation of
operational capabilities of several different classes of maps.
The relevant choices of free operations that we will focus
on are maximally incoherent operations (MIO) [9], defined
to be all operations E such that EðρÞ ∈ I for every ρ ∈ I,
dephasing-covariant incoherent operations (DIO) [25,32],
which are maps E such that ½Δ; E� ¼ 0, or equivalently
EðjiihijÞ ∈ I and ΔðEðjiihjjÞÞ ¼ 0, ∀ i ≠ j, and incoher-
ent operations (IO) [12], which admit a set of incoherent
Kraus operators fKlg such that ½ðKlρK

†
l Þ=ðTrKlρK

†
l Þ� ∈ I

for all l and ρ ∈ I , as well as strictly incoherent operations
(SIO) [13], which are operations such that both fKlg and
fK†

l g are sets of incoherent operators. In particular, MIO is
the largest possible choice of free operations in the
coherence theory, while SIO can be regarded as the smallest
class which satisfies desirable resource theoretic criteria
[8,25], leading to the hierarchy SIO ⊊ IO ⊊ MIO, SIO ⊊
DIO ⊊ MIO [25].
The basic task of probabilistic distillation can be under-

stood as follows. For any given quantum state ρ held by a
single party A, we aim to transform this state to an m-
dimensional maximally coherent state (target state) jΨmi ≔
m−1=2 Pm

i¼1 jii with high fidelity. A single-bit classical flag
register L is used to indicate whether the transformation
succeeds or not. If the flag is found in the 0 state, the
distillation process has succeeded and the output state σ has
a fidelity of at least 1 − ε with the target state. Otherwise,
the process has failed, and we discard the unwanted output
state ω. Our goal is to maximize the success probability
while keeping the transformation infidelity within some
tolerance ε.
Formally, for any triplet ðρ; m; εÞwith a given initial state

ρ, target state dimension m, and infidelity tolerance ε, the
maximal success probability of coherence distillation under
the operation classO ∈ fSIO; IO;DIO;MIOg is denoted as
POðρ → Ψm; εÞ, where Ψm ≔ jΨmihΨmj. This is given by
the maximal value of p such that there exists a trans-
formation ΠA→LB ∈ O satisfying the constraints

ΠA→LBðρÞ ¼ pj0ih0jL ⊗ σ þ ð1 − pÞj1ih1jL ⊗ ω;

Fðσ;ΨmÞ ≥ 1 − ε; ð1Þ

where Fðρ; σÞ ≔ k ffiffiffi
ρ

p ffiffiffi
σ

p k21 is the fidelity and k · k1 is the
trace norm. If the distillation fails, we can perform a free
operation to make the unwanted state ω completely mixed
without changing the success probability. Thus, without the
loss of generality, we can take ω ¼ 1=m. Exploiting the
fact that the target state Ψm is invariant under the twirling
operation T ðρÞ ¼ ð1=d!ÞPd!

i¼1 PiρPi, where Pi are all the
permutations on the input system and d is the input
dimension, we can also fix the optimal output state as
σ ¼ Ψε

m, where Ψε
m ≔ ð1 − εÞΨm þ εð1 −ΨmÞ=ðm − 1Þ.

Specifically, for any optimal output state σ, we can further
perform the free operation T , which gives a new output
state T ðσÞ always in the form of aΨm þ bð1 −ΨmÞ=
ðm − 1Þ, where we can choose a ¼ 1 − ε and b ¼ ε while
keeping the fidelity with the target state and the optimal
success probability unchanged. This allows us to write
POðρ → Ψm; εÞ ¼ POðρ → Ψε

m; 0Þ, meaning that the maxi-
mal success probability of coherence distillation is the same
as the maximal success probability of transforming the
given state to the target Ψε

m with a fidelity of one.
Computing the maximum distillation probability.—We

now set out to find efficiently computable expressions for
the maximal distillation probability. Consider a generali-
zation of the set O to the class Osub of subnormalized
quantum operations, that is, completely positive and trace-
nonincreasing maps. Using this notation, we can conven-
iently express the maximal success probability as follows
(see also [29,34]).
Proposition 1.—For any triplet ðρ; m; εÞ and operation

classO, the maximal success probability POðρ → Ψm; εÞ is
given by max fp ∈ RþjEðρÞ ¼ pΨε

m; E ∈ Osubg. It then
holds that POðρ → Ψm; εÞ−1 ¼ minft ∈ RþjΨε

m ∈ tSρg,
where Sρ ≔ fEðρÞjE ∈ Osubg is the set of all the output
operators of ρ under the operation class Osub.
The result simplifies the optimization of the maximal

success probability via subnormalized free operations,
providing a geometric interpretation for the maximal
success probability as a gauge function [35], as shown
in Fig. 1. This justifies our intuition that the closer the state
ρ is to Ψε

m, the less we need to expand the set Sρ and, thus,

FIG. 1. Geometric interpretation of the maximal success
probability of coherence distillation. See the text for details.
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the larger success probability we can obtain. We note that
the result in Proposition 1 can be extended also to more
general convex resource theories [36–38].
By further exploiting the symmetry of Ψε

m, we can
compute the maximal success probability under MIO or
DIO via the following semidefinite programs (SDPs).
Theorem 2.—For any triplet ðρ; m; εÞ, the maximal

success probability of distillation under MIO or DIO is

PMIOðρ → Ψm; εÞ ¼max TrGρ

such that ΔðGÞ ¼ mΔðCÞ; ð2aÞ

0 ≤ C ≤ G ≤ 1; ð2bÞ

TrCρ ≥ ð1 − εÞTrGρ; ð2cÞ

PDIOðρ → Ψm; εÞ ¼max TrGρ

such that Eqs: ð2aÞ; ð2bÞ; ð2cÞ;
G ¼ ΔðGÞ:

For completeness, we give the dual forms and alternative
formulations of the SDPs in Supplemental Material [21].
These SDPs provide us with efficient ways to numerically
calculate the maximal success probability for general
triplets ðρ; m; εÞ and allow us to obtain key results on
the power of different operations for probabilistic
coherence distillation.
In this respect, let us also consider the choice of IO or

SIO as the free operations. It is known that these two sets of
operations have the same power in pure-state transforma-
tions, completely characterized by majorization relations.
This yields [25–27,39,40]

PðSÞIOðφ→Ψm;0Þ¼
8<
:
0 if rankΔðφÞ<m;

min
k∈½1;m�

m
k

P
i¼m−kþ1

d
φ2
i otherwise;

where we have assumed without the loss of generality that
the coefficients of φ are non-negative and arranged in
nonincreasing order. In a similar way, operations in the
class DIO can never increase the diagonal rank of a pure
state, while it is known that MIO allows for the rank to
increase [25], suggesting that MIO is a much stronger class.
It is thus surprising that MIO and DIO have exactly the
same power in the task of deterministic coherence distil-
lation [17] and that the two sets of operations lead to the
same asymptotic transformation rates for all states [41]. In
the following, we will instead show crucial differences
between MIO and DIO when one goes beyond determin-
istic transformations, highlighting the increased capabilities
of MIO in probabilistic distillation as well as establishing
limitations on coherence distillation, in general.

Theorem 3.—For any triplet ðρ; m; 0Þ with a full-rank
state ρ, it holds that PMIOðρ → Ψm; 0Þ ¼ 0. For any triplet
ðφ; m; 0Þ with a coherent pure state jφi ¼ P

n
i¼1 φijii,

φi ≠ 0, n ≥ 2, it holds that

PMIOðφ → Ψm; 0Þ ≥
n2

mðPn
i¼1 jφij−2Þ

> 0: ð3Þ

This result establishes a no-go theorem for coherence
distillation, showing that no class of free operations
preserving incoherent states can allow us to distill any
perfect coherence from a full-rank state, even probabilisti-
cally. Note that any generic density matrix has full rank,
and so does Ψε

m for any ε > 0. Thus, jPMIOðΨε
m → Ψm; 0Þ−

PMIOðΨm → Ψm; 0Þj ¼ 1, even though Ψε
m can be arbitrar-

ily close to Ψm, implying that the maximal success
probability is not continuous with respect to the input
state. The physical implications of this result are that any
noise typically resulting in full-rank states will lead in
practice to an irretrievable loss of resources. For example,
in a scenario where the coherent state Ψm is stored in a
quantum memory exposed to depolarizing noise, it is
impossible to recover it perfectly via free operations, even
probabilistically.
However, for any pure coherent state, Theorem 3 shows

that it is always possible to probabilistically distill a
maximally coherent state of arbitrary dimension via
MIO. In Supplemental Material [21], we establish a tighter
bound for the probability of distillation under MIO, which,
in particular, gives PMIOðΨn → Ψm; 0Þ ≥ n−1

m−1 when m > n.
Observe that instead PDIOðΨn → Ψm; 0Þ ¼ 0 for m > n.
This tells us that, as the dimension n increases, there are
n-dimensional density matrices ρn such that PMIOðρn →
Ψnþ1; 0Þ → 1 while PDIOðρn → Ψnþ1; 0Þ ¼ 0 for all n; i.e.,
PMIO and PDIO can exhibit an arbitrarily large gap. This
shows that, in the probabilistic distillation scenario, MIO
can be much more powerful than DIO, in general, in stark
contrast with the case of deterministic coherence distilla-
tion [17] (see Table I).
The relation between the capabilities of different oper-

ations is made precise by the following result, character-
izing the fundamental task of distilling coherence from pure
input states.
Theorem 4.—For any pure state φ and any m, we

have PDIOðφ → Ψm; 0Þ ¼ PðSÞIOðφ → Ψm; 0Þ.
We can therefore see that DIO does not provide any

operational advantage over SIO and IO in pure-state
probabilistic coherence distillation, despite being a strictly
larger class than SIO [25,42]. Putting together the results of
Theorems 3 and 4, we have shown that a large gap in the
operational capabilities of operations in the one-shot
resource theory of quantum coherence exists between
MIO and DIO but not between DIO and SIO/IO—this
can be compared with the case of deterministic distillation,
where all sets of operations O ∈ fSIO; IO;DIO;MIOg
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allow for the same achievable rate of distillation from pure
states [17]; see Table I.
In the task of distilling maximally coherent qubit states

Ψ2, we can extend the above result and obtain analytically
the maximal success probability for arbitrary infidelity ε. In
this particular case, MIO provides no advantage over DIO.
Proposition 5.—For O ∈ fDIO;MIOg and any pure

state φ with φ1 ≥ � � � ≥ φn > 0, it holds that

POðφ→Ψ2;εÞ ¼
8<
:
1 if ε≥ ε0ðφ1Þ;

2ð1−φ2
1Þ
� ffiffiffiffiffiffi

1−ε
p þ ffiffi

ε
p

1−2ε

�
2

otherwise:

Here the function ε0, defined as ε0ðφ1Þ ¼ 0 if φ1 ≤
ð1= ffiffiffi

2
p Þ and ε0ðφ1Þ ¼ 1

2
− φ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

1

p
otherwise, can be

related to the m-distillation norm [17] characterizing the
fidelity of deterministic distillation. Using this analytical
result, we can give a concrete example to show that the
probabilistic distillation framework can outperform the
deterministic one. Suppose we need to distill a maximally
coherent qubit state Ψ2 from the input state jφi ¼ ð3j0i þ
j1iÞ= ffiffiffiffiffi

10
p

with an acceptable fidelity of at least 0.9. The
input state becomes useless in the deterministic scenario,
since the maximal fidelity achievable via deterministic
protocols is given by 0.8. However, probabilistic operations
allow us to achieve the required distillation fidelity with 1=2
success probability, demonstrating an explicit operational
advantage of probabilistic distillation. In another scenario,
if the acceptable fidelity is 0.8, we can gain a higher
distillation fidelity by compromising some success proba-
bility, even though deterministic protocols are sufficient
to accomplish the task. Such a setting may be dubbed
“gambling with coherence,” adapting terminology from
Refs. [18,26].
Relation between distillation fidelity and probability.—

For any given input state ρ and target state dimensionm, the
maximal success probability is dependent only on the
transformation fidelity. The higher the fidelity we require,
the lower the probability that we will succeed. Intuitively,
one would expect the success probability to decrease
smoothly as the fidelity increases; however, we will now
show that the success probability can vanish discontinu-
ously beyond some fidelity threshold. This phenomenon is
analogous to the strong converse theorem in the channel
coding theory [43–45], which says that the coding success

probability goes to zero if the coding rate exceeds the
capacity of the channel. While this phenomenon cannot
occur in distillation from pure input states under MIO due
to Theorem 3, in the following result we completely
characterize this “sudden death” property for pure input
states under DIO.
Proposition 6.—For any pure state jφi ¼ P

n
i¼1 φijii

with nonzero coefficients φi, it holds that

PDIOðφ→Ψm;εÞ
�
> 0 if n≥m or if n <m and ε≥ 1− n

m ;

¼ 0 if n <m and ε< 1− n
m :

In the particular case of the transformation Ψn → Ψm
with n ≤ m, the probability equals 1 as long as
ε ≥ 1 − ðn=mÞ. The result shows, in particular, that, if
the output dimension is larger than the input dimension,
any trade-off between the maximal success probability and
the transformation fidelity will always be truncated at the
fidelity threshold (n=m). Specifically, at the point
ε ¼ 1 − ðn=mÞ, demanding a slightly higher fidelity will
make the probabilistic distillation impossible, as shown
in Fig. 2.
Probabilistic distillation with catalytic assistance.—A

more general coherence distillation setting is to consider
the scenario with catalytic assistance [28], where the input
to the protocol consists of the resource state ρ together with
another state γ (catalyst). As suggested by its name, we

FIG. 2. Interplay between the fidelity F ¼ 1 − ε and the
success probability p of coherence distillation for the example
transformation ðj0i þ 3j1iÞ= ffiffiffiffiffi

10
p

→ Ψ3. A discontinuity occurs
at F ¼ 2=3.

TABLE I. Comparison of the operational power of different sets of free operations for deterministic [17] versus
probabilistic [⋆] (this Letter) distillation of quantum coherence. ∅ denotes the empty set.

Deterministic distillation [17] Pure states General states
MIO ¼ DIO ¼ IO ¼ SIO MIO ¼ DIO

Probabilistic distillation [⋆] Pure states Full-rank states
MIO > DIO ¼ IO ¼ SIO MIO ¼ DIO ¼ IO ¼ SIO ¼ ∅
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need to reproduce γ untouched in the output regardless of
whether the distillation process succeeds or not. In
Ref. [46], the authors studied catalytic coherence trans-
formations without enforcing the preservation of the
catalyst when the transformation fails—it is then not
surprising that catalytic assistance improves the success
probability, since we take the risk to sacrifice our catalyst.
However, we can show that using catalysts can enhance
probabilistic distillation even when we require them to be
reproduced regardless of the outcome.
Formally, we denote the catalysis-assisted maximal

success probability of coherence distillation under the
operation class O as POðρ⟶γ Ψm; εÞ, which is given by
the maximal value of p subject to the constraints

Πðρ ⊗ γÞ ¼
�
pj0ih0j ⊗ σ þ ð1 − pÞj1ih1j ⊗ ω

�
⊗ γ;

Fðσ;ΨmÞ ≥ 1 − ε; Π ∈ O: ð4Þ

Since we can always choose not to interact with the
catalyst, it is clear that POðρ⟶γ Ψm; εÞ ≥ POðρ → Ψm; εÞ.
Taking as an example the two-qubit state ρ ¼ 1

2
ðv1 þ v2Þ

with jv1i ¼ 1
2
ðj00i − j01i − j10i þ j11iÞ and jv2i ¼

1

5
ffiffi
2

p ð2j00i þ 6j01i − 3j10i þ j11iÞ, it turns out that the

catalytic assistance of γ ¼ Ψ2 can enhance the success
probability (by at least 12%) of distilling one coherent bit
via DIO reliably (ε ≤ 0.01) [21]. This example shows that
the maximally coherent state can be used as a catalyst,
manifesting a difference with the case of deterministic state
transformation, where no transformation can be catalyzed
by a maximally coherent state [28,40]. We further note
that, if we allow a small perturbation of the catalyst
to be returned in the protocol, one may obtain an even
higher success probability as shown in Supplemental
Material [21]—such a setting has been considered, e.g.,
in Ref. [47] for the resource theory of thermodynamics.
Conclusions.—We have developed a general framework

of probabilistic coherence distillation. We interpreted the
fundamental relations between the distillation fidelity and
the maximal success probability via a gauge function
construction and showed that the maximal success prob-
ability under MIO and DIO can be efficiently computed via
semidefinite programming. We proved that distilling per-
fect coherence from any full-rank state is impossible even
probabilistically, while any pure coherent state can always
be perfectly distilled with MIO into a maximally coherent
state of arbitrary dimension with a nonzero probability,
highlighting an operational advantage of MIO over other
sets of operations, in contrast with the deterministic
case. On the other hand, we found that DIO provides no
operational advantage over SIO in pure-state distillation,
with the maximal achievable distillation probability being
equal under the two classes of operations. We provided an
analytical characterization of distillation with pure input

states and, in particular, described the distillation of qubit
maximally coherent states under MIO and DIO. We further
explored novel phenomena of coherence distillation such as
the breakdown of the trade-off between maximal success
probability and fidelity under a certain threshold as well as
the catalyst-assisted enhancement by maximally coherent
states.
Our work establishes fundamental limitations to the

processing of quantum coherence in realistic settings,
opening new perspectives for its investigation and exploi-
tation as a resource in quantum information processing and
quantum technology [1–8]. It would be of interest to
analyze as well the task of probabilistic coherence dilution
under different free operations, complementing the deter-
ministic case studied in Ref. [16]. Another interesting
perspective for future work may be to apply the framework
of probabilistic distillation developed here to the study of
other important resource theories, such as those of asym-
metry, magic, and thermodynamics [38].
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