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Abstract

We use the techniques of convex optimization, especially semidefinite programming, to

study two kinds of fundamental tasks, i.e., distillation and simulation in quantum information

theory. We investigate these tasks in a unified framework of resource theory and focus on

their computation and characterization with finite resources. Particularly we study the tradeoff

among relevant parameters such as the number of resource copies, resource transformation

rate, error tolerance and success probability.

In the first part, we study the task of distillation for two different resources, maximally

entangled state and maximally coherent state, representing nonlocal and local “quantumness”

respectively. For entanglement distillation, we derive an efficiently computable second-order

estimation of the distillation rate for general quantum states, which are tight for quantum states

of practical interest. Our study overcomes the limitation of conventional research either fo-

cusing on the asymptotic rate or ignoring the computability. For the coherence distillation, we

perform finite analysis for both deterministic and probabilistic scenarios. Our results unveil

several new features of coherence from a resource theoretic viewpoint and contribute to an

increased understanding of the fundamental properties of different sets of free operations.

In the second part, we investigate the resource cost of simulating a quantum channel via

quantum coherence or another quantum channel. We introduce the channel’s analogs of max-

relative entropy, logarithmic robustness and max-information of quantum states, providing their

operational interpretation with the channel simulation cost via different resources. Particularly,

we establish the asymptotic equipartition property of the channel’s max-information, that is, it

converges to the quantum mutual information of the channel in the independent and identically

distributed asymptotic limit. As applications, this asymptotic equipartition property implies

the quantum reverse Shannon theorem in the presence of non-signalling correlations.

From the perspective of resource theory, the worth of a resource can usually be character-

ized by the minimum distance to a set of useless resources under a proper distance measure. We

give such characterization for all the tasks studied in this thesis, and find that the distance mea-

sure for the distillation and simulation process naturally corresponds to the quantum hypothesis

testing relative entropy and the max-relative entropy, respectively.
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Chapter 1

Introduction

1.1 Quantum information theory

The discipline of information theory was founded by Claude Shannon in a remarkable paper

[Sha48] which laid down the foundations of this subject. The study of information theory con-

cerns how information can be compressed, stored, transformed and processed. In retrospect,

quantum information theory is largely motivated by its classical counterpart while adding the

magic ingredient of quantum mechanics. This new theory contains quantum generalizations

of classical components such as sources, channels, and codes, as well as some of its distinc-

tive elements, like quantum superposition and quantum entanglement. It has become clear

that an information theory based on quantum principles extends and completes the classical

information theory, somewhat as complex numbers extend and complete the reals. Quantum

information theory aims to explore the nature of information at the quantum level and reveals

new information processing capabilities beyond what is possible in the traditional models.

One fundamental difference between quantum information theory and its classical coun-

terpart is the basic unit of information. While classical information is characterized by the bit

(binary digits) which would have to be in zero or one regardless of its physical representa-

tion, quantum information is, by contrast, measured by the qubit (quantum bit) — a two-state

quantum-mechanical system, such as the polarization of a single photon, allowing for a super-

position of both states at the same time. More generally, a quantum state of n qubits is repre-

sented by a complex unit vector in the 2n-dimensional Hilbert space. The exponentially large

dimensionality of this space distinguishes quantum information processing from its classical

counterpart, whose state is described by a number of parameters that grows only linearly with

the size of the system. Alternatively speaking, the classical counterpart can occupy any one

of a complete set of orthogonal quantum states, whereas the quantum system can be not only

in the orthogonal states, but also in any linear superposition of the orthogonal states. “Hilbert



space is a big place!”, said Carlton M. Caves. Even simple quantum systems, having only a

small Hilbert-space dimension, have the potential for considerable complexity due to quantum

superposition.

Quantum information systems allow us to transmit data that is fundamentally secure and

solve problems that are beyond the power of classical computers. For instance, quantum cryp-

tography allows us to perform more secure protocols by exploiting the fact that observing data

encoded in a quantum state changes the state [BB84]. Another well-known application is given

by Shor’s algorithm [Sho94] used to efficiently factorize large numbers which cannot be done

in the classical world.

With the boosting investment from industry and academia, practical quantum informa-

tion applications are just around the corner, with prototypes of quantum cryptographic setups,

small-scale quantum computers already working in laboratories and the transnational quantum

internet under construction. A deeper theoretical understanding of the information-theoretic

aspects of the quantum theory would foster more exciting applications. Given the theoretical

promises and the current rate of experimental progress, quantum information technologies are

expected to bring transformative advances to our society in the coming decades.

In this thesis, we will study three fundamental components in quantum information theory,

that is, quantum coherence, quantum entanglement and quantum channels. We introduce a bit

more details about them as follows.

Quantum coherence

As a more general form of quantum superposition, quantum coherence represents one of the

most fundamental features that set the difference of quantum mechanics from the classical

realm. It plays a central role in physics as it enables applications that are impossible within

classical mechanics. The rise of quantum mechanics as a unified picture of waves and particles

further strengthened the prominent role of coherence in physics. Indeed, by combination of

the energy quantization and the tensor product structure of state space, coherence underlies

phenomena such as multi-particle interference and entanglement that play a central role in

applications of quantum physics and quantum information science.

Quantum optical methods provide an important set of tools for the manipulation of co-

herence, and indeed, at its basis lies the formulation of the quantum theory of coherence.

Here, coherence is studied in terms of phase space distributions and multi-point correlation

functions to provide a framework that relates closely to classical electromagnetic phenom-

ena [Gla63, Sud63]. However, quantum coherence is not only restricted to the optical fields.

More importantly, as the key ingredient that powers quantum technologies, it would be highly

2



1.1. QUANTUM INFORMATION THEORY

desirable to be able to precisely quantify the usefulness (worth) of coherence as a resource for

such applications.

Following an early approach to quantifying superpositions of orthogonal quantum states

by [Abe06], and the independent yet related resource theory of asymmetry [GMS09, GS08,

MS16], a resource theory of quantum coherence has been primarily proposed in [BCP14,

LM14] and further developed in [CG16b, CG16a, WY16]. Such a theory asks the question

what can be achieved and at what resource cost when the devices that are available to us are

essentially classical, that is, they cannot create coherence in a preferred basis. This analysis,

currently still under development, attempts to provide a complete and rigorous framework to

describe quantum coherence, in analogy with what has been done for quantum entanglement

and other non-classical resources.

Within such a framework, recent progress has witnessed a growing number of applications

certified to rely on various incarnations of quantum coherence as a primary ingredient. For

example, the role of coherence in quantum algorithms was discussed in [Hil16], with partic-

ular focus on the Deutsch-Jozsa algorithm [DJ92]. This quantum algorithm decides whether

a boolean function is constant or balanced by just one evaluation of the function, while in

the classical case the number of evaluations grows exponentially in the number of input bits.

As shown in [Hil16], quantum coherence is a resource in such protocol in the sense that a

smaller amount of coherence in the protocol decreases the error of guessing whether the eval-

uated function was constant or balanced. Other applications of quantum coherence could

be found in quantum key distribution [CML16], quantum state merging [SCR+16], state re-

distribution [AJS18], channel simulation [DFW+18], thermodynamics [LJR15] and quantum

metrology [FD11].

Quantum entanglement

When an overall quantum system is made of parts, the superposition principle leads inevitably

to the correlations called entanglement. Quantum entanglement is a striking phenomenon

which occurs when pairs or groups of particles are generated or interact in ways such that

the quantum state of each particle cannot be described independently of the state of the others,

even when the particles are separated by a large distance — instead, a quantum state must be

described for the system as a whole. Such phenomenon was the main subject of a paper by

Einstein, Podolsky, and Rosen in 1935 [EPR35], and two papers by Schrödinger shortly there-

after [Sch35, Sch36], describing what came to be known as the EPR paradox. Einstein and

others considered such behavior (also referred as “spooky action at a distance”) to be impos-

sible, as it violated the local realist view of causality and argued that the accepted formulation

3



of quantum mechanics must therefore be incomplete. Later, however, the counterintuitive pre-

dictions of quantum mechanics were verified experimentally (e.g. the latest one [RBG+17]) in

tests where the polarization or spin of entangled particles were measured at separate locations,

statistically violating Bell’s inequality [Bel64], demonstrating that the classical conception of

“local realism” cannot be correct.

It turns out that quantum entanglement is not only subject of philosophical debates but

a new quantum resource useful in practice. One particular interesting example is given by

the so-called quantum teleportation protocol [BBC+93]. With the help of classical commu-

nication and shared quantum entanglement, this protocol provides us a way of transporting a

qubit from one location to another without having to move the physical particle along with

it. Quantum teleportation was first realized in single photons [BPM+97], later being demon-

strated in various material systems such as atoms, ions, electrons and superconducting circuits.

Other applications of quantum entanglement in quantum information processing tasks include

the efficient transmission of information via quantum dense coding [BW92, MWKZ96], the

secure data transmission through entanglement-based quantum cryptography [Eke91], as well

as both device-independent randomness generation [Col09, PAM+10] or amplification [CR12,

GMDLT+13, BRG+16], quantum metrology [EdMFD11, GLM11] and the efficient solution

of the factorization problem [Sho94]. All these protocols necessarily rely on entanglement

resources, especially on the maximally entangled states.

Quantum channels

Any device, regardless of its physical implementation, taking states of classical or quantum

systems of a certain type to other (possibly different) state of classical or quantum systems

is a channel. Mathematically speaking, it is a formalism used to describe a broad class of

transformations that a physical system can undergo. This definition contains any processing

step in information theory, from preparations to free and controlled time evolution, as well as

measurements. Channels are thus among the central concepts of both classical and quantum

information science. Classical channels are those that can transmit or store only classical

information, like electrical wires or the field-effect transistors while quantum channels can

transmit both classical and quantum information. Physical realizations of quantum channels

include everything from optical fibers or coupled spin chains for quantum communication, to

charged atoms in ion traps for quantum storage.

As for communication, a quantum channel can be used in different ways: it can transmit

classical information, private classical information, or quantum information. It can be used

alone, with shared entanglement, or together with other channels. For each of these settings

4



1.2. QUANTUM RESOURCE THEORY

there is a capacity that quantifies a channel’s fundamental potential for communication. From

a theoretical viewpoint, computing these various capacities becomes one of the central topics

for quantum Shannon theory — a subfield of quantum information theory. However, from a

practical point of view, it becomes essential to figure out how to implement a quantum channel

as well as how much cost it takes for such implementation. This will correspond to another

main topic called channel simulation [Sha48, BSST02].

1.2 Quantum resource theory

Quantum resource theory can be regarded as a theory of interconversions among different re-

sources which can be classified as quantum or classical, noisy or noiseless, static or dynamic,

and therefore enable the diversity of quantum information processing tasks. There are three

elementary ingredients for the structure of any resource theory: resources (e.g. entanglement),

free / useless resources (e.g. separable states) and restricted set of free operations (e.g. local

operations and classical communication). To admit a compatible framework, these components

are not independent of each other. It is required that we cannot generate resources from free

resources via free operations.

Quantum resource theory provides a rather general framework to study various quantum in-

formation processing tasks. Indeed, much of quantum information theory is simply a theory of

the interconversion between different resources [DW04, DHW08]. For instance, quantum tele-

portation is essentially a process of converting maximally entangled states to quantum noiseless

channels, while the study of quantum (classical) capacity is, in fact, discussing the optimal rate

of converting a given quantum channel to quantum (classical) noiseless channels. As shown

in Figure 1.1 we summarize part of such resource trading processes discussed in this thesis.

The maximal resource indicated in yellow is a particular resource that can be transformed to

any others via free operations, playing the role of “currency” during the process of resource

trading.

Depending on our tasks, there are usually two directions of concern. The process that

transforms any given resource to a maximal resource is called distillation or concentration

process, analogous to selling our resource to gain some “currency”. Typical examples are

entanglement distillation and coherence distillation. The distillation process can help us better

utilize our resources for other purposes. On the other hand, the process of converting the

maximal resource to the others are called dilution or simulation, such as entanglement dilution

and coherence dilution. This is similar to spend our “currency” to purchase other resources. It

provides us a different perspective to characterize the worth of a given resource. Notably, these

two processes are not reversible in general, making the reversibility problem one of the main
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topics in resource theory [BG15].

Ent. distillation

Ent. sim
ulation

Coh. simulation

C
oh. distillation

C
oh. dilution

Ent. generation
Channel simulation
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Quantum 
states
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C

C

C

CQuantum 
channels

n

Noiseless 
channels

Ent. dilution

Coh. generation

Chapter 3

C
hapter 4

Chapter 5 Chapter 5

Figure 1.1 : Resources trading framework discussed in this thesis. “ebits” stands for the maxi-

mally entangled state while “cobit” stands for the maximally coherent state.

Quantum information is the study of the achievable limits to information processing possi-

ble within quantum mechanics. One important assumption regarding the information resource

is that it is independent and identically distributed (i.i.d.). For example, we always suppose to

have n copies of exactly the same quantum states which are not correlated with each other. Or

we can use the same quantum channel n times while the channel itself has no quantum mem-

ory to store any information. Under such assumption, the conventional approach is to study the

asymptotic limit of the rate that one resource can be transformed to another via free operations.

However, from a practical point of view, the number of i.i.d. prepared resources is necessarily

limited, and it remains a great challenge to physicists and engineers to develop techniques for

performing large-scale quantum information processing in the near future. Thus it is important

to characterize the interconversion process with finite resources, especially through small-sized

or one-shot analysis.

Useless 
resource

Given 
resource
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1.3. THESIS ORGANIZATION

In the spirit of resource theory, one can usually quantify the worth of a resource by the min-

imum “distance” to a set of well-defined useless resources with the proper distance measure.

Such characterization is compatible with our intuition that the closer the given resource to the

useless class, the less resource it contains. We summarize a few of such characterizations in

Table 1.1, including the distillable entanglement under positive partial transpose preserving op-

erations, distillable coherence under maximally incoherent operations and dephasing-covariant

incoherent operations, coherence simulation cost under maximally incoherent operations and

quantum simulation cost under non-signalling correlations. Particularly we find that the dis-

tance measure for the distillation and simulation process naturally corresponds to the quantum

hypothesis testing relative entropy Dε
H and the max-relative entropy Dε

max, respectively.

Quantifier Useless resource Distance measure Reference

E
(1), ε
D,PPT Hermitian operators G s.t. ‖GTB‖1 ≤ 1 Dε

H Section 3.2

C
(1), ε
c,M(D)IO Diagonal Hermitian operators with unit trace Dε

H Section 4.2

S
(1), ε
c,MIO Maximally incoherent operations Dε

max Section 5.2

S
(1)
NS,ε Constant channels Dε

max Section 5.3

Table 1.1 : Distance characterizations of resource theory discussed in this thesis. We can refer

to Appendix A for a more complete summary of such formalism

1.3 Thesis organization

This thesis studies several information processing tasks with finite resource in details, including

entanglement distillation, coherence distillation and quantum channel simulation. The remain-

der of this thesis is organized as follows.

Chapter 2 Preliminaries

Before we proceed to investigate these tasks, we introduce some commonly used tools and

mathematical foundations in this chapter. We first review the basic components of quantum

mechanics, including quantum states, quantum measurement and quantum operations. Then

we give an overview of various quantum entropies and their basic properties. Finally we intro-

duce the tool of semidefinite programming, its duality proof technique and a list of important

semidefinite programs for later use.
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Chapter 3 Entanglement distillation

Entanglement distillation, an essential quantum information processing task, refers to the con-

version from multiple copies of noisy entangled states to a smaller number of highly entangled

states. In this chapter we study the non-asymptotic fundamental limits for entanglement distil-

lation. We investigate the optimal tradeoff between the distillation rate, the number of prepared

states, and the error tolerance. First, we establish a precise connection between two differ-

ent tasks in quantum information theory, i.e., entanglement distillation (under positive partial

transpose preserving operations) and quantum hypothesis testing. Second, we provide effi-

ciently computable estimations of the distillation rate for general quantum states, in both small

and large-scale scenarios. In particular, we provide explicit as well as approximate evaluations

for various quantum states of practical interest, including pure states, mixture of Bell states,

maximally correlated states and isotropic states. These estimations can be used to benchmark

the distillable entanglement for experimentalists.

Chapter 4 Coherence distillation

Coherence distillation is the task of converting general quantum states into maximally coher-

ent states under a class of free operations. In this chapter we study coherence distillation in

both deterministic and probabilistic scenarios. We investigate coherence distillation under two

classes of free operations, highlighting differences in their capabilities and establishing their

fundamental limitations in state transformations.

In section 4.2 we study the deterministic setting. We show that the one-shot distillable

coherence under maximally incoherent operations (MIO) and dephasing-covariant incoherent

operations (DIO) is efficiently computable with a semidefinite program, which then proved to

relate with a quantum hypothesis testing problem. Notably, we find that MIO and DIO have

the exactly same power in the task of one-shot coherence distillation.

In section 4.3 we develop a general framework of probabilistic distillation of quantum co-

herence, characterizing the maximal probability of success in the operational task of extracting

maximally coherent states in a one-shot setting. We first provide a geometric interpretation

for the maximal success probability. In a stark contrast with the deterministic case, we find

that MIO can be much more powerful than DIO in general. We prove a fundamental no-go

result that distilling perfect coherence from any full-rank state is impossible even probabilis-

tically. We then present a phenomenon which prohibits any tradeoff between the maximal

success probability and the distillation fidelity beyond a certain threshold. Finally, we con-

sider probabilistic distillation assisted by a catalyst and demonstrate, with specific examples,

its superiority to the deterministic case.

8



1.3. THESIS ORGANIZATION

Chapter 5 Quantum channel simulation

As a fundamental problem in quantum information theory, quantum channel simulation con-

siders simulating a given quantum channel via other quantum resources. In this chapter, we

study the problem of channel simulation via quantum coherence or another quantum channel.

In section 5.2 we study the framework of quantum channel simulation via quantum co-

herence, discussing the simulation under maximally incoherent operations in details. First we

show that the minimum error of coherence simulation and the one-shot coherence simulation

cost can be both efficiently calculated via semidefinite programs. Second, we prove that the

one-shot zero-error coherence simulation cost is additive and it is exactly equal to the maximal

coherence generated from the channel, i.e., the cohering power of the channel. Finally, we

introduce a channel version of max-relative entropy, building a distance characterization of the

one-shot coherence simulation cost.

In section 5.3, we study the general framework of quantum channel simulation via an-

other quantum channel. First, we show that the minimum error of simulation and the one-

shot quantum simulation cost under non-signalling assisted codes are efficiently computable

via semidefinite programming. Second, we introduce the channel’s smooth max-information,

which can be seen as a one-shot generalization of the mutual information of a quantum chan-

nel. We provide an exact operational interpretation of the channel’s smooth max-information

as the one-shot quantum simulation cost. We further introduce the channel’s log-robustness

and elaborate its relation with the channel’s max-information. Third, we derive the asymptotic

equipartition property (AEP) of the channel’s smooth max-information, i.e., it converges to

the quantum mutual information of the channel in the independent and identically distributed

asymptotic limit. This implies the quantum reverse Shannon theorem (QRST) in the presence

of non-signalling correlations. As applications, we explore finite blocklength simulation cost

of fundamental quantum channels and provide both numerical and analytical solutions.

9





11

Chapter 2

Preliminaries

2.1 Basics of quantum mechanics

In this thesis we will focus on finite-dimensional Hilbert space and frequently use symbols

such as HA (or HA′) and HB (or HB′) to denote Hilbert spaces associated with Alice and

Bob, respectively. Let |A| or dA denote the dimension of HA. Let L (A,B) denote the set of

linear operators from HA to HB and L (A) := L (A,A). Let Herm (A) denote the set of all

Hermitian operators on HA. Let P (A) denote the subset of positive semidefinite operators.

We write X ≥ 0 if X ∈ P (A). The identity operator on Hilbert space HA is denoted as

1A =
∑dA−1

i=0 |iA〉〈iA|. The identity map on L (A) is denoted as idA. For a linear operator

X , we define |X| =
√
X†X where X† is the Hermitian conjugate of X . The trace norm

‖X‖1 = Tr |X| is the sum of all singular values of X . The operator norm ‖X‖∞ is defined as

the maximum eigenvalue of |X|.
A full list of basic notations can be found in the part of Abbreviations and Notations. For

more detailed introduction of quantum mechanics and quantum information theory, we can

refer to the books [NC11, Wat17, Wil17].

2.1.1 Quantum states

A quantum state or density operator is a positive semidefinite operator with unit trace, usually

denoted as ρA with subscript A indicating its corresponding Hilbert space. A subnormalized

quantum states is a positive semidefinite operator with trace no greater than one. The set of

quantum states and the set of subnormalized quantum states on Hilbert space HA are respec-

tively defined by

S= (A) := { ρ ≥ 0 | Tr ρ = 1 }, (2.1)

S≤ (A) := { ρ ≥ 0 | 0 < Tr ρ ≤ 1 }. (2.2)



We call a quantum state pure if it has rank one. Otherwise, it is called mixed state. Pure

states represent situations of minimal ignorance, in which, in principle, there is nothing more

to be known about the system. Pure states are fundamental in that the quantum mechanics

of a closed system can be completely described as a unitary evolution of pure states in an

appropriately dimensioned Hilbert space, without the need of further notions.

For any bipartite quantum state ρAB , we usually denote ρA := TrB ρAB and ρB :=

TrA ρAB the marginal states of ρAB . For any quantum state ρA we can find a pure state φAA′

such that ρA = TrA′ φAA′ . Then we call φAA′ a purification of ρA. A canonical purification is

given by 1

φAA′ = ρ
1/2
A Φ̂AA′ρ

1/2
A , (2.3)

where Φ̂AA′ =
∑dA−1

i=0 |iAiA′〉〈jAjA′ | is the unnormalized maximally entangled state, {|iA〉}
and {|iA′〉} are the standard, orthonormal bases on HA and HA′ respectively. According to

Uhlmann’s theorem [Uhl76], any two purifications of the same state are local unitary equiva-

lence. Suppose φAA′ and φ̃AA′ are two purifications of ρA, then there exists a unitary UA′ such

that

φAA′ = UA′ φ̃AA′U †
A′ . (2.4)

Proposition 2.1 (Schmidt decomposition) For any bipartite pure state |φAB〉 ∈ HA ⊗ HB

with d = min{dA, dB}, there exist orthonormal bases {|ej〉 ∈ HA} nad {|fj〉 ∈ HB} such

that

|φAB〉 =
d−1∑
j=0

√
λj |ej〉 ⊗ |fj〉, (2.5)

with λj ≥ 0 and
∑d−1

j=0 λj = 1. The coefficients
√
λj are called Schmidt coefficients and the

number of non-zero λj is the Schmidt rank of |φ〉.

A bipartite quantum state ρAB is called separable (SEP) if it can be written as a convex

combination of tensor product states, i.e.,

ρAB =
∑
i

piρ
i
A ⊗ ρiB, (2.6)

where ρiA ∈ S= (A), ρiB ∈ S= (B) and pi is a probability distribution. The set of all separable

states shared between A and B is denoted as SEP (A : B).

1 In this thesis, we will write only XA to indicate XA ⊗ 1A′ when there is no risk of confusion.
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2.1. BASICS OF QUANTUM MECHANICS

A bipartite quantum state is entangled if it is not separable. One of the most important

entangled states is the maximally entangled state, denoted as

ΦAB :=
1

k

k−1∑
i=0

|iAiB〉〈jAjB|, (2.7)

where k is the dimension of HA and HB , {|iA〉} and {|iB〉} are the standard, orthonormal bases

on HA and HB respectively. We sometimes denote ΦAB as Φk to emphasize the dimension.

Proposition 2.2 (Transpose trick) For any operator MA ∈ L (A) and maximally entangled

state ΦAB , it holds

(MA ⊗ 1B) |ΦAB〉 =
(
1A ⊗MT

B

)
|ΦAB〉, (2.8)

where MT
B is the transpose of the operator M with respect to the basis {|iB〉}.

A positive semidefinite operatorX ∈ P (AB) is said to be positive under partial transpose

(PPT) if its partial transpose remains positive. That is, XTB ≥ 0, where TB means the partial

transpose over system B, i.e., (|iAjB〉〈kAlB|)TB = |iAlB〉〈kAjB|. Note that being PPT could

equivalently be defined with respect to partial transposition over system A, and that being PPT

does not depend on the specific basis chosen to take partial transposition (the partial transpose

of a state in a different local basis is local-unitarily related to the one in the standard basis).

The set of all PPT states shared between A and B is denoted as

PPT (A : B) :=
{
ρ ∈ S= (AB)

∣∣ ρTB ≥ 0
}
. (2.9)

With respect to coherence theory, a quantum state is called incoherent if it is diagonal in

the given reference basis. We denote the set of all incoherent state as

I :=
{
ρ ∈ S= (A) | ρ = Δ(ρ)

}
, (2.10)

where Δ(ρ) :=
∑dA−1

i=0 |i〉〈i|ρ|i〉〈i| is the completely dephasing channel (diagonalizing map).

A quantum state is coherent if it is not incoherent. One of the most important coherent states

is the maximally coherent state, denoted as

Ψk :=
1

k

k−1∑
i,j=0

|i〉〈j|, (2.11)

where k is the dimension of the quantum system.
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2.1.2 Quantum measurement

As a method to extract information from a quantum system, a quantum measurement is math-

ematically described by a collection of measurement operators {Ei} acting on the state space

of the system being measured. The index i refers to the classical measurement outcomes in

the experiment. If the state of the quantum system prior to the measurement is ρ, then the

probability that result i occurs is given by pi = TrEiρE
†
i while the post-measurement state

is EiρE
†
i /pi. The measurement operators satisfy the completeness equation

∑
iE

†
iEi = 1,

which ensures that the probabilities of the measurement outcomes sum to 1.

Without considering the post-measurement states, a quantum measurement can be defined

in terms of a positive operator-valued measure (POVM). A POVM is given by a set of positive

semidefinite operators {Mi} satisfying the completeness condition
∑

iMi = 1. The probabil-

ity of measurement outcome i is given by TrMiρ.

2.1.3 Quantum operations

A quantum operation (sometimes called quantum channel) is a mathematical formalism used

to describe a broad class of transformations that a quantum mechanical system can undergo.

Definition 2.3 A linear map E from L (A) to L (B) is called a quantum operation if it satisfies

the completely positive (CP) and trace-preserving (TP) conditions:

• (CP) idk ⊗E (X) ≥ 0, for all k ≥ 0, X ∈ P (RA) , where idk is the identity map on the

reference system R with dimension k 2.

• (TP) Tr E (Y ) = TrY , for all Y ∈ P (A).

A relaxation of the TP condition is the trace-nonincreasing (TNI) condition which is given

by Tr E (Y ) ≤ TrY , for all Y ∈ P (A). A linear map E is called a subnormalized quantum

operation or subchannel 3 if it is completely positive and trace-nonincreasing.

There are several equivalent representations for a quantum operation, including the Stine-

spring representation, Choi-Kraus representation, and Choi-Jamiołkowski representation. Here

we introduce the last two in details.

2 The dimension of the reference system in the CP condition can be restricted to k = dA [Cho75].

3 Some authors use the term “quantum operation” to refer specifically to completely positive and trace nonincreasing

maps, and the term “quantum channel” to refer to the subset of those that are trace preserving. Here we explicitly

use the prefix “sub-” to indicate the trace non-increasing condition.
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Choi-Kraus representation

A linear map E : L (A) → L (B) is completely positive if and only if there exists a finite set

of linear operators {Ei}, Ei ∈ L (A,B) such that

E (X) =
∑
i

EiXE
†
i , ∀X ∈ L (A) . (2.12)

Furthermore, it is trace-preserving if and only if
∑

iE
†
iEi = 1A and it is trace-nonincreasing

if and only if
∑

iE
†
iEi ≤ 1A [Kra71, Cho75].

The Choi-Kraus representation (2.12) is not unique for a given quantum operation. How-

ever, there is always a representation (2.12) with at most dAdB Kraus operators if the map

is completely positive. Different representations can also be related by unitary transforma-

tions [NC11].

Choi-Jamiołkowski isomorphism

The Choi-Jamiołkowski isomorphism maps a given linear operation E : L (A′) → L (B) to a

bipartite linear operator [Cho75, Jam72],

JE :=
∑
ij

|iA〉〈jA| ⊗ E (|iA′〉〈jA′ |) ∈ L (AB) , (2.13)

where {iA} and {iA′} are orthonormal bases on the isomorphic Hilbert spaces HA and HA′

respectively. The operator JE is the so-called Choi-Jamiołkowski operator. On the other hand,

the inverse Choi-Jamiołkowski isomorphism maps any bipartite operator JE ∈ L (AB) to a

linear operation by

E (X) := TrA JE
(
XT

A ⊗ 1B

)
, ∀XA ∈ L (A) . (2.14)

Based on the Choi-Jamiołkowski isomorphism, the completely positive, trace-preserving

or trace-nonincreasing conditions for a linear map can be equivalently represented via its cor-

responding Choi-Jamiołkowski operator as follows:

• E is completely positive ⇐⇒ JE ≥ 0;

• E is trace-preserving ⇐⇒ TrB JE = 1A;

• E is trace-nonincreasing ⇐⇒ TrB JE ≤ 1A.

Note that above conditions on the r.h.s. are all linear conditions with respect to JE . This pro-

vides the opportunity to study resource transformation under different operations via semidefi-

nite programming.
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A hierarchy of bipartite quantum operations

The class of LOCC operations consists of all bipartite operations that can be realized by local

operations and classical communication. If only one-way classical communication is allowed,

say, classical information can only be sent from Alice to Bob, we call it 1-LOCC. Furthermore,

if no classical communication is allowed, it is called local operation (LO), which admits the

tensor product decomposition

ΠAB→A′B′ = EA→A′ ⊗FB→B′ , (2.15)

where E and F represents the local operations performed by Alice and Bob respectively.

While the LO, 1-LOCC and LOCC possess clear operational interpretations, they are gener-

ally difficult to optimize over. Related classes that are more tractable are often studied instead.

A bipartite quantum operation ΠAB→A′B′ is said to be a positive partial transpose preserving

(or separable) operation if its Choi-Jamiołkowski matrix 4

JΠ =
∑

i,j,m,k

|iAjB〉〈mAkB| ⊗Π(|iAjB〉〈mAkB|) (2.16)

is positive under partial transpose (or separable) with the system partition AA′ : BB′, where

{|iA〉} and {|jB〉} are orthonormal basis on Hilbert spaces A and B, respectively. The set of

all positive partial transpose preserving and separable operations are denoted as PPT and SEP

respectively. Here we use the same notations for quantum states. But it is easy to tell from the

context which one is referred to.

These bipartite operations play an important role in entanglement theory [HHHH09], and

a well-known fact is that they obey the following strict inclusions [BDF+99],

LO � 1-LOCC � LOCC � SEP � PPT. (2.17)

Other two sets of bipartite operations are extensively used in quantum channel coding the-

ory. An operation ΠAB→A′B′ is called entanglement-assisted (EA) operation if it can be im-

plemented via local operations with shared quantum entanglement, i.e., there exists a quantum

state ΦA′′B′′ such that for any quantum state ρAB , it holds

ΠAB→A′B′ (ρAB) = EAA′′→A′ ⊗FBB′′→B′
(
ΦA′′B′′ ⊗ ρAB

)
, (2.18)

where E and F are quantum operations performed by Alice and Bob respectively. If the shared

entangled state is trivial (dimension one), then the entanglement-assisted operation reduce to a

local operation.

4 We will use the label A more than once, when there is no risk of confusion.
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A bipartite quantum operation ΠAB→A′B′ is A to B non-signalling (A �→ B) if A cannot

send classical information to B by using Π. Mathematically, for any quantum states ρA, σA ∈
S= (A) and τB ∈ S= (B), we have TrA′ ΠAB→A′B′ (ρA ⊗ τB) = TrA′ ΠAB→A′B′ (σA ⊗ τB) .

Or equivalently it can be characterized by its Choi-Jamiołkowski operator [LM15a, DW16],

TrA′ JΠ =
1A

dA
⊗ TrAA′ JΠ. (2.19)

Similarly, Π is said to be B to A non-signalling (B �→ A) if for any quantum states ρB, σB ∈
S= (B) and τA ∈ S= (A), we have TrB′ ΠAB→A′B′ (τA ⊗ ρB) = TrB′ ΠAB→A′B′ (τA ⊗ σB) .

It can be equivalently characterized by its Choi-Jamiołkowski operator

TrB′ JΠ =
1B

dB
⊗ TrBB′ JΠ. (2.20)

Furthermore, ΠAB→A′B′ is a non-signalling operation if it is non-signalling from A to B

and vice versa. The class of non-signalling operations is strictly larger than the class of all

entanglement-assisted operations [LM15b]. We summarize the relation of bipartite operations

in the following Figure 2.1.

LO EAA NS1-LOCCSEPPPT ELO1-LOCCCSEPSPPTTT PP LOCC

Figure 2.1 : A hierarchy of bipartite quantum operations.

A hierarchy of incoherent quantum operations

A peculiar aspect of the resource theory of coherence is that, although the set of free resource

states is defined unambiguously as I = { ρ ≥ 0 | Δ(ρ) = ρ }, there is no unique physically-

motivated choice of allowed free operations.

The maximally incoherent operations (MIO) (also known as incoherence preserving op-

erations) are defined as any quantum operation E such that E (I) ⊆ I [Abe06]. This is the

largest class of free operations compatible with coherence theory.

A smaller and more relevant class of free operations is called incoherent operations (IO)

which are characterized as the set of quantum operations admitting a set of Kraus operators
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{Ei} such that for any Ei [BCP14],

EiρE
†
i

TrEiρE
†
i

∈ I, ∀ ρ ∈ I. (2.21)

These Kraus operators Ei are then called incoherent Kraus operators. The definition of IO

makes sure that in any of the possible outcomes of an IO operation, coherence can never be

generated from an incoherent input state, not even probabilistically.

We can be more stringent by adding further desirable properties to the set of free operations.

An operation E is called strictly incoherent (SIO) if it can be written in terms of a set of

incoherent Kraus operators {Ei} such that E†
i are also incoherent [WY16]. Or equivalently, an

operation E is SIO if and only if it has a set of Kraus operators {Ei} such that the operation

Ei : ρ→ EiρE
†
i commute with the completely dephasing channel Δ, i.e., [Ei,Δ] = 0.

The sets MIO, IO and SIO in general do not have a free dilation, i.e., they cannot be

implemented by coupling the system to an environment in an incoherent state followed by a

global incoherent unitary. Motivated by this observation, Chitambar and Gour introduced the

set of physical incoherent operations (PIO) [CG16a, CG16b]. These are all operations which

can instead be implemented in the aforementioned way, additionally allowing for incoherent

measurements on the environment and classical postprocessing of the measurement outcomes.

Another interesting set is given by the dephasing-covariant incoherent operations (DIO),

which were introduced independently by Chitambar and Gour [CG16a, CG16b] and Marvian

and Spekkens [MS16]. These are all quantum operations E which commute with the com-

pletely dephasing channel, i.e., E (Δ (ρ)) = Δ (E (ρ)) for any quantum state ρ. Or it can be

equivalently characterized by

E (|i〉〈i|) ∈ I, ∀ i and Δ(E (|i〉〈j|)) = 0, ∀ i �= j. (2.22)

Similar to the sets of bipartite operations, there are two strict inclusions for incoherent

operations [CG16a, CG16b, dVS17]: PIO � SIO � IO � MIO and PIO � SIO � DIO �

MIO. We summarize these relations in Figure 2.2. In the following chapters we will focus

more on MIO and DIO.
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MIO

IODIO

MIO

SIO

PIO

IODIO IOO
SIO

PIOPIO

Figure 2.2 : A hierarchy of incoherent quantum operations.

2.1.4 Distance measures

Distance measure between quantum states

There are two most commonly used measures of distance between quantum states, trace dis-

tance and fidelity. Both of them can be generalized to subnormalized quantum states as fol-

lows [Tom16].

Definition 2.4 The generalized trace distance between two subnormalized quantum states ρ

and σ is defined as

D (ρ, σ) :=
1

2
‖ρ− σ‖1 +

1

2
|Tr ρ− Trσ|. (2.23)

The trace distance has a physical interpretation as the distinguishing advantage between the

two states. That is, the maximal probability of correctly distinguishing between two uniformly

distributed quantum states ρ and σ is given by 1
2 (1 +D (ρ, σ)).

Definition 2.5 The generalized fidelity between two subnormalized quantum states ρ and σ is

defined as

F (ρ, σ) := ‖ρ1/2σ1/2‖1 +
√
(1− Tr ρ) (1− Trσ). (2.24)

Proposition 2.6 (Uhlmann’s theorem [Uhl76]) For any two subnormalized quantum states ρ

and σ, let |ϕ〉 be a purification of ρ, then there exists a purification |θ〉 of σ such that

F (ρ, σ) = F (ϕ, θ) . (2.25)

Based on the generalized fidelity, we can define the purified distance.

Definition 2.7 The purified distance between two subnormalized quantum states ρ and σ is

defined as

P (ρ, σ) :=
√
1− F 2 (ρ, σ). (2.26)
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The purified distance has simple upper and lower bounds in terms of the generalized trace

distance.

Proposition 2.8 For any two subnormalized quantum states ρ and σ, it holds [Tom16]

D (ρ, σ) ≤ P (ρ, σ) ≤
√
2D (ρ, σ). (2.27)

Distance measure between quantum channels

We use a norm on the set of quantum channels which measures the bias in distinguishing

two such channels. The norm is known as the diamond norm in quantum information the-

ory [Kit97]. Here, we present it in a formulation which highlights that it is dual to the well-

known completely bounded (cb) norm [Pau02].

Definition 2.9 For any linear map E : L (A) → L (B), its diamond norm is defined as

‖E‖♦ := sup
k∈N

‖idk ⊗ E‖1, (2.28)

where idk is the identity map with dimension k and ‖F‖1 = supσ ‖F (σ) ‖1 with σA ∈ S≤ (A).

The supremum in (2.28) is obtained by k = dA [Kit97, Pau02]. Based on the diamond

norm, the distance between two quantum channels E1 and E2 is usually defined as 1
2‖E1 −

E2‖♦. Then the minimum error probability to distinguish these two channels is given by

1
2

(
1− 1

2‖E1 − E2‖♦
)

[BS10].

Since the definition of channel distance involves the optimization over all input states, the

following technique can help to fix the input state when considering channels with symmetry.

Proposition 2.10 (Post-selection technique [CKR09]) Let ε > 0 and En
A and Fn

A be CPTP

maps from L (A⊗n) to L (B). If there exists a CPTP map Kπ for any permutation π such that

(En
A −Fn

A) ◦ π = Kπ ◦ (En
A −Fn

A), then ‖En
A −Fn

A‖♦ ≤ ε whenever

‖ (En
A −Fn

A)⊗ idRR′ (ωn
ARR′) ‖1 ≤ ε (n+ 1)−(|A|2−1) , (2.29)

where ωn
ARR′ is a purification of the de Finetti state ωn

AR =
∫
σ⊗n
ARd (σAR) with σAR =

|σ〉〈σ|AR ∈ S= (AR), HA
∼= HR and d (·) is the measure on the normalized pure states on

HA⊗HR induced by the Haar measure on the unitary group acting on HA⊗HR, normalized to∫
d (·) = 1. Furthermore we can assume without loss of generality that |R′| ≤ (n+ 1)|A|2−1.

The de Finetti state can be written as convex combinations of finite number of i.i.d states.
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Lemma 2.11 ([BCR11]) Let ωn
AR =

∫
σ⊗n
ARd (σAR) as in Proposition 2.10. Then

ωn
AR =

∑
i

pi
(
σiAR

)⊗n
, (2.30)

with σiAR = |σi〉〈σi|AR ∈ S= (AR), i ∈
{
1, 2, · · · , (n+ 1)2|A||R|−2

}
and pi a probability

distribution.

2.2 Quantum entropies

Quantum relative entropy and its child entropies

As with many other objects in quantum information theory, quantum entropies are defined by

extending the classical definitions from probability distributions to density matrices. Let ρ be

a quantum state. The von Neumann entropy of ρ, which is the quantum mechanical analog of

the Shannon entropy [Sha48], is given by

H (ρ) := −Tr ρ log ρ. (2.31)

Definition 2.12 For any two quantum states ρ and σ, if supp (ρ) ⊆ supp (σ), the quantum

relative entropy of ρ with respect to σ is defined by

D (ρ‖σ) := Tr ρ (log ρ− log σ) . (2.32)

Otherwise we define D (ρ‖σ) = +∞.

Note that the quantum relative entropy is not symmetric, i.e., D (ρ‖σ) = D (σ‖ρ) does not

hold in general. The von Neumann entropy can be recovered by H (ρ) = −D (ρ‖1). The

quantum relative entropy also acts as a parent quantity for other entropies:

Conditional entropy: H (A|B)ρ := −D (ρAB‖1A ⊗ ρB) , (2.33)

Coherent information: I (A〉B)ρ := D (ρAB‖1A ⊗ ρB) , (2.34)

Mutual information: I (A : B)ρ := D (ρAB‖ρA ⊗ ρB) , (2.35)

Quantum information variance: V (ρ‖σ) := Tr ρ (log ρ− log σ)2 −D (ρ‖σ)2 , (2.36)

Coherent information variance: V (A〉B)ρ := V (ρAB‖1A ⊗ ρB) . (2.37)

The conditional entropy is continuous with respect to the input state.

Lemma 2.13 (Alicki-Fannes Inequality [AF04]) For any quantum states ρAB and σAB with

‖ρAB − σAB‖1 ≤ ε ≤ 1, it holds

|H (A|B)ρ −H (A|B)σ | ≤ 4ε log |A|+ 2h2 (ε) , (2.38)

where h2 (ε) := −ε log ε− (1− ε) log (1− ε) is the binary entropy.
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The quantum mutual information can be written in multiple ways in terms of the quantum

relative entropy due to the following result.

Proposition 2.14 ([BD10b]) For any quantum state ρAB , it holds

I (A : B)ρ = min
σB∈S=(B)

D (ρAB‖ρA ⊗ σB) = min
σA∈S=(A)
σB∈S=(B)

D (ρAB‖σA ⊗ σB) . (2.39)

Min- and Max-relative entropy and their child entropies

Definition 2.15 ([DKF+14]) The min-relative entropy of a subnormalized quantum state ρ

with respect to σ ≥ 0 is defined as

Dmin (ρ‖σ) := − log ‖ρ1/2σ1/2‖21. (2.40)

Definition 2.16 ([Dat09b, Ren05]) The max-relative entropy of a subnormalized quantum state

ρ with respect to σ ≥ 0 is defined as

Dmax (ρ‖σ) := inf
{
t ≥ 0 | ρ ≤ 2t · σ

}
, (2.41)

if supp (ρ) ⊆ supp (σ). Otherwise, Dmax (ρ‖σ) = +∞.

Note that Eq. (2.41) can be equivalently given by Dmax (ρ‖σ) = log ‖σ−1/2ρσ−1/2‖∞.
The conditional min- and max-entropy are defined as

Hmin (A|B)ρ := − min
σB∈S≤(B)

Dmax (ρAB‖1A ⊗ σB) , (2.42)

Hmax (A|B)ρ := − min
σB∈S≤(B)

Dmin (ρAB‖1A ⊗ σB) . (2.43)

The above entropies can be extended to corresponding smoothed version, i.e., optimizations

of the underlying entropies over a ball of states close to the states under consideration. This

closeness is commonly measured in terms of the purified distance. Specifically, we say ρ̃ is

ε-close to ρ, denoted as ρ̃ ≈ε ρ, if P (ρ̃, ρ) ≤ ε. The smoothed (conditional) min-/max-relative

entropy are respectively defined as follows:

Dε
min (ρ‖σ) := max

ρ̃≈ερ
Dmin (ρ̃‖σ) , Hε

min (A|B)ρ := max
ρ̃≈ερ

Hmin (A|B)ρ̃ (2.44)

Dε
max (ρ‖σ) := min

ρ̃≈ερ
Dmax (ρ̃‖σ) , Hε

max (A|B)ρ := min
ρ̃≈ερ

Hmax (A|B)ρ̃ . (2.45)

It is known that the minimization of max-relative entropy is closely related to another

resource measure, log robustness LRg (ρ) := log (1 +Rg (ρ)) where

Rg (ρ) := min

{
t ≥ 0

∣∣∣ ρ+ t · ω
1 + t

∈ G, ω ∈ S= (A)

}
(2.46)
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2.2. QUANTUM ENTROPIES

and G is a given set of (useless) operators. As the name suggests, log robustness quantifies

the minimal mixing required to make the resource useless. A geometric interpretation of the

robustness Rg (ρ) can be illustrated in Figure 2.3.

S= (A)
ρ

ω

σ
G Rg(ρ)

1+Rg(ρ)

Figure 2.3 : Geometric interpretation of the robustness defined in Eq. (2.46).

Proposition 2.17 ([Dat09a]) For any quantum state ρ and a set of operators G, it holds

LRg (ρ) = min
σ∈G

Dmax (ρ‖σ) . (2.47)

The max-relative entropy is usually related with the cost of a resource. In chapter 5 we will

generalize the max-relative entropy as well as the log robustness to quantum channels and

provide their nature operational interpretations with respect to the channel simulation cost.

Sandwiched Rényi relative entropy

There are several quantum generalizations of the family of Rényi entropy that contain the

quantum relative entropy, min- and max-relative entropies as special cases [MLDS+13, AD15].

Here we introduce the Sandwiched version.

Definition 2.18 Let ρ and σ be two subnormalized quantum states. For any α ∈ (0, 1) ∪
(1,∞), the order-α sandwiched Rényi relative entropy is defined as

D̃α (ρ‖σ) :=
1

α− 1
log Tr

((
σ

1−α
2a ρσ

1−α
2a

)α)
, (2.48)

if supp (ρ) ⊆ supp (σ) and it is equal to +∞ otherwise.

10 1/2

DminD maxD

Figure 2.4 : Relations between the sandwiched Rényi relative entropies.
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The Sandwiched Rényi relative entropy is monotonically increasing with respect to α, i.e.,

D̃α (ρ‖σ) ≥ D̃β (ρ‖σ) if α ≥ β. We also have the following reduction [MLDS+13]:

D (ρ‖σ) = lim
α→1−

D̃α (ρ‖σ) = lim
α→1+

D̃α (ρ‖σ) , (2.49)

Dmin (ρ‖σ) = D̃1/2 (ρ‖σ) , (2.50)

Dmax (ρ‖σ) = lim
α→∞

D̃α (ρ‖σ) . (2.51)

Max-information

Note that Proposition 2.14 for quantum mutual information does not hold in general for other

entropy measures. In fact, if we replace the quantum relative entropy with the max-relative

entropy, the values of the expressions in Proposition 2.14 can lie arbitrarily far apart. Thus we

have several definitions for max-information as follows.

Definition 2.19 ([CBR14]) For any quantum state ρAB , its max-informations thatB has about

A are defined as

1Imax (A : B)ρ := Dmax (ρAB‖ρA ⊗ ρB) , (2.52)

2Imax (A : B)ρ := min
σB∈S=(B)

Dmax (ρAB‖ρA ⊗ σB) , (2.53)

3Imax (A : B)ρ := min
σA∈S=(A)
σB∈S=(B)

Dmax (ρAB‖σA ⊗ σB) . (2.54)

The corresponding smoothed versions are defined by

iIεmax (A : B)ρ := min
ρ̃≈ερ

iImax (A : B)ρ̃ for i ∈ {1, 2, 3}. (2.55)

Unlike the non-smoothed cases, the smoothed max-information are equivalent up to logarith-

mic terms in the smoothing parameters.

Proposition 2.20 ([CBR14]) For any quantum state ρAB and ε > 0, ε′ ≥ 0, it holds

3Iε+ε′
max (A : B)ρ ≤ 2Iε+ε′

max (A : B)ρ ≤ 3Iε
′

max (A : B)ρ + f
(
ε, ε′
)
, and (2.56)

2Iε+2
√
ε+ε′

max (A : B)ρ ≤ 1Iε+2
√
ε+ε′

max (A : B)ρ ≤ 2Iε
′

max (A : B)ρ + g (ε) , (2.57)

where

f
(
ε, ε′
)
:= log

(
1

1−
√
1− ε2

+
1

1− ε′

)
, g (ε) := log

(
2 (1− ε) + 3

(1− ε)
(
1−

√
1− ε2

)). (2.58)

There are some basic properties of the max-information that will be used later.
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2.2. QUANTUM ENTROPIES

Lemma 2.21 ([BCR11]) Let ε ≥ 0 and ρAB =
∑

i∈I piρ
i
AB with ρiAB ∈ S≤ (AB) ∀ i ∈ I , pi

a probability distribution. Then

2Iεmax (A : B)ρ ≤ max
i∈I

2Iεmax (A : B)ρi + log |I|. (2.59)

Lemma 2.22 ([BCR11]) Let ε ≥ 0 and ρABC ∈ S= (ABC). Then

2Iεmax (A : BC)ρ ≤ 2Iεmax (A : B)ρ + 2 · log |C|. (2.60)

Quantum hypothesis testing

Quantum hypothesis testing is the task of distinguishing two possible states of a system, ρ0

and ρ1. We study two hypotheses, the null hypothesis H0: the state is ρ0; the alternative

hypothesis H1: the state is ρ1. Then we can perform a measurement presented by the POVM

{M,1−M} with corresponding classical outcome 0 and 1. If the outcome is 0, we accept the

null hypothesis. Otherwise, we accept the alternative one. Analog to the classical case, there

are two kinds of errors in this test as shown in Figure 2.5. It is called Type-I error if the original

state is ρ0 but the measurement outcome is 1. It is called Type-II error if the original state is

ρ1 but the measurement outcome is 0. The probabilities of type-I and type-II error are given

by Tr (1−M) ρ0 and TrMρ1, respectively. Hypothesis testing relative entropy considers

minimizing the type-II error while keeping type-I error within a given error tolerance.

Definition 2.23 For any two quantum states 5 ρ0 and ρ1, the quantum hypothesis testing rela-

tive entropy is defined as

Dε
H (ρ0||ρ1) := − log βε (ρ0||ρ1) , where (2.61)

βε (ρ0||ρ1) := min
{
TrMρ1

∣∣ 0 ≤M ≤ 1, 1− TrMρ0 ≤ ε
}
. (2.62)

Quantum hypothesis testing is an important task with many applications in quantum informa-

tion theory [Hay17], and it will reduce to the classical case if ρ0 and ρ1 commute.

?

0 1 1 0

Type-I error Type-II error

Figure 2.5 : The task of quantum hypothesis testing.

5 We can generalize the definition to any Hermitian operators. It is still well-defined in the sense of a convex opti-

mization problem.
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Asymptotic equipartition property (AEP) and second-order asymptotics

Quantum relative entropy can be recovered in the independent and identically distributed (i.i.d.)

asymptotic limit of the smoothed entropies [HP91, ON00, DMHB13, Dat09b]: for any ε ∈
(0, 1),

lim
n→∞

1

n
Dε

H

(
ρ⊗n‖σ⊗n

)
= D (ρ‖σ) , (2.63)

lim
n→∞

1

n
Dε

min

(
ρ⊗n‖σ⊗n

)
= D (ρ‖σ) , (2.64)

lim
n→∞

1

n
Dε

max

(
ρ⊗n‖σ⊗n

)
= D (ρ‖σ) . (2.65)

The conditional entropy of a bipartite state can be recovered via the smoothed conditional

min-/max-entropy in the i.i.d. asymptotic limit [TCR09, Tom12], for any ε ∈ (0, 1),

lim
n→∞

1

n
Hε

max (A
n : Bn)ρ⊗n = H (A|B)ρ , (2.66)

lim
n→∞

1

n
Hε

min (A
n : Bn)ρ⊗n = H (A|B)ρ . (2.67)

The quantum mutual information of a bipartite state can be recovered by its smoothed max-

information in the i.i.d. asymptotic limit [BCR11],

lim
ε→0

lim
n→∞

1

n

[
iIεmax (A : B)ρ⊗n

]
= I (A : B)ρ , for i ∈ {1, 2, 3}. (2.68)

The r.h.s. of above limits are called the first-order asymptotics. A more accurate estimation

can be done via the second-order expansion [TH13, Li14]:

Dε
H

(
ρ⊗n‖σ⊗n

)
= nD (ρ‖σ) +

√
nV (ρ‖σ) Φ−1 (ε) +O (log n) , (2.69)

Dε
min

(
ρ⊗n‖σ⊗n

)
= nD (ρ‖σ) +

√
nV (ρ‖σ) Φ−1 (ε) +O (log n) , (2.70)

Dε
max

(
ρ⊗n‖σ⊗n

)
= nD (ρ‖σ)−

√
nV (ρ‖σ) Φ−1

(
ε2
)
+O (log n) , (2.71)

where Φ−1 is the inverse function of cumulative distribution of a standard normal random

variable. The second-order term is given by the quantum information variance V (ρ‖σ).
Note that recent progress can show a more general result of the asymptotic limits for con-

ditional min/max-entropy beyond the i.i.d. setting [DFR16].

2.3 Semidefinite programming

2.3.1 Basics of semidefinite programming

Semidefinite programming (SDP) is a subfield of convex optimization concerned with the opti-

mization of a linear objective function (a user-specified function that the user wants to minimize
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2.3. SEMIDEFINITE PROGRAMMING

or maximize) over the intersection of the cone of positive semidefinite matrices with an affine

space. Semidefinite programming unifies several standard problems (e.g., linear and quadratic

programming) and finds applications in various fields. Although semidefinite programs are

much more general than linear programs, they are just as easy to solve. Most interior-point

methods for linear programming have been generalized to semidefinite programs. As in linear

programming, these methods have polynomial worst-case complexity, and perform very well in

practice. Please refer to a review paper [VB96] for the theory and applications of semidefinite

programs and an introduction to primal-dual interior-point methods for their solution.

In this subsection we introduce some basics of semidefinite programming and we refer to

John Watrous’ lecture note [Wat11] and book [Wat17] for more details.

Definition 2.24 A semidefinite program is a triple (E , C,D), where C ∈ Herm (A), D ∈
Herm (B) and E : L (A) → L (B) is a Hermiticity-preserving linear map, i.e., it maps any

Hermitian operators to Hermitian operators.

Associated with the triple (E , C,D), there are two optimization problems as follows:

Primal problem

maximize: TrCX (2.72a)

subject to: E (X) = D, (2.72b)

X ≥ 0. (2.72c)

Dual problem

minimize: TrDY (2.73a)

subject to: E∗ (Y ) ≥ C, (2.73b)

Y ∈ Herm (B) . (2.73c)

where E∗ is the dual map by Tr E∗ (Y )·X = TrY ·E (X) for anyX,Y . Note that in practice the

optimization may not be explicitly written as the standard form above. We may also write the

primal problem as minimization and the dual problem as maximization. The steps of obtaining

the dual problem are usually omitted for simplicity.

Any operator X satisfying E (X) = D,X ≥ 0 is called primal feasible while any operator

Y satisfying E∗ (Y ) ≥ C, Y ∈ Herm (B) is called dual feasible. Furthermore, a primal

problem is strictly feasible if there is a primal feasible solution such that X > 0. A dual

problem is called strictly feasible if there is a dual feasible solution such that E∗ (Y ) > C.

Denote α and β as the optimal value of the primal and dual problem respectively. Let α = −∞
and β = +∞ when there exist no feasible solutions. A feasible solution achieving the optimal

value is then called optimal solution.

Semidefinite programs have associated with them a notion of duality, which refers to the

special relationship between the primal and dual problems. The property of weak duality,

which holds for all semidefinite programs, is that the primal optimum can never exceed the

dual optimum.
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Proposition 2.25 (Weak duality) For every semidefinite program (E , C,D), it holds α ≤ β.

Proof For every primal and dual feasible solution X and Y , we have

TrCX ≤ Tr E∗ (Y )X = TrY E (X) = TrDY. (2.74)

Optimizing overall all feasible solutions, we have α ≤ β. �
The condition that α = β is called strong duality, which does not hold in general. How-

ever, it does typically hold for semidefinite programs that arise in practice. There are various

conditions allowing for verification of strong duality. The following proposition provides one

set of conditions under which strong duality is guaranteed.

Proposition 2.26 (Slater’s theorem) For any semidefinite program, the strong duality holds if

one of the following conditions satisfied:

• the primal problem is feasible and the dual problem is strictly feasible;

• the dual problem is feasible and the primal problem is strictly feasible.

2.3.2 SDP duality proof techniques

In the following chapters, we will frequently need to prove the optimal value of an SDP or

show the equivalence of two SDPs. These proofs can be sketched as standard processes due to

the SDP duality, as shown in the following two Tables.

• Problem: prove the optimal value of an SDP (E , C,D) is x.

• Steps:

1. Check strong duality holds, thus α = β.

2. Construct a primal feasible solution X , such that TrCX = x. This implies α ≥ x.

3. Construct a dual feasible solution Y , such that TrDY = x. This implies β ≤ x.

4. Combining above three steps, we have α = β = x.

Table 2.1 : Steps to prove the optimal value of an SDP.
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• Problem: show the optimal value of two SDPs (E1, C1, D1) and (E2, C2, D2) are equal.

• Steps:

1. Check strong duality holds, thus α1 = β1 and α2 = β2.

2. Suppose the primal optimal solution of SDP (E1, C1, D1) is given byX1. Construct

a primal feasible solution X2 (usually based on X1) for (E2, C2, D2) such that

TrC2X2 ≥ α1. This implies α1 ≤ α2.

Or suppose the dual optimal solution of SDP (E2, C2, D2) is given by Y2. Con-

struct a dual feasible solution Y1 (ususlly based on Y2) for (E1, C1, D1) such that

TrD1Y1 ≤ β2. This implies β1 ≤ β2.

3. Swap the role of (E1, C1, D1) and (E2, C2, D2) and repeat the second step. We can

show that α1 ≥ α2 or β1 ≥ β2.

4. Combining above three steps, we have α1 = β1 = α2 = β2.

Table 2.2 : Steps to prove the optimal values of two SDPs are equal.

2.3.3 A list of frequently used SDPs

The advantages of using semidefinite programming are multifold. First, it can be efficiently

computed 6 via interior point methods. With the assistance of various toolboxes (e.g. CVX,

YALMIP) as well as solvers (e.g. SDPT3, SeDuMi, Mosek) we can easily perform numerical

experiments and make interesting observations. Second, the SDP duality technique can help

us simplify the proofs and unify them into standard processes as shown above. However,

the difficulty lies in constructing suitable feasible solutions, which on the other hand can be

assisted via numerical observations. Finally, SDP provides us a new perspective to study some

fundamental quantities as we will see in the following chapters.

It is worth mentioning that not all problems can be reformulated via SDPs and that most

SDP reformulations can be rather tricky. In the following, we list some of them that will be

6 Note that many one-shot quantities, including those will be introduced in this thesis, are characterized via SDPs and

thus claimed to be efficiently computable. There is nothing wrong with such claims. But it is easily being misun-

derstood that those quantities are also efficiently computable for n-shot of resources. Since tensoring exponentially

increases the size of SDP, we cannot guarantee its efficiency for the n-shot case.

29



used in the following chapters.

For any Hermitian operator X , its trace norm ‖X‖1 is given by [Wat11]

Primal

maximize: TrMX (2.75a)

subject to: − 1 ≤M ≤ 1, (2.75b)

M ∈ Herm (2.75c)

Dual

minimize: TrX1 +X2 (2.76a)

subject to: X = X1 −X2, (2.76b)

X1 ≥ 0, X2 ≥ 0. (2.76c)

Its infinity norm ‖X‖∞ is given by [Wat11]

Primal

maximize: TrMX (2.77a)

subject to: TrM ≤ 1, (2.77b)

M ∈ Herm. (2.77c)

Dual

minimize: t (2.78a)

subject to: − t1 ≤ X ≤ t1, (2.78b)

t ≥ 0. (2.78c)

For any quantum states ρ and σ, their fidelity F (ρ, σ) can be given by [Wat11]

Primal

maximize:
1

2
Tr
(
X +X†

)
(2.79a)

subject to:

(
ρ X

X† σ

)
≥ 0. (2.79b)

Dual

minimize:
1

2
Tr (ρ Y + σZ) (2.80a)

subject to:

(
Y −1

−1 Z

)
≥ 0. (2.80b)

For any two quantum channels N1,N2 from L (A) to L (B), with Choi-Jamiołkowski operators

JN1 and JN2 respectively, the diamond norm of their difference, i.e., 1
2‖N1 − N2‖♦ can be

expressed as an SDP of the form [Wat09],

Primal

maximize: Tr (JN1 − JN2)WAB (2.81a)

subject to: ρA ≥ 0, (2.81b)

Tr ρA = 1, (2.81c)

0 ≤WAB ≤ ρA ⊗ 1B (2.81d)

Dual

minimize: λ (2.82a)

subject to: TrB YAB ≤ λ1A, (2.82b)

YAB ≥ JN1 − JN2 , (2.82c)

YAB ≥ 0. (2.82d)
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The max-relative entropy Dmax (ρ‖σ) can be given by

Primal

log maximize: Tr ρX (2.83a)

subject to: TrσX ≤ 1, (2.83b)

X ≥ 0. (2.83c)

Dual

log minimize: t (2.84a)

subject to: ρ ≤ tσ, (2.84b)

t ≥ 0. (2.84c)

The quantum hypothesis testing relative entropy Dε
H (ρ‖σ) can be given by

Primal

− log maximize: TrX + (1− ε)x (2.85a)

subject to: σ −X − xρ ≥ 0, (2.85b)

X ≤ 0, x ≥ 0. (2.85c)

Dual

− log minimize: TrMσ (2.86a)

subject to: 0 ≤M ≤ 1, (2.86b)

TrMρ ≥ 1− ε. (2.86c)

Finally we summarize the semidefinite characterizations of a quantum operation in the

following two tables.

Operation Semidefinite conditions

CP JE ≥ 0

TP TrB JE = 1A

TNI TrB JE ≤ 1A

MIO CP ∧ TP ∧ TrA JE (|i〉〈i| ⊗ 1B) ∈ I, ∀ i
DIO MIO ∧ Δ(TrA JE (|i〉〈j| ⊗ 1B)) = 0, ∀ i �= j

Table 2.3 : Semidefinite conditions for single system quantum operation EA→B .

Operation Semidefinite conditions

CP JE ≥ 0

TP TrA2B2 JE = 1A1B1

A �→ B TrA2 JE = 1A1/dA1 ⊗ TrA1A2 JE

B �→ A TrB2 JE = 1B1/dB1 ⊗ TrB1B2 JE

NS CP ∧ TP ∧ A �→ B ∧ B �→ A

PPT CP ∧ TP ∧ JTB1B2
E ≥ 0

Table 2.4 : Semidefinite conditions for bipartite quantum operation EA1B1→A2B2 .
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Chapter 3

Entanglement distillation

Entanglement distillation, an essential quantum information processing task, refers to the con-

version from multiple copies of noisy entangled states to a smaller number of highly entangled

ones. In this chapter, we study the non-asymptotic fundamental limits for entanglement distil-

lation. We investigate the optimal tradeoff between the distillation rate, the number of prepared

states, and the error tolerance.

3.1 Introduction

3.1.1 Background

Quantum entanglement is a striking feature of quantum mechanics and a key ingredient in

many quantum information processing tasks, such as the efficient transmission of information

via quantum dense coding [BW92, MWKZ96] or quantum teleportation [BBC+93], the secu-

rity of transmitted data through entanglement-based quantum cryptography [Eke91], including

the recent development of device-independent quantum cryptography [ABG+07], as well as

both device-independent randomness generation [Col09, PAM+10] or amplification [CR12,

GMDLT+13, BRG+16], quantum metrology [EdMFD11, GLM11] and the efficient solution

of the factorization problem [Sho94]. All these protocols necessarily rely on entanglement re-

sources, especially the maximally entangled states. It is thus of great importance to study the

transformation of less entangled states into more suitable ones such as maximally entangled

states. This procedure is known as entanglement distillation.

In general, the task of entanglement distillation allows two parties (Alice and Bob) to

perform local operations and classical communication (LOCC). The distillable entanglement

characterizes the rate at which one can asymptotically obtain maximally entangled states from

a collection of identically and independently distributed (i.i.d) prepared entangled states by

LOCC [BBP+96, Rai99b]. Entanglement distillation from non-i.i.d prepared states has also



been considered recently [WGCE16]. Distillable entanglement is a fundamental entanglement

measure which captures the resource character of entanglement. Up to now, it remains un-

known how to compute distillable entanglement for general quantum states and various ap-

proaches [VP98, Rai99a, VW02, Rai01, HHH00, CW04, LDS17, WD16a] have been devel-

oped to evaluate this important quantity.

n
AB 2

m

Alice Bob Alice Bob

Figure 3.1 : The task of entanglement distillation.

Let Ω represent one of the classes of operation 1-LOCC, LOCC, SEP or PPT. The concise

definition of distillable entanglement by the class of operation Ω is given as follows:

ED,Ω (ρAB) := sup

{
r ∈ R+

∣∣∣ lim
n→∞

(
inf
Π∈Ω

‖Π
(
ρ⊗n
AB

)
− Φ2rn‖1

)
= 0

}
, (3.1)

where Φk = (1/k)
∑k−1

i,j=0 |ii〉〈jj| is the k-dimensional maximally entangled state. Due to the

inclusion relation of the operation classes 1-LOCC � LOCC � SEP � PPT, for any quantum

state ρAB we have the chain of inequalities

ED,1-LOCC (ρAB) ≤ ED,LOCC (ρAB) ≤ ED,SEP (ρAB) ≤ ED,PPT (ρAB) . (3.2)

To evaluate distillable entanglement efficiently, one possible way is to find computable

bounds. Two well-known upper bounds of the distillable entanglement under LOCC as well as

PPT operations are given by the relative entropy of entanglement (REE) [VPRK97, VP98] and

the PPT-relative entropy of entanglement [Rai99a],

Er,SEP (ρAB) := min
σ∈SEP(A:B)

D (ρAB‖σAB) , (3.3)

Er,PPT (ρAB) := min
σ∈PPT(A:B)

D (ρAB‖σAB) , (3.4)

which express the minimal distinguishability between the given state and all possible separable

states or PPT states. An improved bound is the Rains bound [Rai01], which is given by

R (ρAB) := min
σ∈S=(AB)

(
D (ρAB‖σAB) + log

∥∥σTB
∥∥
1

)
. (3.5)
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3.1. INTRODUCTION

Note that Eq. (3.5) is not a convex optimization since the second term (logarithmic negativity)

is not convex [VW02]. However, the Rains bound can be reformulated [ADVW02] as a convex

optimization over the Rains set PPT′ (A : B) :=
{
σ ∈ P (AB)

∣∣ ‖σTB‖1 ≤ 1
}

, that is,

R (ρAB) = min
σ∈PPT′(A:B)

D (ρAB‖σAB) . (3.6)

This provides the opportunity to numerically calculate the Rains bound, as discussed in Ap-

pendix B. Due to the inclusion relations SEP (A : B) � PPT (A : B) � PPT′ (A : B), for any

quantum state ρAB , it holds

ED,PPT (ρAB) ≤ R (ρAB) ≤ Er,PPT (ρAB) ≤ Er,SEP (ρAB) . (3.7)

The logarithmic negativity [VW02, Ple05] is an efficiently computable upper bound on the

PPT-assisted distillable entanglement. The best known SDP upper bound is given by [WD16a]

EW (ρAB) = logmin
{∥∥XTB

AB

∥∥
1

∣∣∣XAB ≥ ρAB

}
, (3.8)

which is an improved version of the logarithmic negativity. Other known upper bounds of

distillable entanglement are studied in Refs. [VP98, Rai99a, HHH00, CW04]. Most of these

known upper bounds are difficult to compute [Hua14] and usually easily computable only for

states with high symmetries, such as Werner states, isotropic states, or the family of “iso-

Werner” states [BDSW96, VW01, TV00, Rai99a].

In a realistic setting, the resources are finite and the number of i.i.d. prepared states is

necessarily limited. More importantly, it is hard to perform joint state manipulations over a

very large number of qubits. Therefore, it is important to characterize how many maximally

entangled states can be faithfully distilled from finite copies of prepared states. Since the

asymptotic rates are insufficient to give a precise estimation, it is necessary to consider second-

order characterizations. In particular, for practical use, efficiently computable bounds are more

desirable. In the non-asymptotic setting, one also has to make a tradeoff between the distillation

rate and the error tolerance of state transformation.

The study of such non-asymptotic scenarios has recently garnered great interest in clas-

sical information theory (e.g., [PPV10, Hay09, Tan14]) as well as in quantum information

theory (e.g., [WR12, RR11, TH13, BCR11, LM15a, DH13, MW14, BDL16, Tom16, TBR16,

WXD18, CH17, CTT17]). Here we study the setting of entanglement distillation.

A non-asymptotic analysis of entanglement distillation will help us better exploit the power

of entanglement in a realistic setting. Previously, the one-shot distillable entanglement was

studied in Refs. [BD10a, BD11]. But these bounds are not known to be efficiently computable.

Thus it is difficult to apply them as experimental benchmarks. These one-shot bounds are also
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not suitable to establish second-order estimations. Datta and Leditzky studied the second-order

expansion of distillable entanglement under LOCC operations for pure states [DL15]. Here,

we go beyond their results by considering more general operations and states. The Rains bound

[Rai01] and the hashing bound [DW05] are arguably the best general upper and lower bounds

for distillable entanglement, respectively. However, these bounds do not provide sufficiently

precise evaluation about entanglement distillation with finite resources.

3.1.2 Outline

In this chapter, we overcome the limitations of previous results and provide efficiently com-

putable estimation for non-asymptotic distillable entanglement. We first build an exact con-

nection between entanglement distillation under positive-partial-transpose-preserving (PPT)

operations and quantum hypothesis testing. In particular, the one-shot distillable entanglement

under PPT operations can be given by the minimization of hypothesis testing relative entropy

between the given state and some class of operators. Based on this connection, we provide

efficiently computable second-order estimations of the distillable entanglement for given finite

copies of the state and the error tolerance. As applications, we apply our results to study some

states of practical interest, including pure states, mixture of Bell states, maximally correlated

states and isotropic states.

3.2 One-shot entanglement distillation

Since the distillation process cannot always be accomplished perfectly, we use the fidelity

of distillation to characterize the performance of distillation. Then the one-shot distillable

entanglement is defined as the maximal number of Bell state (maximally entangled state with

local dimension equal to two) we can obtain while keeping the infidelity of the distillation

process within a given tolerance.

Definition 3.1 ( [Rai01]) For any bipartite quantum state ρAB , the fidelity of distillation under

the operation class Ω is defined as,

FΩ (ρAB, k) := max
Π∈Ω

TrΠ (ρAB) Φk, (3.9)

where Φk = (1/k)
∑k−1

i,j=0 |ii〉〈jj| is the k-dimensional maximally entangled state and the

maximization is taken over all possible operation Π in the class Ω.

Definition 3.2 For any bipartite quantum state ρAB , the one-shot ε-error distillable entangle-

ment under the operation class Ω is defined as

E
(1),ε
D,Ω (ρAB) := logmax

{
k ∈ N

∣∣∣ FΩ (ρAB, k) ≥ 1− ε
}
. (3.10)
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3.2. ONE-SHOT ENTANGLEMENT DISTILLATION

Then the (asymptotic) distillable entanglement is given by the regularization:

ED,Ω (ρAB) = lim
ε→0

lim
n→∞

1

n
E

(1),ε
D,Ω

(
ρ⊗n
AB

)
. (3.11)

Exploiting the symmetry of maximally entangled state and the semidefinite conditions of

PPT operations, we derive the one-shot distillable entanglement under PPT operations as an

SDP which is efficiently computable and suitable for a small scale estimation.

Lemma 3.3 For any bipartite quantum state ρAB and error tolerance ε ∈ (0, 1), it holds

E
(1),ε
D,PPT (ρ) = logmax

{
�1/η�

∣∣∣ 0 ≤M ≤ 1,TrMρ ≥ 1− ε,−η1 ≤MTB ≤ η1
}
.

(3.12)

Proof From the definition of one-shot distillable entanglement, we have

E
(1),ε
D,PPT (ρ) = logmax

{
k ∈ N

∣∣∣ TrΠ (ρ) Φk ≥ 1− ε,Π ∈ PPT
}
. (3.13)

According to the Choi-Jamiołkowski representation of quantum operations, we can represent

the output state of operation ΠAB→A′B′ via its Choi matrix JΠ as

ΠAB→A′B′ (ρAB) = TrAB

(
JΠ · ρTAB ⊗ 1A′B′

)
. (3.14)

Then we have

TrΠAB→A′B′ (ρAB) Φk = Tr
(
TrAB

(
JΠ · ρTAB ⊗ 1A′B′

))
Φk (3.15)

= Tr JΠ ·
(
ρTAB ⊗ 1A′B′

)
(1AB ⊗ Φk) (3.16)

= Tr JΠ · (1AB ⊗ Φk)
(
ρTAB ⊗ 1A′B′

)
(3.17)

= Tr (TrA′B′ JΠ · (1AB ⊗ Φk)) ρ
T
AB. (3.18)

Recall the condition that Π is a PPT operation if and only if its Choi-Jamiołkowski matrix

satisfies

JΠ ≥ 0, TrA′B′ JΠ = 1AB, J
TBB′
Π ≥ 0. (3.19)

Combining Eqs. (3.13), (3.18), (3.19) we have

E
(1),ε
D,PPT (ρ) = logmax k (3.20a)

s.t.Tr (TrA′B′ JΠ · (1AB ⊗ Φk)) ρ
T
AB ≥ 1− ε, (3.20b)

JΠ ≥ 0, TrA′B′ JΠ = 1AB, J
TBB′
Π ≥ 0. (3.20c)

Suppose one optimal solution in optimization (3.20) is given by J̃Π. Since Φk is invariant

under any local unitary UA′ ⊗ UB′ , i.e.,
(
UA′ ⊗ UB′

)
Φk

(
UA′ ⊗ UB′

)†
= Φk, we can verify
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that
(
UA′ ⊗ UB′

)
J̃Π
(
UA′ ⊗ UB′

)†
is also optimal. Since any convex combination of optimal

solutions remains optimal, we know that∫
dU
(
UA′ ⊗ UB′

)
J̃Π
(
UA′ ⊗ UB′

)†
(3.21)

is also optimal, where dU is the Haar measure. According to Schur’s lemma, the result of the

above integral gives an optimal solution admitting the structure ofWAB⊗Φk+QAB⊗(1− Φk)

with certain linear operators WAB and QAB . Thus without loss of generality, we can take the

ansatz of the optimal Choi-Jamiołkowski matrix as

JΠ =WAB ⊗ Φk +QAB ⊗ (1− Φk) . (3.22)

Next we take Eq. (3.22) back to the optimization (3.20) and do some further simplification.

Denote P+ and P− as the symmetric and anti-symmetric projections respectively. From the

spectral decomposition, we have Φ
TB′
k = 1

k (P+ − P−) and

J
TBB′
Π =W TB ⊗ Φ

TB′
k +QTB ⊗ (1− Φk)

TB′ (3.23)

=W TB ⊗ 1

k
(P+ − P−) +QTB ⊗ 1

k
((k − 1)P+ + (k + 1)P−) (3.24)

=
(
W TB + (k − 1)QTB

)
⊗ 1

k
P+ +

(
−W TB + (k + 1)QTB

)
⊗ 1

k
P−. (3.25)

Since P+ and P− are positive and orthogonal, we have J
TBB′
Π ≥ 0 if and only if

W TB + (k − 1)QTB ≥ 0, (3.26)

−W TB + (k + 1)QTB ≥ 0. (3.27)

Note that Tr (TrA′B′ JΠ · (1AB ⊗ Φk)) ρ
T
AB = TrWρTAB . Thus we can simplify the optimiza-

tion (3.20) as

E
(1),ε
D,PPT (ρ) = logmax k (3.28a)

s.t.TrWρTAB ≥ 1− ε, (3.28b)

W, Q ≥ 0,W +
(
k2 − 1

)
Q = 1, (3.28c)

(1− k)QTB ≤W TB ≤ (1 + k)QTB . (3.28d)

Eliminating the variable Q via the condition W +
(
k2 − 1

)
Q = 1 and let M = W T , η = 1

k ,

we obtain the desired result. �

Remark 3.4 Note that the calculation in Eq. (3.12) can be implemented with two steps:

(1) computing the SDP: min
{
η
∣∣ 0 ≤ M ≤ 1,TrMρ ≥ 1 − ε,−η1 ≤ MTB ≤ η1

}
and

obtaining the optimal value η0;
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3.2. ONE-SHOT ENTANGLEMENT DISTILLATION

(2) the optimal value on the r.h.s of Eq. (3.12) is given by log�1/η0�.

Remark 3.5 It is easy to check that δ = log x − log�x� ∈ [0, 1] for any x ≥ 1. Thus in

Eq. (3.12), we can use the least constant δ ∈ [0, 1] to adjust the r.h.s. to be the logarithm of an

integer, i.e,

E
(1),ε
D,PPT (ρ) = − logmin

{
η
∣∣ 0 ≤M ≤ 1,TrMρ ≥ 1− ε,−η1 ≤MTB ≤ η1

}
− δ.

(3.29)

This form will help our analysis in the following discussion.

In the next result, we build an exact connection between the one-shot distillable entangle-

ment under PPT operations and the quantum hypothesis testing relative entropy 1.

Theorem 3.6 For any bipartite quantum state ρAB and error tolerance ε ∈ (0, 1), it holds that

E
(1),ε
D,PPT (ρAB) = min

‖GTB ‖1≤1

G=G†

Dε
H (ρAB‖G)− δ, (3.30)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an integer.

Proof The main idea to build this connection is to use the norm duality between infinity norm

and trace norm. From Eq. (3.29), we know that

E
(1),ε
D,PPT (ρ) = − logmin

Sρ

∥∥MTB
∥∥
∞ − δ, (3.31)

where the set Sρ :=
{
M
∣∣ 0 ≤M ≤ 1,TrMρ ≥ 1− ε

}
and δ ∈ [0, 1]. Then using the norm

duality ‖M‖∞ = max‖G‖1≤1,G=G† TrMG, we substitute infinity norm with trace norm and

obtain

E
(1),ε
D,PPT (ρ) = − logmin

Sρ

max
‖GTB ‖1≤1

G=G†

TrMG− δ. (3.32)

Since the objective function is linear with respect to the variableM andG, we can apply Sion’s

minimax theorem [Sio58] and exchange the minimization with the maximization 2,

E
(1),ε
D,PPT (ρ) = − log max

‖GTB ‖1≤1

G=G†

min
Sρ

TrMG− δ (3.33)

= min
‖GTB ‖1≤1

G=G†

− logmin
Sρ

TrMG− δ. (3.34)

1 Note that the quantum hypothesis testing here only indicates the convex optimization without a clear operational

meaning. The second term in the hypothesis testing relative entropy is extended to Hermitian operators.

2 Note that the result of minSρ TrMG in Eq. (3.34) might be negative. But without loss of generality, we will use

the convention log x = −∞ for x ≤ 0 throughout this thesis.
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Due to the definition of quantum hypothesis testing relative entropy, we have the desired result.

�

This result provides an intuitive interpretation that the one-shot distillable entanglement

under PPT operations is given by the “distance” between the given state and a class of useless

operators G. Note that Brandão and Datta [BD11] have shown a similar “distance” character-

ization for (approximately) separability-preserving operations. In terms of coherence theory,

Winter and Yang have shown that the distillable coherence under MIO is given by the “dis-

tance” between the given state and the class of incoherent states [WY16]. Such “distance”

characterization is widely used for various task in quantum information theory while no gen-

eral result is known. We give a brief summary of the known results in Appendix A.

G
D

ε
H
(ρ‖G)

Remark 3.7 Note that the optimal solution G in the optimization (3.30) is not necessarily

positive, as shown in the following example. Here the quantum hypothesis testing relative

entropy loses its operational interpretation, but it is still a well-defined quantity as a convex

optimization.

Let ρθ = 3
4 |ϕ1〉〈ϕ1| + 1

4 |ϕ2〉〈ϕ2| with |ϕ1〉 = cos θ|00〉 + sin θ|11〉 and |ϕ2〉 = |10〉.
Using the dual SDP for the quantum hypothesis testing relative entropy, the optimal value of

min‖GTB ‖1≤1,G=G† Dε
H (ρ‖G) is equal to

− logmax
{
TrX + t (1− ε)

∣∣∣ G−X − tρ ≥ 0, X ≤ 0, t ≥ 0,
∥∥GTB

∥∥
1
≤ 1, G = G†

}
.

(3.35)

Without considering the composition of − log, we have the following SDP 1. In Figure 3.2,

we show that adding the constraint G ≥ 0 will change the optimal value of SDP 1. That is, the

optimal values of SDP 1 and SDP 2 are different. This tells the optimal solution in Eq. (3.30)

is not taken at positive operator G 3.

3 We implement the SDP 1 and SDP 2 via CVX package, both of which can be solved to a very high (near-machine)

precision. The maximal gap in the plot is approximately 1.7× 10−2.

40



3.2. ONE-SHOT ENTANGLEMENT DISTILLATION

SDP 1

maximize TrX + t (1− ε) (3.36a)

subject to G−X − tρ ≥ 0, (3.36b)

X ≤ 0, t ≥ 0, (3.36c)

‖GTB‖1 ≤ 1, G = G†. (3.36d)

SDP 2

maximize TrX + t (1− ε) (3.37a)

subject to G−X − tρ ≥ 0, (3.37b)

X ≤ 0, t ≥ 0, (3.37c)

‖GTB‖1 ≤ 1, G ≥ 0. (3.37d)
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Figure 3.2 : This figure demonstrates the difference of optimal values in SDP 1 (3.36) and

SDP 2 (3.37) for the defined quantum state ρθ. The solid line depicits the optimal value of

SDP 1 while the dashed line depicits the optimal value of SDP 2. The parameter θ ranges from

π/12 to π/6 and error tolerance is taken at ε = 1−
√
3/2.

We stress a bit further the difference between the feasible set in Eq. (3.30) and the Rains

set PPT′ (A : B) = {σ ≥ 0 | ‖σTB‖1 ≤ 1}. If we can show that taking positive solution G

will not compromise too much of the distillable entanglement, i.e.,

E
(1),ε
D,PPT

(
ρ⊗n
AB

)
≈ min

G≥0, ‖GTB ‖1≤1
Dε

H

(
ρ⊗n
AB‖G

)
(3.38)

especially for large n, then we can solve a very nice conjecture that

ED,PPT (ρAB) = R∞ (ρAB) , (3.39)

according to the result in [BP10].

Remark 3.8 It is also worth mentioning that we can quickly recover the Rains bound [Rai01,

ADVW02] from Theorem 3.6. Recall that the the Rains bound is given by

R (ρAB) = min
σ≥0, ‖σTB ‖1≤1

D (ρAB‖σAB) , (3.40)
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Let σ be the minimizer of the Rains bound. We have E
(1),ε
D,PPT

(
ρ⊗n
AB

)
≤ Dε

H

(
ρ⊗n
AB‖σ⊗n

AB

)
− δ

by choosing the feasible solution G as σ⊗n
AB and δ ∈ [0, 1]. Taking regularization on both sides,

we obtain

ED,PPT (ρAB) = lim
ε→0

lim
n→∞

1

n
E

(1),ε
D,PPT

(
ρ⊗n
AB

)
(3.41)

≤ lim
ε→0

lim
n→∞

1

n
Dε

H

(
ρ⊗n
AB‖σ⊗n

AB

)
(3.42)

= D (ρAB‖σAB) (3.43)

= R (ρAB) , (3.44)

where the second equality follows from the quantum Stein’s lemma [HP91, ON00].

3.3 Non-asymptotic entanglement distillation

We now introduce an efficiently computable estimation of the non-asymptotic distillable entan-

glement for general quantum states. Such estimation is especially accurate for large n where

the term O (log n) is negligible.

Recall that the coherent information is defined as I (A〉B)ρ := D (ρAB‖1A ⊗ ρB). The

quantum information variance is defined as V (ρ‖σ) := Tr ρ (log ρ− log σ)2−D (ρ‖σ)2. The

coherent information variance is defined as V (A〉B)ρ := V (ρAB‖1A ⊗ ρB).

Theorem 3.9 For any given bipartite quantum state ρAB , number of prepared states n, error

tolerance ε ∈ (0, 1), and operation class Ω ∈ {1-LOCC, LOCC, SEP, PPT}, it holds that

f (ρ, n, ε) +O (log n) ≤ E
(1),ε
D,Ω

(
ρ⊗n
AB

)
≤ g (ρ, n, ε) +O (log n) , (3.45)

where f (ρ, n, ε) and g (ρ, n, ε) are efficiently computable functions given by

f (ρ, n, ε) := nI (A〉B)ρ +
√
nV (A〉B)ρ Φ

−1 (ε) , (3.46)

g (ρ, n, ε) := nR (ρ) +
√
nVR (ρ) Φ−1 (ε) , (3.47)

and VR (ρ) = V (ρ‖σ), σ is the minimizer 4 of the Rains bound (3.40), Φ−1 is the inverse

cumulative normal distribution function.

Proof Due to the inclusion relations of the operation classes, we only need to show the upper

bound for PPT operations and lower bound for 1-LOCC operations. Each second-order bound

4 The minimizer σ is not necessarily unique unless ρ is full rank. However, the result of this Theorem holds for any

minimizer σ.
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3.3. NON-ASYMPTOTIC ENTANGLEMENT DISTILLATION

can be obtained by applying the corresponding one-shot bound to n-fold tensor product state

ρ⊗n and combining with the second-order expansion of the related entropies.

For the second-order upper bound, denote σ as the minimizer of the Rains boudn (3.40).

We first have E
(1),ε
D,PPT

(
ρ⊗n
AB

)
≤ Dε

H

(
ρ⊗n
AB‖σ⊗n

AB

)
− δ by taking the feasible solution G = σ⊗n

AB

in Eq. (3.30) and δ ∈ [0, 1]. Due to the second-order expansion of the quantum hypothesis

testing relative entropy [TH13, Li14], we obtain

E
(1),ε
D,PPT

(
ρ⊗n
AB

)
≤ nD (ρ||σ) +

√
nV (ρ||σ) Φ−1 (ε) +O (log n) . (3.48)

For the second-order lower bound, we adopt the one-shot hashing bound in Lemma 3.10

below. For the n-fold tensor product state ρ⊗n
AB , we choose η = 1/

√
n and have the following

result which holds for n > 1/ε,

E
(1),ε
D,1-LOCC

(
ρ⊗n
AB

)
≥ −H

√
ε−η

max (An|Bn)ρ⊗n + 4 log η. (3.49)

Using the second-order expansion of the smoothed conditional max-entropy [TH13], we have

E
(1),ε
D,1-LOCC

(
ρ⊗n
AB

)
≥ −nH (A|B)ρ +

√
nV (A〉B)ρΦ

−1
((√

ε− 1√
n

)2)
+O (log n) (3.50)

= nI (A〉B)ρ +
√
nV (A〉B)ρΦ

−1 (ε) +O (log n) . (3.51)

The second line follows since I (A〉B)ρ = −H (A|B)ρ. Note that Φ−1 is continuously differ-

entiable around ε > 0 and we have Φ−1
(
(
√
ε− 1/

√
n)

2
)
= Φ−1 (ε) +O (1/

√
n).

�

Lemma 3.10 ([WTB16]) For any bipartite quantum state ρAB , error tolerance ε ∈ (0, 1) and

0 ≤ η <
√
ε, it holds

E
(1),ε
D,1-LOCC (ρAB) ≥ −H

√
ε−η

max (A|B)ρ + 4 log η. (3.52)

Remark 3.11 It is worth noting that there are some other one-shot lower bounds [BD13,

BD10a] which can be used to establish second-order estimations. One of the reasons we use the

one-shot lower bound in Lemma 3.10 is because it gives the same ε dependence as our second-

order upper bound. For pure states, there exists a better one-shot lower bound in [BD13]. But

note that our second-order bounds are already tight for pure states up to the second order terms.

The difficulty of obtaining good second-order estimation is to find one-shot bounds which

give the same epsilon dependence after the second-order expansion. This is necessary to show

the tightness of second-order bounds. Our result in Theorem 3.6 works well in this sense.

Remark 3.12 Since the Rains bound in Eq. (3.40) is given as a convex optimization, there

are various methods to solve it numerically. We provide an algorithm which can be used to
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efficiently calculate the Rains bound and output the minimizer operator in Appendix B. It is

also worth noting that our bounds are similar to the second-order bounds on quantum capacity

in [TBR16]. However, the bounds in Ref. [TBR16] are not are not easy to calculate in general.

3.4 Examples

In the following, we apply our second-order bounds to estimate the non-asymptotic distillable

entanglement of some important classes of states, including pure states, mixtures of Bell states,

maximally correlated states and isotropic states.

Pure states

For any bipartite pure state |ψ〉, denote the reduced state as ρA = TrB ψAB . Without loss

of generality, we only need to consider a pure state ψ with Schmidt decomposition |ψ〉 =∑√
pi|ii〉, then ρA = ρB =

∑
pi|i〉〈i|. Let σ =

∑
pi|ii〉〈ii|. We can check that σ ∈ PPT′

and the following equalities are straightforward,

D (ψ‖σ) = I (A〉B)ψ = S (ρA) , (3.53)

V (ψ‖σ) = V (A〉B)ψ = Tr ρA (log ρA)
2 − S (ρA)

2 . (3.54)

Since D (ψ‖σ) = I (A〉B)ψ ≤ R (ψ) ≤ D (ψ‖σ), we know that σ is the minimizer of the

Rains bound optimization. Then

E
(1),ε
D,Ω

(
ψ⊗n

)
= nS (ρA) +

√
n
(
Tr ρA (log ρA)

2 − S (ρA)
2
)
Φ−1 (ε) +O (log n) , (3.55)

for Ω ∈ {1-LOCC, LOCC, SEP, PPT}. This estimation has been given by Datta and Leditzky

[DL15], which was only for LOCC operations. It is known that the distillable entanglement of

a pure state coincide with the von Neumann entropy of its reduced state under 1-LOCC, LOCC,

SEP, PPT [LP01a]. The result in Eq. (3.55) shows that not only is the asymptotic distillable

entanglement the same but also its convergence speed (second-order term) 5.

Mixture of Bell states

In laboratories, we usually obtain mixed states due to imperfection of operations and decoher-

ence. A common case is the noise dominated by one type of Pauli error [CTSL06, Cam07].

Without loss of generality, we consider the phase noise, which results in the mixture of Bell

5 We can further prove that for any pure state the one-shot distillable entanglement is also the same under these four

classes of operations.

44



3.4. EXAMPLES

states ρAB = p|v1〉〈v1| + (1− p) |v2〉〈v2|, where p ∈ (0, 1), |v1〉 = 1√
2
(|01〉+ |10〉) and

|v2〉 = 1√
2
(|01〉 − |10〉). Following similar steps for pure states, we can take the minimizer

σ = 1
2 |v1〉〈v1|+ 1

2 |v2〉〈v2| and show that our second-order bounds in Eq. (3.45) are tight. Thus

E
(1),ε
D,Ω

(
ρ⊗n
AB

)
= n (1− h2 (p)) +

√
np (1− p)

(
log

1− p

p

)2

Φ−1 (ε) +O (log n) , (3.56)

where h2 (p) = −p log p − (1− p) log (1− p) is the binary entropy and the operation class

Ω ∈ {1-LOCC, LOCC, SEP, PPT}.

Maximally correlated states

Besides the mixture of Bell states above, we can also show the tightness for a broader class

of state, i.e., all maximally correlated states ρAB =
∑d−1

i,j=0 ρ̂ij |iAiB〉〈jAjB|, where ρ̂A =∑d−1
i,j=0 ρ̂ij |iA〉〈jA| is a quantum state. Taking the minimizer σ = Δ(ρ) where Δ(·) =∑d−1
i,j=0〈ij| · |ij〉|ij〉〈ij| is the completely dephashing channel on the bipartite systems, we

have

E
(1),ε
D,Ω

(
ρ⊗n
AB

)
= nD (ρ‖Δ(ρ)) +

√
nV (ρ‖Δ(ρ)) Φ−1 (ε) +O (log n) , (3.57)

for Ω ∈ {1-LOCC, LOCC, SEP, PPT}. Note that if ρ̂A is a pure state, then maximally corre-

lated state ρAB will also reduce to a bipartite pure states. The class of maximally correlated

states also contains the mixture of Bell states.

Furthermore, since the resource theory of coherence is closely related to the one of entan-

glement due to the one-to-one correspondence

ρAB =
d−1∑
i,j=0

ρ̂ij |iAiB〉〈jAjB| −−−−−−⇀↽−−−−−− ρ̂A =
d−1∑
i,j=0

ρ̂ij |iA〉〈jA|, (3.58)

an important conjecture with various evidences is that any incoherent operation acting on a state

ρ̂A is equivalent to an LOCC operation acting on the maximally correlated state ρAB [WY16,

SAP17]. If this conjecture holds, Eq. (3.57) will also give the second-order characterization for

coherence distillation.

Isotropic states

Another common noise in reality is the so-called depolarizing noise [Cam07, NFB14], which

results in the isotropic state,

ρF = F · Φd + (1− F )
1− Φd

d2 − 1
, (3.59)
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where 0 ≤ F ≤ 1 and d is the local dimension of the maximally entangled state Φd. The

isotropic state is also the Choi-Jamiołkowski state of the depolarizing channel, and its 1-

LOCC distillable entanglement is equal to the quantum capacity of the depolarizing channel

[BDSW96, PLOB17] N (ρ) = pρ + (1− p)1/d, the determination of which is still a big

open problem in quantum information theory. Here we study the non-asymptotic distillable

entanglement of this particular class of states.

Isotropic states possess the same symmetry as the maximally entangled states, which are

invariant under any local unitary U ⊗ U . Exploiting such symmetry, we can simplify the PPT-

assisted distillable entanglement for the n-fold isotropic state as a linear program 6.

Lemma 3.13 For any n-fold isotropic state ρ⊗n
F with integer n and error tolerance ε, its one-

shot distillable entanglement under PPT operations E(1),ε
D,PPT

(
ρ⊗n
F

)
is given by

log maximize �1/η� (3.60a)

subject to
∑n

i=0

(
n

i

)
F i (1− F )n−imi ≥ 1− ε, (3.60b)

− η ≤
∑n

i=0
xi,kmi ≤ η, ∀ k = 0, 1, · · · , n, (3.60c)

0 ≤ mi ≤ 1, ∀ i = 0, 1, · · · , n, (3.60d)

where

xi,k =
1

dn

min{i,k}∑
m=max{0,i+k−n}

(
k

m

)(
n− k

i−m

)
(−1)i−m (d− 1)k−m (d+ 1)n−k+m−i . (3.61)

Proof The technique is very similar to the one we use in the proof of Lemma 3.3. Consider

the n-fold isotropic state

ρ⊗n
F =

n∑
i=0

fiP
n
i

(
Φd,Φ

⊥
d

)
, with fi = F i

(
1− F

d2 − 1

)n−i

,Φ⊥
d = 1− Φd. (3.62)

Here, Pn
i

(
Φ,Φ⊥) represents the sum of those n-fold tensor product terms with exactly i copies

of Φd. For example,

P 3
1

(
Φd,Φ

⊥
d

)
= Φ⊥

d ⊗ Φ⊥
d ⊗ Φd +Φ⊥

d ⊗ Φd ⊗ Φ⊥
d +Φd ⊗ Φ⊥

d ⊗ Φ⊥
d . (3.63)

Suppose M is the optimal solution of the optimization

E
(1),ε
D,PPT

(
ρ⊗n
F

)
= logmax

{
�1/η�

∣∣∣ 0 ≤M ≤ 1,TrMρ⊗n
F ≥ 1− ε,−η1 ≤MTB ≤ η1

}
,

(3.64)

6 Note that the optimal fidelity for n-fold isotropic states can also be simplified to a linear program, which has been

studied by Rains in [Rai01]. Here, we focus on the distillable rate.
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3.4. EXAMPLES

then for any local unitary U =
⊗n

i=1

(
U i
A ⊗ U

i
B

)
where i denotes the i-th copies of corre-

sponding system, UMU † is a also optimal solution. Convex combinations of optimal solutions

are also optimal. So we can take the optimal solution M to be an operator which is invariant

under any local unitary
⊗n

i=1

(
U i
A ⊗ U

i
B

)
. Moreover, since ρ⊗n

F is invariant under the sym-

metric group acting by permuting the tensor factors, we can take the optimal solution M of the

form
∑n

i=0miP
n
i

(
Φd,Φ

⊥
d

)
.

Since Pn
i

(
Φd,Φ

⊥
d

)
are orthogonal projections, the operator M has eigenvalues {mi}ni=0

without considering degeneracy. Next, we will need to know the eigenvalues of MTB . Decom-

posing operators ΦTB
d and Φ⊥

d
TB into orthogonal projections, i.e.,

ΦTB
d =

1

d
(P+ − P−) , Φ⊥

d
TB

=

(
1− 1

d

)
P+ +

(
1 +

1

d

)
P− (3.65)

where P+ and P− are symmetric and anti-symmetric projections respectively and collecting

the terms with respect to Pn
k (P+, P−), we have

MTB =

n∑
i=0

miP
n
i

(
ΦTB
d ,Φ⊥

d
TB
)

(3.66)

=

n∑
i=0

mi

( n∑
k=0

xi,kP
n
k (P+, P−)

)
(3.67)

=

n∑
k=0

( n∑
i=0

xi,kmi

)
Pn
k (P+, P−) . (3.68)

Since Pn
k (P+, P−) are also orthogonal projections, MTB has eigenvalues {tk}nk=0 without

considering degeneracy, where tk =
∑n

i=0 xi,kmi. As for the condition TrMρ⊗n
F ≥ 1− ε, we

have

TrMρ⊗n
F = Tr

n∑
i=0

fimiP
n
i

(
Φd,Φ

⊥
d

)
(3.69)

=

n∑
i=0

fimi

(
n

i

)(
d2 − 1

)n−i
(3.70)

=

n∑
i=0

(
n

i

)
F i (1− F )n−imi. (3.71)

�
This linear program can be solved exactly via Mathematica. In Figure 3.3, we plot the

one-shot distillable entanglement for the n-fold isotropic state ρ⊗n
F with d = 3, F = 0.9,

and error tolerance 0.001. The blocklength n ranges from 1 to 100. We observe that even if

we were able to coherently manipulate 100 copies of the states with the broad class of PPT

assistance, the maximal distillation rate still could not reach the hashing bound I (A〉B)ρF
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which is asymptotically achievable. This implies the asymptotic rate does not give a good

estimation in the practical scenario.
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Figure 3.3 : The dotted line shows the exact value of distillation rate for n-fold isotropic state

ρ⊗n
F with F = 0.9, local dimension d = 3. The error tolerance is taken at ε = 0.001 and the

blocklength n ranges from 1 to 100. The solid line below is the hashing bound, while the solid

line above is the Rains bound.

For the approximation of large blocklength entanglement distillation, we employ the second-

order bounds in Eq. (3.45). In Figure 3.4, we show the second-order estimation for n-fold

isotropic state ρ⊗n
F with d = 3, F = 0.9, and error tolerance 0.001. In this figure we focus

on large blocklength (n ≥ 100) and use a logarithmic scale of the horizontal axis. The finite

blocklength distillation rate lies between the two dashed lines, while the asymptotic rate lies

between the two solid lines.
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3.4. EXAMPLES
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Figure 3.4 : The two dashed lines show the second-order lower bound in Eq. (3.46) and upper

bound in Eq. (3.47) for n-fold isotropic state ρ⊗n
F with F = 0.9, local dimension d = 3. The

error tolerance is taken at ε = 0.001 and the blocklength n ranges from 102 to 107. The solid

line below is the hashing bound, while the solid line above is the Rains bound.

Using the curve fitting via least-squares method, we can construct an ansatz curve

c1 + c2
1√
n
+ c3

log n

n
+ c4

1

n
, (3.72)

which has the best fit to the series of points 1
nE

(1),ε
D,PPT

(
ρ⊗n
F

)
(1 ≤ n ≤ 100) in Figure 3.3.

Combining with the second-order upper bound in Figure 3.4, we get Figure 3.5. It shows that

for small number of copies n, the second-order upper bound does not give a accurate estimation

since we ignore the term O (log n). But for large n (≥ 102), the fitting curve almost coincides

with the second-order upper bound. Thus the second-order upper bound works better for large

blocklength estimation. The convergence of the fitting curve indicates that ED,PPT (ρF ) =

R (ρF ) for isotropic states ρF . It would be of great interest to find an analytical proof for this

conjecture.
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Figure 3.5 : The dash-dotted line is the fitting curve of exact values of distillation rate for n-

fold isotropic state ρ⊗n
F with F = 0.9, local dimension d = 3. The error tolerance is taken at

ε = 0.001. The dashed line is the second-order upper bound in Eq. (3.47) and the solid line is

the Rains bound.
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3.5. DISCUSSION

3.5 Discussion

3.5.1 Summary of results

1. SDP for one-shot distillable entanglement under PPT operations:

E
(1),ε
D,PPT (ρ) = logmax

{
�1/η�

∣∣ 0 ≤M ≤ 1,TrMρ ≥ 1− ε,−η1 ≤MTB ≤ η1
}
.

2. Connection between entanglement distillation under PPT operations and the

quantum hypothesis testing:

E
(1),ε
D,PPT (ρAB) = min

‖GTB ‖1≤1

G=G†

Dε
H (ρAB‖G)− δ,

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an

integer.

3. Efficiently computable second-order estimation for general quantum states:

f (ρ, n, ε) +O (log n) ≤ E
(1),ε
D,Ω

(
ρ⊗n
AB

)
≤ g (ρ, n, ε) +O (log n) ,

where f and g are given by Eqs. (3.46) and (3.47) respectively.

4. Various practical example analysis including the pure states, mixture of Bell

states, maximally correlated states and isotropic states.

3.5.2 Outlook

We have provided both theoretical and numerical results for the entanglement distillation in the

non-asymptotic setting. Since entanglement distillation has become a central building block of

quantum network proposals [DBCZ99, CTSL06, GJC12, NFB14], our results can be applied as

useful benchmarks for experimentalists to build a reliable quantum network in the future. The-

oretically, we have obtained a complete characterization of one-shot entanglement distillation

under PPT operations and built a precise connection between one-shot distillable entanglement

and hypothesis testing relative entropy in Eq. (3.30). This also provides a potential approach

to improve the Rains bound by taking other forms of feasible solution, for example, non-i.i.d.

operators. The recent progress on the entropy accumulation theorem [DFR16] can estimate the

entropy without the assumption of i.i.d. input. It is thus of great interest to further relax the

finite analysis of entanglement distillation to a more general case.
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Chapter 4

Coherence distillation

4.1 Introduction

4.1.1 Background

Quantum coherence is a physical resource that is essential for various tasks in quantum comput-

ing (e.g. implementing the Deutsch-Jozsa algorithm [Hil16]), quantum cryptography (e.g. quan-

tum key distribution [CML16]), quantum information processing (e.g. quantum state merg-

ing [SCR+16], state redistribution [AJS18] and channel simulation [DFW+18]), thermody-

namics [LJR15] and quantum metrology [FD11]. A series of efforts have been devoted to build-

ing a resource framework of coherence in recent years [Abe06, GS08, LM14, BCP14, SAP17],

characterizing in particular the state transformations and operational uses of coherence in fun-

damental resource manipulation protocols [WY16, CSR+16, CH16, ZLY+18, RFWA18]. As

in any physical resource theory, a central problem of the resource theory of quantum coherence

is distillation: the process of extracting canonical units of coherence, as represented by the

maximally coherent state |Ψm〉, from a given quantum state using a choice of free operations.

The free states in the resource theory of quantum coherence, so-called incoherent states, are

the density operators which are diagonal in a given reference orthonormal basis {|i〉}. The set

of incoherent states is denoted as I. Depending on the choice of operations, one has a different

resource theory. There have been different proposals for the class of free operations to be

considered [WY16, CG16b, MS16, dVS17, SAP17], and there is no agreement on which one

should be considered as the most well motivated physically. This necessitates the investigation

of operational capabilities of several different classes of maps. The relevant choices of free

operations that we will focus on are: maximally incoherent operations (MIO) [Abe06], defined

to be all quantum operations E such that E (ρ) ∈ I for every ρ ∈ I; dephasing-covariant

incoherent operations (DIO) [CG16b, MS16], which are operations E such that [Δ, E ] = 0,



or equivalently E (|i〉〈i|) ∈ I and Δ(E (|i〉〈j|)) = 0, ∀ i �= j. In particular, MIO is the

largest possible choice of free operations in the resource theory of coherence, and therefore

its operational capabilities establish ultimate limits for transformations with all types of free

operations.

The usual asymptotic approach to studying the problem in quantum information theory

is to assume that there is an unbounded number of independent and identically distributed

copies of a quantum state available and impose that the transformation error asymptotically

goes to zero [BBPS96, BBP+96, Rai99b, WY16]. In a realistic setting, these assumptions

become unphysical due to our limited access to a finite number of copies of a given state, and

it becomes necessary to look at non-asymptotic and, in particular, one-shot regimes in detail.

More importantly, since loss and decoherence severely restrict our ability to manipulate large

quantum systems, one needs to allow for a finite error in the distillation protocol.

Like any resource transformation, there are two kinds of setting for coherence distillation,

i.e., deterministic distillation and probabilistic distillation. In the deterministic scenario, the

transformation process always succeeds and we can study the tradeoff between the distillable

rate and the distillation fidelity. However, deterministic protocols such as the ones recently

studied in [RFWA18] may not always be the most suitable choice, particularly when the max-

imal achievable fidelity of distillation is not sufficient for the desired applications. It is thus

of importance to consider a more general framework, probabilistic coherence distillation, in

which the distillation will succeed only with some probability. Here, the allowed error can be

characterized by two key parameters with practical relevance: the success probability of the

one-shot distillation process, and the fidelity between the extracted state and the target state

|Ψm〉. To have a systematic understanding of coherence distillation with finite resources and

be able to implement practical schemes for this task, it is crucial to describe and optimize the

fundamental relations between these two parameters.

F

p
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0

achievable
region
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C

Figure 4.1 : A schematic plot of the tradeoff between success probability (p) and the fidelity of

coherence distillation (F ).
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4.1. INTRODUCTION

In Figure 4.1, we show a schematic plot of the tradeoff between the success probability and

the fidelity. For a given resource quantum state and target state dimension, we may compro-

mise a bit of the success probability to obtain a quantum state of higher fidelity. The red line

(marked with arrow B) corresponds to the deterministic coherence distillation that the success

probability is forced to be one. In section 4.2 we will see MIO and DIO have exactly the same

power on this line. The blue dot (marked with arrow A) indicates the maximal fidelity of co-

herence distillation, which is a key parameter in the deterministic scenario. The yellow line

(marked with arrow C) corresponds to the zero-error scenario, on which the maximal success

probability admits an analytical formula for pure resource state [LP01b, CG16b, DBG15]. In

section 4.3, we will show that MIO can be much more powerful than DIO in this zero-error

case. More generally, if there exists a quantum operation with which we can distill a coherent

state with fidelity F and success with probability p, the tuple (F, p) is called achievable. The

shaded area indicates all the achievable tuples. In section 4.3, we will discuss how to obtain

the boundary of such achievable region via semidefinite programs.

4.1.2 Outline

In section 4.2, we study the deterministic distillation of quantum coherence in the one-shot

setting, that is, the conversion of general quantum states into maximally coherent states under

different classes of quantum operations. We show that MIO and DIO have the same power in

the task of one-shot coherence distillation. We establish that the one-shot distillable coherence

under MIO and DIO is efficiently computable with a semidefinite program, which we show to

correspond to a quantum hypothesis testing problem.

In section 4.3, we develop a general framework of probabilistic coherence distillation. We

interpret the fundamental relations between the distillation fidelity and the maximal success

probability via a gauge function construction, and show that the maximal success probability

under MIO and DIO can be efficiently computed via semidefinite programming. We demon-

strate that the distillation of perfect coherence from any full-rank state is impossible even prob-

abilistically, while any pure coherent state can always be perfectly distilled with MIO into a

maximally coherent state of arbitrary dimension with a non-zero probability. This result high-

lights an operational advantage of MIO over other classes of operations and contrasts with the

case of deterministic distillation. We provided an analytical characterization of distillation with

pure input states and in particular described the distillation of qubit maximally coherent states

under MIO and DIO. We further explored novel phenomena of coherence distillation such as

the breakdown of the tradeoff between the maximal success probability and the fidelity under

a certain threshold as well as the catalyst-assisted enhancement by maximally coherent states.
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4.2 Deterministic coherence distillation

In this section, we study the deterministic coherence distillation in the one-shot setting, in

which one has access only to a single copy of a quantum system and allows for a finite accu-

racy, reflecting the realistic restrictions on state transformations. In particular, we establish an

exact expression for the one-shot distillable coherence under MIO and DIO, which can be effi-

ciently computed as an SDP. Interestingly, we show that the two quantities are in fact the same,

demonstrating that MIO and DIO have the same power in the task of coherence distillation,

and together with recent results in coherence dilution [ZLY+18, Chi18] shedding light on the

asymptotic reversibility of state transformations in the resource of coherence under DIO.

4.2.1 Framework of deterministic coherence distillation

We will denote by Ψm = |Ψm〉〈Ψm| the m-dimensional maximally coherent state where

|Ψm〉 =∑m−1
i=0

1√
m
|i〉 in the reference basis. The distillable coherence Cd,IO (ρ) is the asymp-

totic rate at which Ψ2 can be obtained per copy of a given state ρ via incoherent operations.

Winter and Yang [WY16] showed that the distillable coherence of an arbitrary mixed state coin-

cides with the relative entropy of coherence Cr (ρ) = minσ∈I D (ρ‖σ) introduced in [Abe06].

For any state ρ, the distillable coherence is then given by

Cd,IO (ρ) = Cr (ρ) = S (Δ (ρ))− S (ρ) . (4.1)

We now consider the non-asymptotic setting.

Definition 4.1 For any quantum state ρ, the fidelity of coherence distillation under the class of

operations Ω is defined by

FΩ (ρ,m) = max
Π∈Ω

TrΠ (ρ)Ψm. (4.2)

Definition 4.2 For any quantum state ρ and error tolerance ε, the one-shot ε-error distillable

coherence under the class of operation Ω is defined as

C
(1),ε
d,Ω (ρ) := logmax

{
m ∈ N

∣∣ FΩ (ρ,m) ≥ 1− ε
}
. (4.3)

As a consequence, the asymptotic distillable coherence can be given as

Cd,Ω (ρ) = lim
ε→0

lim
n→∞

1

n
C

(1),ε
d,Ω

(
ρ⊗n
)
. (4.4)

4.2.2 Distillation rate of quantum coherence

One of the main results of this section is that the one-shot distillable coherence can be computed

exactly via the following SDP.
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4.2. DETERMINISTIC COHERENCE DISTILLATION

Theorem 4.3 For any state ρ and operation class Ω ∈ {MIO,DIO}, the fidelity of coherence

distillation and the one-shot distillable coherence can both be written as the following SDPs:

FΩ (ρ,m) = max

{
TrGρ

∣∣∣ 0 ≤ G ≤ 1, Δ(G) =
1

m
1

}
, (4.5)

C
(1),ε
d,Ω (ρ) = logmax

{
�1/η�

∣∣∣ TrGρ ≥ 1− ε, 0 ≤ G ≤ 1,Δ(G) = η1
}
. (4.6)

Proof Let us consider the class MIO first. Denote JΠ as the Choi-Jamiołkowski matrix of

operation Π. Then due to the Choi-Jamiołkowski isomorphism, it holds

TrΠ (ρ)Ψm = Tr
(
TrA JΠ · ρT ⊗ 1

)
Ψm = Tr (TrB (JΠ · 1⊗Ψm)) ρT . (4.7)

According to the definition, we have the following optimization

C
(1),ε
d,MIO (ρ) = logmax

{
m ∈ N

∣∣∣ Tr (TrB (JΠ · 1⊗Ψm)) ρT ≥ 1− ε,Π ∈ MIO
}
. (4.8)

Denote Uπ as the unitary that permutes the basis {|i〉} to {|π (i)〉}. Then Ψm is invariant under

all Uπ. Suppose the optimal solution of optimization (4.8) is taken at J̃Π. We can check that

(1⊗ Uπ) J̃Π (1⊗ Uπ)
† is also optimal. Since any convex combination of optimal solutions

remains optimal, we know that (1/m!)
∑

π (1⊗ Uπ) J̃Π (1⊗ Uπ)
† is also optimal. According

to Schur’s lemma, this uniform average will lead to a particular structure of an optimal solution

JΠ = R ⊗ 1 + Q ⊗
(
Ψm − 1

m1
)
. Moreover, since TrB JΠ = 1, we have R = 1

m1. Since

the operation maps any incoherent state to an incoherent state, we have Δ(Q) = 0. Thus there

exists an optimal operation admitting the structure that

JΠ = Q⊗
(
Ψm − 1

m
1

)
+ 1⊗ 1

m
1, Δ(Q) = 0. (4.9)

Then JΠ ≥ 0 if and only if − 1
m−11 ≤ Q ≤ 1. By direct calculation, TrΠ (ρ)Ψm =(

1− 1
m

)
TrQρT + 1

m . Then we have

FMIO (ρ,m) = max

{(
1− 1

m

)
TrQρ+

1

m

∣∣∣∣ − 1

m− 1
1 ≤ Q ≤ 1,Δ(Q) = 0

}
. (4.10)

Replacing G = m−1
m Q+ 1

m1, we have

FMIO (ρ,m) = max

{
TrGρ

∣∣∣∣ 0 ≤ G ≤ 1,Δ(G) =
1

m
1

}
. (4.11)

The optimal operation is given by

Π(ρ) = (TrGρ)Ψm + (1− TrGρ)
1−Ψm

m− 1
, 0 ≤ G ≤ 1, Δ(G) =

1

m
1. (4.12)
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Following the definition of one-shot distillable coherence and substituting η = 1/m, we have

the SDP for C
(1),ε
d,MIO (ρ). From Eq. (4.9), we know that the optimal operation is also in DIO.

Thus we have FMIO (ρ,m) = FDIO (ρ,m) and C
(1),ε
d,MIO (ρ) = C

(1),ε
d,DIO (ρ) . �

This result reveals a fundamental relation between different sets of operations in the re-

source theory of coherence, showing that MIO and DIO have the same power in the task of

coherence distillation. This correspondence is in fact surprising: not only is DIO a strict subset

of MIO, it is also known that MIO is strictly more powerful than DIO in state transforma-

tions [CG16a, MS16], that there exist entropic coherence monotones under DIO which are not

monotones under MIO [CG16a], and that the two sets can exhibit different operational capa-

bilities in tasks such as coherence dilution [ZLY+18]. Furthermore, since MIO constitutes the

largest class of free operations in the resource theory of coherence, the result is of practical rel-

evance as it shows that using DIO is sufficient to achieve the best rates of distillation under any

class of free operations. It is unknown if there is a corresponding result in entanglement theory

— the distillable rate under the (approximately) separability-preserving operations [BD11] can

be achieved via its strictly subset.

Remark 4.4 The calculation of the optimization (4.6) can be implemented with two separate

steps which are similar to Remark 3.4. With the same reasoning as Remark 3.5, we can use the

least constant δ ∈ [0, 1] to adjust the r.h.s. of Eq. (4.6) to be the logarithm of an integer, i.e,

C
(1),ε
d,Ω (ρ) = − logmin

{
η
∣∣∣ TrGρ ≥ 1− ε, 0 ≤ G ≤ 1,Δ(G) = η1

}
− δ. (4.13)

We will now show that the quantities introduced in Theorem 4.3 admit alternative char-

acterizations. In particular, we will express the one-shot distillable coherence as a quantum

hypothesis testing problem 1 which is similar to the result in Theorem 3.6. To do so, we will

need to optimize over a larger set of matrices than the incoherent states I: namely, the set of

diagonal Hermitian operators with unit trace,

J =
{
X ∈ Herm

∣∣ TrX = 1, Δ(X) = X
}

(4.14)

Proposition 4.5 For any quantum state ρ, error tolerance ε and the operation class Ω ∈
{MIO,DIO}, it holds that

C
(1),ε
d,Ω (ρ) = min

X∈J
Dε

H (ρ‖X)− δ, (4.15)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an integer.

1 Note that the quantum hypothesis testing here only indicates the convex optimization without a clear operational

meaning. The second term in the hypothesis testing relative entropy is extended to Hermitian operators.

58



4.2. DETERMINISTIC COHERENCE DISTILLATION

Proof To begin with, note that

inf
{
η | Δ(W ) = η1

}
= sup

{
TrMΔ(W ) | TrM = 1,M =M †} (4.16)

by SDP strong duality. Denote the set of operators Sρ := {G | TrGρ ≥ 1− ε, 0 ≤ G ≤ 1 }.

From Eq. (4.13), we can obtain

C
(1),ε
d,Ω (ρ) = − logmin

Sρ

min
{
η | Δ(G) = η1

}
− δ (4.17)

= − logmin
Sρ

max
TrM=1
M=M†

TrMΔ(G)− δ (4.18)

= − log max
TrM=1
M=M†

min
Sρ

TrΔ (M)G− δ (4.19)

= min
TrM=1

M=Δ(M)

M=M†

− logmin
Sρ

TrMG− δ (4.20)

= min
M∈J

Dε
H (ρ‖M)− δ (4.21)

where the third equality follows by Sion’s minimax theorem [Sio58] and the self-duality of the

completely dephasing operation Δ. Without loss of generality, we take log x = −∞ for any

x ≤ 0. �

This result have important consequences beyond the one-shot regime, in particular for the

asymptotic reversibility of state transformations in the resource theory of coherence — that

is, the question whether the amount of coherence which can be distilled from a number of

copies of a state ρ (distillable coherence Cd) is the same as the amount of coherence needed to

prepare the same number of copies (coherence cost Cc) in the asymptotic limit of an arbitrarily

large number of i.i.d. copies. It is known that the resource theory of coherence is reversible

under MIO [BG15, ZLY+18], but irreversible under IO as we have Cd,IO (ρ) < Cc,IO (ρ)

in general [WY16]. Recently, it has been claimed that Cc,DIO (ρ) = Cc,MIO (ρ) = Cr (ρ)

[ZLY+18], although a complete proof of this fact did not appear until [Chi18]. Our result

in Theorem 4.3 in particular shows that C
(1),ε
d,DIO (ρ) = C

(1),ε
d,MIO (ρ) and therefore Cd,DIO (ρ) =

Cd,MIO (ρ). Combining the known result [WY16] Cd,MIO (ρ) = Cr (ρ), we have Cd,DIO (ρ) =

Cd,MIO (ρ) = Cr (ρ), complementing the claims of Ref. [ZLY+18] and strenghtening the

asymptotic results of Ref. [Chi18] by showing their applicability even in the one-shot case.

The fact that state transformations are indeed reversible under DIO and the maximal set of

operations MIO is not necessary for full reversibility contrasts with other resource theories

such as entanglement, where the maximal set of operations is the only one known to provide

asymptotic reversibility [VC01, VDC02, BP08, WD17a].
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4.3 Probabilistic coherence distillation

In this section, we develop the framework of probabilistic coherence distillation, characteriz-

ing the relation between the maximum success probability and the fidelity of distillation in the

one-shot setting. We describe the quantitative and qualitative aspects of this task under several

representative choices of free operations, providing insights into not only the practical aspects

of state manipulations in the resource theory of quantum coherence, but also the fundamen-

tal differences between physically relevant classes of free operations and their performance

in coherence manipulation. Before proceeding, we note that, previously, the framework of

probabilistic state transformations has been employed in characterizing entanglement distilla-

tion [BBPS96, LP01b, Vid99, JP99, IP05] as well as related settings in the resource theory

of thermodynamics [AOP16], and recently found use in the investigation of practical entan-

glement distillation schemes [RST+18]. Our results fill an important gap in the literature by

establishing the probabilistic toolbox for the key resource of quantum coherence.

4.3.1 Framework of probabilistic coherence distillation

The basic task of probabilistic distillation can be understood as follows. For any given quantum

state ρ held by a single party A, we aim to transform this state to an m-dimensional maximally

coherent state (target state) |Ψm〉 = 1√
m

∑m−1
i=0 |i〉 with high fidelity. A single-bit classical flag

register L is used to indicate whether the transformation succeeds or not. If the flag is in the 0

state, it tells that the distillation process succeeds and the output state σ has fidelity at least 1−ε
with the target state. Otherwise, the process has failed, and we discard the unwanted output

state ω. Our goal is then to maximize the success probability while keeping the transformation

infidelity within some tolerance ε. Let (ρ,m, ε) be a triple with a given initial state ρ, target

state dimension m, and error tolerance ε.

A B /

0 /1

L

Figure 4.2 : The task of probabilistic coherence distillation with classical register L and

quantum registersA, B. If the classical outcome is 0, then the quantum output is σ. Otherwise,

it ouputs ω.
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4.3. PROBABILISTIC COHERENCE DISTILLATION

Definition 4.6 For any triple (ρ,m, ε), the maximal success probability of coherence distilla-

tion under the operation class Ω ∈ {SIO, IO,DIO,MIO} is defined as

PΩ (ρ→Ψm, ε) = max p (4.22a)

s.t. ΠA→LB (ρ) = p|0〉〈0|L ⊗ σ + (1− p) |1〉〈1|L ⊗ ω, (4.22b)

F (σ,Ψm)2 ≥ 1− ε, 0 ≤ p ≤ 1, (4.22c)

Π ∈ Ω, σ, ω ∈ S= (B) . (4.22d)

If the distillation fails, we can perform a free operation to make the unwanted state ω

completely mixed without changing the success probability. Thus, without loss of generality,

we can take ω = 1/m. Exploiting the fact that the target state Ψm is invariant under the

twirling operation

T (σ) =
1

m!

m!∑
i=1

PiσPi, (4.23)

where Pi are all the permutations on the system of σ, we can also fix the optimal output state

as σ = Ψε
m where

Ψε
m := (1− ε)Ψm + ε

1−Ψm

m− 1
. (4.24)

Specifically, for any optimal output state σ, we can further perform the free operation T , which

gives a new output state T (σ) always in the form of aΨm + b (1−Ψm) / (m− 1), where we

can choose a = 1− ε and b = ε while keeping the fidelity with the target state and the optimal

success probability unchanged. This allows us to write

PΩ (ρ→Ψm, ε) = PΩ (ρ→Ψε
m, 0) , (4.25)

meaning that the maximal success probability of coherence distillation is the same as the max-

imal success probability of transforming the given state to the target Ψε
m with fidelity one.

4.3.2 Computing the maximum distillation probability

We now set out to find efficiently computable expressions for the maximal distillation prob-

ability. Consider a generalization of the set Ω to the class Ωsub of subnormalized quantum

operations, that is, completely positive and trace-nonincreasing maps. Using this notation, we

can conveniently express the maximal success probability as follows (see also [IP05, BG17]).

Proposition 4.7 For any triplet (ρ,m, ε) and operation class Ω, the maximal success proba-

bility PΩ (ρ→Ψm, ε) is given by

max
{
p ∈ R+

∣∣ E (ρ) = p ·Ψε
m, E ∈ Ωsub

}
. (4.26)
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Then, it holds that

PΩ (ρ→Ψm, ε)
−1 = min

{
t ∈ R+

∣∣Ψε
m ∈ t · Sρ

}
(4.27)

where Sρ :=
{
E (ρ)

∣∣ E ∈ Ωsub

}
is the set of all output operators of ρ under the operation

class Ωsub.

Proof For any quantum operation ΠA→LB such that ΠA→LB (ρ) = |0〉〈0|L⊗E0 (ρ)+|1〉〈1|L⊗
E1 (ρ) where E0 and E1 are two subnormalized operations, we can show that ΠA→LB ∈ Ω if

and only if E0, E1 ∈ Ωsub and E0 + E1 is trace preserving. Thus finding the optimal solution

in the optimization (4.22) is equivalent to find the optimal subnormalized operations E0 and E1
such that E0 (ρ) = p ·Ψε

m, E1 (ρ) = (1− p)1/m and E0 + E1 trace-preserving. Since we can

always take E1 (ρ) = (Tr ρ− Tr E0 (ρ))1/m without compromising the success probability,

the maximal success probability of coherence distillation is only dependent on E0, and the

result follows. �
This result simplifies the optimization of the maximal success probability via subnormal-

ized free operations, providing a geometric interpretation for the maximal success probability

as a gauge function [Roc70, Reg18], as shown in Figure 4.3.

t
m

m

Figure 4.3 : Geometric interpretation of the maximal success probability of coherence distilla-

tion based on Eq. (4.27).

By further exploiting the symmetry of Ψε
m, we can compute the maximal success probabil-

ity under MIO/DIO via the following semidefinite programs.

Theorem 4.8 For any triplet (ρ,m, ε), the maximal success probability of distillation under
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4.3. PROBABILISTIC COHERENCE DISTILLATION

MIO and DIO are respectively given by

PMIO (ρ→Ψm, ε) = max TrGρ

s.t. Δ(G) = mΔ(C) , (4.28a)

0 ≤ C ≤ G ≤ 1, (4.28b)

TrCρ ≥ (1− ε) TrGρ, (4.28c)

PDIO (ρ→Ψm, ε) = max TrGρ

s.t. Eqs. (4.28a, 4.28b, 4.28c) , G = Δ(G) .

Proof For any optimal subnormalized quantum operation E in Proposition 4.7, the operation

Ẽ = T ◦ E is also optimal since Ψε
m is invariant under the twirling operation T in (4.23).

Denoting JN as the Choi-Jamiołkowski matrix of the operation N , we then have JẼ = C ⊗
Ψm + D ⊗ (1−Ψm) for some operators C and D. Taking this form of Choi-Jamiołkowski

matrix into the conditions of the optimization in Proposition 4.7, we obtain the desired forms

of the SDPs. �
These SDPs provide us with an efficient way to numerically calculate the maximal success

probability for general triplets (ρ,m, ε), and allow us to obtain fundamental results about the

capabilities of the different sets of operations for probabilistic coherence distillation.

It is known that operations in the class DIO can never increase the diagonal rank of a pure

state, while it is known that MIO allow for the rank to increase [CG16b], suggesting that MIO

is a much stronger class. It is therefore surprising that MIO and DIO have exactly the same

power in the task of deterministic coherence distillation in Theorem 4.3, and that the two sets

of operations lead to the same asymptotic transformation rates for all states [Chi18]. In the

following, we will instead explicitly show crucial differences between MIO and DIO when

one goes beyond deterministic transformations, highlighting the increased capabilities of MIO

in probabilistic distillation, as well as establishing the limitations on coherence distillation in

general.

Theorem 4.9 For any triplet (ρ,m, 0) with full-rank state ρ and m ≥ 2, it holds

PMIO (ρ→Ψm, 0) = 0. (4.29)

For any triplet (ϕ,m, 0) with coherent pure state |ϕ〉 =∑n−1
i=0 ϕi|i〉, ϕi �= 0 and m,n ≥ 2, it
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holds 2

PMIO (ϕ→ Ψm, 0)

≥ n2∑n−1
i=0 |ϕi|−2

∥∥∥∥n−m

n− 1
ϕ̃+

n (m− 1)

n− 1
Δ (ϕ̃)

∥∥∥∥−1

∞
≥ n2

m
(∑n−1

i=0 |ϕi|−2
) > 0 (4.30)

where

|ϕ̃〉 := 1√
s

n−1∑
i=0

ϕi

|ϕi|2
|i〉 with s =

n−1∑
j=0

|ϕj |−2. (4.31)

Proof We prove the Eq. (4.29) first. From the SDP characterization in Theorem 4.8, we

know that G − C ≥ 0 and Tr (G− C) ρ = 0 due to ε = 0. Since ρ is full-rank, we have

G = C. Together with Δ(G) = mΔ(C) and m ≥ 2, we have G = C = 0, implying

PMIO (ρ→Ψm, 0) = 0.

As for Eq. (4.30), let us choose

C = cϕ̃ , G = cϕ̃+
(m− 1) c

n− 1
(nΔ(ϕ̃)− ϕ̃) , (4.32)

where

c =

∥∥∥∥n−m

n− 1
ϕ̃+

n (m− 1)

n− 1
Δ (ϕ̃)

∥∥∥∥−1

∞
. (4.33)

We check the SDP constraints for MIO one by one. The first condition trivially holds by

the construction. The last condition holds since 〈ϕ|nΔ(ϕ̃) − ϕ̃|ϕ〉 = 0, which implies that

〈ϕ|C|ϕ〉 = 〈ϕ|G|ϕ〉. We now move on to the second condition. Clearly C ≥ 0 and further-

more G ≥ C as follows from ϕ ≤ nΔ(ϕ). To show that G ≤ 1, just observe that

‖G‖∞ = c

∥∥∥∥ϕ̃+
m− 1

n− 1
(nΔ(ϕ̃)− ϕ̃)

∥∥∥∥
∞

= c

∥∥∥∥n−m

n− 1
ϕ̃+

n (m− 1)

n− 1
Δ (ϕ̃)

∥∥∥∥
∞

= 1 .

(4.34)

Hence, C,G as defined above form a valid ansatz for the semidefinite program and

PMIO (ϕ,m, 0) ≥ TrGϕ =
n2c

s
, (4.35)

which yields the first lower bound in (4.30). As for the second bound, it suffices to show that

c ≥ 1/m, i.e. that c−1 ≤ m. This can be done thanks to the triangle inequality:

c−1 =

∥∥∥∥ϕ̃+
m− 1

n− 1
(nΔ(ϕ̃)− ϕ̃)

∥∥∥∥
∞

(4.36)

≤ ‖ϕ̃‖∞ + (m− 1)

∥∥∥∥nΔ(ϕ̃)− ϕ̃

n− 1

∥∥∥∥
∞

(4.37)

≤ 1 + (m− 1) = m, (4.38)

2 I would like to thank Lami Ludovico for letting me include these lower bounds in this thesis.
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where we have used the fact that
nΔ(ϕ̃)−ϕ̃

n−1 is a valid density matrix. �
This result establishes a no-go theorem for coherence distillation, showing that no class of

free operations preserving incoherent states can allow to distill any perfect coherence from a

full-rank state, even probabilistically. Note that any generic density matrix has full rank, and

so does Ψε
m for any ε > 0. Thus

|PMIO (Ψε
m→Ψm, 0)− PMIO (Ψm→Ψm, 0) | = 1, (4.39)

even though Ψε
m can be arbitrarily close to Ψm, implying that the maximal success probability

is not continuous with respect to the input state. In practical terms, any amount of depolarizing

noise will result in a full-rank state, so in a scenario where the coherent state Ψm is stored in

a quantum memory exposed to depolarizing noise, it is impossible to recover it perfectly using

free operations with any non-zero probability.

However, for any pure coherent state, it is always possible to probabilistically distill a

maximally coherent state of arbitrary dimension via MIO. The first lower bound gives

PMIO(Ψn→Ψm, 0) ≥
n− 1

m− 1
, if m > n. (4.40)

Observe 3 that instead PDIO (Ψn→Ψm, 0) = 0 for m > n. This tells us that, as the dimension

n increases, there are n-dimensional density matrices ρn such that

PMIO (ρn→Ψn+1, 0) → 1, (4.41)

PDIO (ρn→Ψn+1, 0) = 0, (4.42)

for all n, i.e., PMIO and PDIO can exhibit an arbitrarily large gap. This shows that in the

probabilistic distillation scenario, MIO can be much more powerful than DIO in general, in a

stark contrast with the case of deterministic coherence distillation.

In the task of distilling maximally coherent qubit states Ψ2, we can extend the above result

and characterize analytically the maximal probability of distillation under DIO and MIO with

arbitrary infidelity ε. In this particular case, MIO does not provide any advantage over DIO.

Lemma 4.10 ([LP01b, CG16b, DBG15]) For any pure state |ϕ〉 =∑n
i=1 ϕi|i〉, it holds

P(S)IO (ϕ→ Ψm, 0) =

⎧⎪⎪⎨⎪⎪⎩
0 if rank Δ(ϕ) < m,

min
k∈[1,m]

m

k

d∑
i=m−k+1

ϕ2
i otherwise.

(4.43)

3 It was proved in the following Lemma 4.15.
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Proposition 4.11 For any pure state |ϕ〉 =
∑n

i=1 ϕi|i〉 with ϕ1 ≥ ... ≥ ϕn > 0, and Ω ∈
{DIO,MIO}, it holds that

PΩ (ϕ→Ψ2, ε)=

⎧⎨⎩ 1 if ε≥ε0 (ϕ1),

2
(
1− ϕ2

1

) (√
1−ε+

√
ε

1−2ε

)2
otherwise,

(4.44)

where ε0 (ϕ1) =

⎧⎨⎩0 if ϕ1 ≤ 1√
2

1
2 − ϕ1

√
1− ϕ2

1 otherwise.
(4.45)

Proof For the case of ϕ1 ≤ 1√
2
, we have

PΩ (ϕ→Ψ2, ε) ≥ PSIO (ϕ→Ψ2, 0) = 1. (4.46)

From the result in [RFWA18], we know that if ε ≥ 1
2 −ϕ1

√
1− ϕ2

1, then PDIO (ϕ→Ψ2, ε) =

1. In the following, we therefore only consider the case ε < 1
2 − ϕ1

√
1− ϕ2

1. We prove this

result by explicit constructing feasible solutions in both primal and dual SDPs. The primal

SDP under DIO is given by

PDIO (ϕ→Ψ2, ε) = maxTrGϕ (4.47a)

s.t.TrCϕ ≥ (1− ε) TrGϕ, (4.47b)

0 ≤ C ≤ G ≤ 1, (4.47c)

Δ(G) = 2Δ (C) , G = Δ(G) . (4.47d)

We take the ansatz

G = 1− x|0〉〈0|, C =
1

2
G+ y

n∑
i=2

ϕ1ϕn (|1〉〈i|+ |i〉〈1|) . (4.48)

Then we have

TrGρ = 1− xϕ2
1, TrCρ =

1

2

(
1− xϕ2

1

)
+ 2yϕ2

1

(
1− ϕ2

1

)
, (4.49)

and the spectrum of C and G− C are given by{
1

2
, · · · , 1

2︸ ︷︷ ︸
n−2 fold

,
1

2
− x

4
−
√
y2ϕ2

1

(
1− ϕ2

1

)
+
x2

16
,
1

2
− x

4
+

√
y2ϕ2

1

(
1− ϕ2

1

)
+
x2

16

}
. (4.50)

Then we have the relaxation

PDIO (ϕ→Ψ2, ε) ≥ max 1− xϕ2
1

s.t. 4yϕ2
1

(
1− ϕ2

1

)
= (1− 2ε)

(
1− xϕ2

1

)
,

1− x ≥ 4y2ϕ2
1

(
1− ϕ2

1

)
,

0 ≤ x ≤ 1.

(4.51)
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By choosing

x =
1− 2

(
1− ϕ2

1

) (√
1−ε+

√
ε

1−2ε

)2
ϕ2
1

, y =

(√
1− ε+

√
ε
)2

2ϕ2
1 (1− 2ε)

, (4.52)

we can verify that this is a feasible solution and obtain

PDIO (ϕ→Ψ2, ε) ≥ 2
(
1− ϕ2

1

)(√1− ε+
√
ε

1− 2ε

)2

. (4.53)

As for the dual problem, we consider the dual SDP under MIO,

PMIO (ϕ→Ψ2, ε) = min TrY

s.t. (1− (1− ε)x)ϕ+X +Δ(Z) ≤ Y,

xϕ−X − 2Δ (Z) ≤ 0,

x ≥ 0, X ≥ 0, Y ≥ 0

(4.54)

Taking

x =

(√
1− ε+

√
ε
)2

√
1− ε

√
ε (1− 2ε)

, Y = 2

(√
1− ε+

√
ε

1− 2ε

)2

(1− |0〉〈0|)ϕ (1− |0〉〈0|) , (4.55)

Z =
2

1− 2ε
|0〉〈0|ϕ|0〉〈0|, X = Y −Δ(Z)− (1− (1− ε)x)ϕ, (4.56)

we can verify that {x,X, Y, Z} is a valid feasible solution. Thus

PMIO (ϕ→Ψ2, ε) ≤ 2
(
1− ϕ2

1

)(√1− ε+
√
ε

1− 2ε

)2

. (4.57)

Combining Eqs. (4.53) and (4.57), we have the desired result. �

Remark 4.12 The function ε0 can be related to the so-called m-distillation norm [RFWA18],

characterizing the fidelity of deterministic distillation.

Remark 4.13 Using this analytical result, we can give a concrete example to show that the

probabilistic distillation framework can outperform the deterministic one. Suppose we need to

distill a maximally coherent qubit state Ψ2 from the input state |ϕ〉 = (3|0〉+ |1〉) /
√
10 with

acceptable fidelity at least 0.9. The input state becomes useless in the deterministic scenario,

since the maximal fidelity achievable via deterministic protocols is given by 0.8. However,

probabilistic operations allow us to achieve the required distillation fidelity with success prob-

ability 0.5, which is significantly better than always yielding nothing as in the deterministic

case. In the other case, if the acceptable fidelity is 0.8, we can gain better performance (higher

fidelity) by compromising a bit of the success probability despite the fact that deterministic

protocols are sufficient to accomplish the task. Such a scenario can be dubbed “gambling with

coherence”, based on similar terminology used in [BBPS96, LP01b].
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4.3.3 Relation between distillation fidelity and probability

For any given input state ρ and target state dimension m, the maximal success probability is

only dependent on the transformation fidelity. The higher the fidelity we require from our

output state, the lower the probability that we will succeed. Intuitively, one would expect that

the success probability will smoothly decrease as the fidelity increases; however, we find a

phenomenon which breaks this expectation. Specifically, we will now show that the maximal

success probability may happen to vanish if the fidelity goes beyond some threshold. This is

analogous to the strong converse theorem in channel coding theory [Wol78, ON99, Win99],

which says that the coding success probability goes to zero if the coding rate exceeds the

capacity of the channel. Note that this phenomenon will not occur in the case of distillation

from pure input states under MIO due to Theorem 4.9. In the following result, we completely

characterize this property for pure input states under DIO.

Proposition 4.14 For any pure state |ϕ〉 =
∑n

i=1 ϕi|i〉 with nonzero coefficients ϕi, it holds

that

PDIO (ϕ→Ψm, ε)

⎧⎨⎩> 0 if n ≥ m or if n < m and ε ≥ 1− n
m ,

= 0 if n < m and ε < 1− n
m .

(4.58)

Proof If n ≥ m, we know that

PDIO (ϕ→Ψm, ε) ≥ PSIO (ϕ→Ψm, 0) > 0, (4.59)

where the second inequality follows from Eq. (4.43).

Note that if PΩ (σ1→σ2, 0) = 1, then PΩ (ρ→σ2, 0) ≥ PΩ (ρ→σ1, 0) since we can first

transform ρ to σ1 perfectly and then get σ2. If ε ≥ 1− n
m , we have

PDIO (Ψn→Ψε
m, 0) = PDIO (Ψn→Ψm, ε) = 1. (4.60)

The first equality follows from the fact that PΩ (ρ→Ψm, ε) = PΩ (ρ→Ψε
m, 0). The second

equality follows from Lemma 4.15 below. Then

PDIO (ϕ→Ψm, ε) = PDIO (ϕ→Ψε
m, 0)

≥ PDIO (ϕ→Ψn, 0)

≥ PSIO (ϕ→Ψn, 0)

> 0.

(4.61)

The first inequality follows from Eq. (4.60). The last inequality follows from Eq. (4.43). If

ε ≤ 1− n
m , we have PDIO (ϕ→Ψm, ε) ≤ PDIO (Ψn→Ψm, ε) = 0, where the second equality

follows from Lemma 4.15. �
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4.3. PROBABILISTIC COHERENCE DISTILLATION

This result shows that if the input dimension is larger than the target state dimension, there

is always a tradeoff as expected between the maximal success probability and the transforma-

tion fidelity. However, the tradeoff curve will always be truncated at the fidelity threshold n
m .

At the point of ε = 1 − n
m , demanding a slightly higher fidelity will make the probabilistic

distillation impossible, as shown in Figure 4.4.

Lemma 4.15 For any integer n ≤ m, it holds that

PDIO (Ψn→Ψm, ε) =

⎧⎨⎩1, ε ≥ 1− n
m ,

0, ε < 1− n
m .

(4.62)

Proof For ε ≥ 1 − n
m , we can take feasible solution G = 1, C = n

mψn, which gives feasible

value 1 in the primal problem. For ε < 1 − n
m , we can take feasible solution x = 1

1− n
m
−ε ,

X = Y = 0, Z = 1
m−n−mε1, W = 1

m−n−mε (nψn − 1), which gives feasible value 0 in the

dual problem. �
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Figure 4.4 : An example of the threshold in the tradeoff between the fidelity (F = 1 − ε) and

the success probability of distillation (p) for the transformation (|0〉+ 3|1〉) /
√
10→Ψ3. The

auxiliary dotted line F = 2/3 is perpendicular to the horizontal axis.

4.3.4 Probabilistic distillation with catalytic assistance

A more general coherence distillation setting is to consider the scenario with catalytic assis-

tance [JP99], where the input to the protocol consists of the resource state ρ together with

another state γ (catalyst). As suggested by its name, we need to reproduce γ untouched 4 in the

4 In the published paper [FWL+18], we consider a more general framework which allows small perturbation of the

returning catalyst.
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output regardless of whether the distillation process succeeds or not. In [BSW16], the authors

study catalytic coherence transformations without enforcing the preservation of the catalyst

when the transformation fails — it is then not surprising that catalytic assistance improves the

success probability, since we take the risk to sacrifice our catalyst. However, we can show

that using catalysts can enhance probabilistic distillation even when we require them to be

reproduced regardless of the outcome.

A B /

0 /1

L

iC oCoCo

Figure 4.5 : The task of probabilistic coherence distillation with catalytic assistance, where L
is the classical register and A, B, Ci, Co are quantum registers.

Formally, we denote the the catalysis-assisted maximal success probability of coherence

distillation under the operation class Ω as PΩ

(
ρ

γ−→ Ψm, ε
)
, which is given by

PΩ

(
ρ

γ−→ Ψm, ε
)
= max p (4.63a)

s.t. Π(ρ⊗ γ) =
(
p|0〉〈0| ⊗ σ + (1− p) |1〉〈1| ⊗ ω

)
⊗ γ, (4.63b)

F (σ,Ψm)2 ≥ 1− ε, 0 ≤ p ≤ 1, (4.63c)

Π ∈ Ω, σ, ω ∈ S= (B) . (4.63d)

Since we can always choose not to interact with the catalyst, it is clear that

PΩ

(
ρ

γ−→ Ψm, ε
)
≥ PΩ (ρ→Ψm, ε) . (4.64)

Taking as an example the two-qubit state ρ = 1
2 (v1 + v2) with

|v1〉 =
1

2
(|00〉 − |01〉 − |10〉+ |11〉) , (4.65)

|v2〉 =
1

5
√
2
(2|00〉+ 6|01〉 − 3|10〉+ |11〉) , (4.66)

it turns out that the catalytic assistance of γ = Ψ2 can enhance the success probability (at least

12%) of distilling one coherent bit via DIO reliably (ε ≤ 0.01). This example shows that the

maximally coherent state can be used as a catalyst, manifesting a difference with the case of

deterministic state transformation, where no transformation can be catalyzed by a maximally

coherent state [JP99, DBG15].
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Note that the catalyst-assisted probability under DIO can still be written as an SDP. We

show the difference between PDIO

(
ρ

Ψ2−−→ Ψ2, 0.01
)

and PDIO

(
ρ→Ψ2, 0.01

)
in the following

Figure 4.6. On the right hand side, the enhancement ratio is given by
[
PDIO

(
ρ

Ψ2−−→ Ψ2, 0.01
)
−

PDIO

(
ρ→Ψ2, 0.01

)]
/PDIO

(
ρ→Ψ2, 0.01

)
.
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Figure 4.6 : Examples of catalyst-assisted probabilistic coherence distillation.
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4.4 Discussion

4.4.1 Summary of results

1. For deterministic coherence distillation, MIO and DIO have the same power:

FMIO (ρ,m) = FDIO (ρ,m) , C
(1),ε
d,MIO (ρ) = C

(1),ε
d,DIO (ρ) ,

Cd,DIO (ρ) = Cd,MIO (ρ) = Cr (ρ) .

For probabilistic coherence distillation, the probability gap under MIO and DIO

can be arbitrarily large.

2. Connection between the one-shot coherence distillation and the quantum hypoth-

esis testing: for Ω ∈ {MIO,DIO} it holds

C
(1),ε
d,Ω (ρ) = min

X∈J
Dε

H (ρ‖X)− δ,

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an

integer.

3. The maximal success probability of coherence distillation is given by a gauge

function

PΩ (ρ→Ψm, ε)
−1 = min

{
t ∈ R+

∣∣Ψε
m ∈ t · Sρ

}
where Sρ :=

{
E (ρ)

∣∣ E ∈ Ωsub

}
is the set of all output operators of ρ under the

operation class Ωsub.

4. No-go theorem: no class of free operations preserving incoherent states can allow

to distill any perfect coherence from a full-rank state, even probabilistically.

5. The maximal success probability of coherence distillation may happen to vanish

if the fidelity goes beyond some threshold.

6. The maximally coherent state can be used as catalyst to enhance the success prob-

ability, which is contrast to the deterministic scenario.
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4.4. DISCUSSION

4.4.2 Outlook

Our work opens new perspectives for the investigation of quantum coherence manipulation

with finite resources, unveils several new features of coherence from a resource theoretic view-

point, and contributes to an increased understanding of the fundamental properties of the dif-

ferent sets of free operations. More generally, our results establish fundamental limitations to

the processing of coherence in realistic settings, which is of direct relevance to applications

in quantum information processing and quantum technology tasks that exploit coherence as a

resource. It would be of interest to analyze as well the task of probabilistic coherence dilution

under different free operations, whose deterministic case was studied in [ZLY+18]. Another

interesting perspective for future work may be to apply the framework of probabilistic coher-

ence distillation developed here to the study of other important resource theories, such as those

of asymmetry, magic states, and thermodynamics.
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Chapter 5

Quantum channel simulation

Quantum channels are valuable resources for sending quantum information between different

quantum nodes. As a fundamental problem in quantum information theory, quantum channel

simulation considers using other quantum resources to simulate a given quantum channel. In

this chapter, we study the problem of simulating a quantum channel via quantum coherence

and another quantum channel, respectively.

5.1 Introduction

5.1.1 Background

As a fundamental ingredient of quantum information science, a quantum channel acts as an

irreplaceable component during the information transmission process, such as exchanging data

among different nodes in a quantum computer or sending qubits across the quantum internet.

Since every channel has different power of sending information, the quantification of the in-

formation theoretic power of a channel becomes one of the most fundamental problems in

information theory. One particular interest is the study of channel capacities, that is to ask how

many quantum (classical) bits a channel can reliably transmit per channel use. However, we

can unify the problem of channel capacities into a broader framework, i.e., channel simulation

— it studies using other resources to imitate the functionality of a channel. In this framework,

the process of sending quantum (classical) bits reliably using a quantum channel can be un-

derstood as a simulation of quantum (classical) noiseless channels [KW04]. Depending on the

different resources available, the channel simulation problem has many variants.

For classical channels, Shannon’s noisy channel coding theorem determines the capability

of noisy classical channels to simulate noiseless ones [Sha48]. Dual to this famous coding

theorem, the “reverse Shannon theorem” concerns the use of noiseless channels to simulate

noisy ones as well as the use of a channel to simulate another [BSST02]. Specifically, ev-



ery channel can be simulated using an amount of classical communication equal to the ca-

pacity of the channel when there is free shared randomness between A and B in the asymp-

totic setting [BSST02]. For quantum channels, the case when A and B share an unlimited

amount of entanglement has been completely solved by the quantum reverse Shannon theorem

(QRST) [BDH+14, BCR11], which states that the rate to optimally simulate a quantum chan-

nel in the asymptotic setting is determined by its entanglement-assisted classical capacity. In

the zero-error setting [Sha56], using one channel to simulate another exactly with the aid of

non-signalling correlations has been studied recently in [CLMW11, DW16, WD16b]. More-

over, quantum channel simulations via quantum coherence and quantum entanglement have

been studied in [BBCW13, BGMW17].

In realistic settings, the number of simulated channels and the amount of resource for

simulation are necessarily limited. Therefore, it is important to characterize how well we

can simulate a quantum channel with finite resources. The first step in this direction is to

consider the one-shot setting. One-shot analysis has recently attracted great interest in clas-

sical information theory (see, e.g., [PPV10, Hay09]) and quantum information theory (see,

e.g., [Tom12, DH13, BD10a, MW14, WXD18, RR11, DRRW13, BCT16, AJM+16]). In one-

shot information theory, the smooth max-information of a quantum state [BCR11] and its gen-

eralizations [CBR14] are all basic and useful quantities, which have various applications in

quantum rate distortion theory as well as the physics of quantum many-body systems. In this

chapter we will introduce some new entropies naturally arisen from the simulation process.

5.1.2 Outline

In section 5.2 we study the framework of quantum channel simulation via quantum coherence,

discussing the simulation via MIO in details. We first show that the minimum error of coher-

ence simulation and the one-shot coherence simulation cost under MIO can be both efficiently

calculated via semidefinite programs. Second, we prove that the one-shot zero-error coherence

simulation cost is additive. Notably the zero-error coherence simulation cost is exactly equal

to the maximal coherence generated from the channel, i.e., the cohering power of the channel.

This leads to a conjecture that the coherence simulation cost of a channel is equal to its co-

herence generating capacity — an analogous result of the quantum reverse Shannon theorem.

Finally, we introduce a channel’s version of the max-relative entropy and builds its connection

with the coherence simulation cost.

In section 5.3 we study the general framework of quantum channel simulation via an-

other quantum channel, that is, the ability of a quantum channel to simulate another one using

different classes of codes. First, we show that the minimum error of simulation and the one-
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shot quantum simulation cost under non-signalling assisted codes are efficiently computable

via semidefinite programming. Second, we introduce the channel’s smooth max-information,

which can be seen as a one-shot generalization of the mutual information of a quantum chan-

nel. We provide an exact operational interpretation of the channel’s smooth max-information

as the one-shot quantum simulation cost. We further introduce the channel’s log-robustness

and elaborate its relation with the channel’s max-information. Third, we derive the asymptotic

equipartition property (AEP) of the channel’s smooth max-information, i.e., it converges to

the quantum mutual information of the channel in the independent and identically distributed

asymptotic limit. This implies the quantum reverse Shannon theorem in the presence of non-

signalling correlations. As applications, we explore finite blocklength simulation cost of fun-

damental quantum channels and provide both numerical and analytical solutions.

5.2 Channel simulation via quantum coherence

5.2.1 General framework

In this section we consider simulating a quantum channel via quantum coherence. The general

framework is shown as Figure 5.1. For a given quantum channel NA→B , our task is to simulate

this channel with maximally coherent states and free operations. In the following, we denote

Ψk = (1/k)
∑k−1

i,j=0 |i〉〈j| as the maximally coherent state with dimension k. Then the effective

channel is given by

ÑA→B (ρ) = ΠAR→B (ρ⊗Ψk) , ∀ ρ ∈ S= (A) . (5.1)

We use the diamond norm distance between the effective channel and the target channel to

characterize the performance of a simulation and introduce the minimum error of coherence

simulation as follows.

A B
(

R BR B
((

B A BARk

k )

Figure 5.1 : The task of channel simulation via quantum coherence.

Definition 5.1 For a given quantum channel NA→B , the minimum error of coherence simula-
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tion via Ψk under the operation class Ω is defined as

ωΩ (Ψk,N ) :=
1

2
inf ‖Ñ − N‖♦ (5.2a)

s.t. ÑA→B (ρ) = ΠAR→B (ρ⊗Ψk) , ∀ ρ ∈ S= (A) , (5.2b)

ΠAR→B ∈ Ω. (5.2c)

where ‖F‖♦ := supk∈N ‖F ⊗ idk‖1 denotes the diamond norm and ‖ · ‖1 is induced by the

trace norm. The free operation class Ω ∈ {PIO, SIO, IO,DIO,MIO}.

Definition 5.2 For a given quantum channel NA→B , the one-shot ε-error coherence simula-

tion cost under the operation class Ω is defined as

S
(1),ε
c,Ω (N ) := logmin

{
k ∈ N+

∣∣ ωΩ (Ψk,N ) ≤ ε
}
. (5.3)

The asymptotic coherence simulation cost is defined as

Sc,Ω (N ) := lim
ε→0

lim
n→∞

1

n
S
(1),ε
c,Ω

(
N⊗n

)
. (5.4)

5.2.2 One-shot characterizations

Based on above definitions, we will discuss the case for Ω = MIO in details.

Proposition 5.3 For a given quantum channel NA→B and maximally coherent state Ψk, the

minimum error of coherence simulation under MIO can be given by the following SDP,

ωMIO (Ψk,N ) = inf γ (5.5a)

s.t.TrB YAB ≤ γ1A, (5.5b)

YAB ≥ JÑ − JN , YAB ≥ 0, (5.5c)

JÑ ≥ 0, TrB JÑ = 1A, (5.5d)

JÑ ≤ k · JM, (5.5e)

JM ≥ 0, TrB JM = 1A, (5.5f)

TrA JM|i〉〈i|A ∈ I, ∀ i. (5.5g)

Proof From the Choi-Jamiołkowski isomorphism, we have

ÑA→B (ρ) = TrA JÑ · ρTA, (5.6)

ΠAR→B (ρ⊗Ψk) = TrAR JΠ · ρTA ⊗ΨT
k = TrA

(
TrR JΠ · 1A ⊗ΨT

k

)
ρTA. (5.7)

Since ÑA→B (ρ) = ΠAR→B (ρ⊗Ψk) holds for any state ρ ∈ S= (A), we have the Choi-

Jamiołkowski operator relation between the effective channel Ñ and the free operation Π as
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JÑ = TrR JΠ · ΨT
k . From the definition of minimum error of coherence simulation and the

SDP (2.82) for diamond norm, we obtain

ωMIO (Ψk,N ) = inf ‖TrB YAB‖∞ (5.8a)

s.t. YAB ≥ JÑ − JN , YAB ≥ 0, (5.8b)

JÑ = TrR JΠ ·ΨT
k , (5.8c)

ΠAR→B ∈ MIO. (5.8d)

If JΠ is an optimal solution of (5.8), then 1
|R|!
∑

π UπJΠUπ is also an optimal solution, where

Uπ are all the permutation operator on the system R. Thus without loss of generality, we can

take JΠ in the form of

JΠ = PAB ⊗ 1R +QAB ⊗
(
Ψk −

1

k
1R

)
. (5.9)

Since Π is a CP map, we have

JΠ =

(
PAB − 1

k
QAB

)
⊗ (1R −Ψk) +

(
PAB +

(
1− 1

k

)
QAB

)
⊗Ψk ≥ 0, (5.10)

which is equivalent to PAB − 1
kQAB ≥ 0 and PAB +

(
1− 1

k

)
QAB ≥ 0. Since Π is a TP map,

we have

TrB JΠ = TrB PAB ⊗ 1R +TrB QAB ⊗
(
Ψk −

1

k
1R

)
= 1AR, (5.11)

which is equivalent to TrB QAB = 0 and TrB PAB = 1A. Since Π ∈ MIO, for any input state

|ij〉〈ij|AR, we have

Π(|ij〉〈ij|AR) = TrAR

(
PAB ⊗ 1R +QAB ⊗

(
Ψk −

1

k
1R

))
|ij〉〈ij|AR (5.12)

= TrA PAB|i〉〈i|A ∈ I. (5.13)

By direct calculation, we also have JÑ = TrR JΠ · ΨT
k = P +

(
1− 1

k

)
Q. Eliminating the

variable Q and denoting JM = PAB , we have the desired result. �

From Proposition 5.3, we denote JM̃ = kJM and have the following result.

Proposition 5.4 For a given quantum channel NA→B , the one-shot ε-error coherence simula-
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tion cost under MIO is given by the following SDP,

S
(1),ε
c,MIO (N ) = logmin�Tr JM̃ / dA� (5.14a)

s.t. 0 ≤ JÑ ≤ JM̃, (5.14b)

TrB JÑ = 1A, TrB JM̃ = Tr JM̃ / dA · 1A, (5.14c)

TrA JM̃ (|i〉〈i| ⊗ 1B) ∈ IH , (5.14d)

TrB YAB ≤ ε1A, (5.14e)

YAB ≥ JÑ − JN , YAB ≥ 0, (5.14f)

where IH is the set of diagonal Hermitian operators.

Remark 5.5 It is easy to check that δ = log�x� − log x ∈ [0, 1] for any x ≥ 1. Thus we

can use the least constant δ ∈ [0, 1] to adjust the r.h.s. of Eq. (5.14) to be the logarithm of an

integer. That is,

S
(1),ε
c,MIO (N ) = δ + logminTr JM̃ / dA (5.15a)

s.t. 0 ≤ JÑ ≤ JM̃, (5.15b)

TrB JÑ = 1A, TrB JM̃ = Tr JM̃ / dA · 1A, (5.15c)

TrA JM̃ (|i〉〈i| ⊗ 1B) ∈ IH , (5.15d)

TrB YAB ≤ ε1A, (5.15e)

YAB ≥ JÑ − JN , YAB ≥ 0, (5.15f)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an integer.

Besides the above SDP characterization, we have the following simpler refinement for the

zero-error case.

Proposition 5.6 For a given quantum channel NA→B , the one-shot zero-error coherence sim-

ulation cost under MIO is given by

S
(1),0
c,MIO (N ) = max

i
Cmax (N (|i〉〈i|)) + δ, (5.16)

where Cmax (ρ) := minσ∈I Dmax (ρ‖σ), I = {ρ ≥ 0 | Tr ρ = 1,Δ(ρ) = ρ}, and δ ∈ [0, 1]

is the least constant such that the r.h.s. is the logarithm of an integer.

Proof We prove this result via SDP duality. From Proposition 5.4, we take ε = 0 and obtain
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the following SDP,

S
(1),0
c,MIO (N ) = δ + logminTr JM̃ / dA (5.17a)

s.t. 0 ≤ JN ≤ JM̃, (5.17b)

TrB JM̃ = Tr JM̃/dA · 1A, (5.17c)

TrA JM̃ |i〉〈i| ⊗ 1B ∈ IH . (5.17d)

Its dual SDP is given by

S
(1),0
c,MIO (N ) = δ + logmax TrJNX (5.18a)

s.t. X = Y ⊗ 1B +
∑dA−1

i=0
|i〉〈i| ⊗ Zi, (5.18b)

TrY = 1, Δ(Y ) = Y, Δ(Zi) = 0, (5.18c)

X ≥ 0, Y, Zi Hermitian. (5.18d)

For convenience, we denote r = maxiCmax (N (|i〉〈i|)). According to the dual SDP of Cmax

presented later in Eq. (5.31), r can also be given by an SDP,

r = logmax
i

max Tr JN |i〉〈i| ⊗ Pi (5.19a)

s.t. Pi = 1B +Qi, Δ(Qi) = 0, (5.19b)

Pi ≥ 0, Qi Hermitian. (5.19c)

Suppose the optimal solution of SDP (5.19) is given by {Pi0 , Qi0}. Let X = |i0〉〈i0| ⊗ Pi0 ,

Y = |i0〉〈i0| and Zi = δi,i0 · Qi0 . We can verify that {X,Y, Zi} is a feasible solution of

SDP (5.18) which implies

S
(1),0
c,MIO (N )− δ ≥ Tr JN |i0〉〈i0| ⊗ Pi0 = r. (5.20)

On the other hand, suppose the optimal solution of SDP (5.18) is given by {X,Y, Zi}. If

yi = TrY |i〉〈i| = 0, we have Zi ≥ 0. This implies Zi = 0 due to Δ(Zi) = 0. Without loss of

generality, we suppose yi > 0 for any i. Then we have the optimal value

Tr JNX =

dA−1∑
i=0

Tr JN |i〉〈i| ⊗ (yi1B + Zi) (5.21)

=

dA−1∑
i=0

yiTr JN |i〉〈i| ⊗
(
1B +

Zi

yi

)
(5.22)

≤ max
i

Tr JN |i〉〈i| ⊗
(
1B +

Zi

yi

)
. (5.23)
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Suppose the maximum is taken at i = i0. Let Pi0 = 1B +
Zi0
yi0

and Qi0 =
Zi0
yi0

. We know that

{Pi0 , Qi0} is a feasible solution to SDP (5.19). Thus

r ≥ Tr JN |i0〉〈i0| ⊗
(
1B +

Zi0

yi0

)
≥ S

(1),0
c,MIO (N )− δ. (5.24)

�
Due to the additivity (Lemma 5.8) and the quasi-convexity of max-relative entropy of co-

herence [BSF+17] , we have the following asymptotic result.

Theorem 5.7 The asymptotic zero-error coherence simulation cost under MIO is given by

S0
c,MIO (N ) := lim

n→∞
1

n
S
(1),0
c,MIO

(
N⊗n

)
(5.25)

=max
i
Cmax (N (|i〉〈i|)) (5.26)

=max
ρ∈I

Cmax (N (ρ)) . (5.27)

Proposition 5.6 and Theorem 5.7 are interesting since they present that the coherence we need

to simulate a channel is given by the maximum coherence that can be generated from this

channel—the cohering power of the channel [BCP14, MK15]. These results are similar to the

quantum reverse Shannon theory as we will discuss in the next section. It is of great interest

to make a conjecture for the general case that the asymptotic coherence simulation cost of a

channel is equal to its coherence generating capacity introduce in [DDMW17].

Lemma 5.8 The max-relative entropy of coherence is additive, i.e.,

Cmax (ρ1 ⊗ ρ2) = Cmax (ρ1) + Cmax (ρ2) . (5.28)

Proof Due to the additivity of max-relative entropy, it is easy to verify that

Cmax (ρ1 ⊗ ρ2) ≤ Cmax (ρ1) + Cmax (ρ2) . (5.29)

We prove the other direction via SDP. The max-relative entropy of coherence can be given by

the following SDP1,

Primal: Cmax (ρ) = logmin
{
TrV

∣∣ ρ ≤ V, V = Δ(V ) , V ≥ 0
}
, (5.30)

Dual: Cmax (ρ) = logmax
{
Tr ρX

∣∣ 0 ≤ X ≤ 1+ Y, Δ(Y ) = 0
}
. (5.31)

Suppose the optimal solutions for ρ1 and ρ2 in the dual SDP is given by {X1, Y1} and {X2, Y2},

respectively. Then we can verify that {X1 ⊗X2,11 ⊗ Y2 + Y1 ⊗ 12 + Y1 ⊗ Y2} is a feasible

solution for ρ1 ⊗ ρ2. Thus

Cmax (ρ1 ⊗ ρ2) ≥ log Tr (ρ1 ⊗ ρ2) (X1 ⊗X2) ≥ Cmax (ρ1) + Cmax (ρ2) . (5.32)

This concludes the proof. �

1 It is clear that the condition X ≤ 1+ Y in the dual SDP could be replaced with equality.
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5.2. CHANNEL SIMULATION VIA QUANTUM COHERENCE

5.2.3 The channel’s max-relative entropy

The max-relative entropy between two quantum states has been extensively used in the quan-

tum information theory. Here we introduce a channel’s version of this entropy and use it to

characterize the one-shot coherence channel simulation cost.

Definition 5.9 For any two quantum channels NA→B and MA→B with corresponding Choi-

Jamiołkowski matrix JN and JM, we define the channel’s max-relative entropy as

Dmax (N‖M) := Dmax (JN ‖JM) . (5.33)

The smoothed channel’s max-relative is defined as

Dε
max (N‖M) := inf

1
2
‖Ñ−N‖♦≤ε

Ñ∈CPTP(A:B)

Dmax

(
Ñ
∥∥M). (5.34)

From SDP (5.5), we know that JÑ corresponds to a CPTP map Ñ according to the Choi-

Jamiołkowski isomorphism. Then we have 2

ωMIO (Ψk,N ) =
1

2
inf ‖Ñ − N‖♦

s.t. JÑ ≤ k · JM, Ñ ∈ CPTP,M ∈ MIO.

(5.35)

Together with the definition of the coherence simulation cost, we can characterize this cost via

the smoothed channel’s max-relative entropy.

Proposition 5.10 For a given quantum channel NA→B , the one-shot ε-error coherence simu-

lation cost under MIO can be given by

S
(1),ε
c,MIO (N ) = min

M∈MIO
Dε

max (N||M) + δ, (5.36)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an integer.

This result also gives the distance characterization of the one-shot coherence simulation cost

as shown in Figure 5.2.

2 From the optimization (5.35), we can see that a quantum channel NA→B can be written as ΠAR→B ((·)⊗Ψk)

with Π in MIO if and only if there exists a channel M in MIO such that JN ≤ kJM.
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MIOMIO

CPTP

Figure 5.2 : Distance characterization of one-shot coherence simulation cost under MIO.

The Proposition 5.10 gives the characterization in the one-shot scenario. From the perspec-

tive of information theory, we may wonder what it converges to asymptotically. Inspired by the

main result in Ref. [BP10], we provide a conjecture for this as follows.

Define the channel distance with respect to the quantum relative entropy as

D (N‖M) := max
ρA

D (NA→B (φAA′) ‖MA→B (φAA′)) (5.37)

where φAA′ is a purification of ρA. Then for any quantum channel, we denote its relative

entropy distance to the set of MIO as

KMIO (N ) := min
M∈MIO

D (N‖M) , (5.38)

and its regularization form

K∞
MIO (N ) := lim

n→∞
1

n
KMIO

(
N⊗n

)
. (5.39)

Conjecture 5.11 For any quantum channel N , its asymptotic coherence simulation cost under

MIO is given by

Sc,MIO (N ) = K∞
MIO (N ) . (5.40)

5.3 Channel simulation via quantum channels

In this section, we focus on quantum channel simulation via other quantum channels. The

central quantity we introduce is the channel’s smooth max-information.

5.3.1 General framework and codes

Let us first formally introduce the task of channel simulation and some notations. A quantum

channel (quantum operation) NAo→Bi is a completely positive (CP) and trace-preserving (TP)
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5.3. CHANNEL SIMULATION VIA QUANTUM CHANNELS

linear map from operators on a finite-dimensional Hilbert space Ao to operators on a finite-

dimensional Hilbert spaceBi. As shown in Figure 5.3, Alice and Bob share a quantum channel

NAo→Bi . By adding encoding and decoding scheme, they can use the channel N to simulate

another channel M. Composing with the encoder and decoder, their effective channel is given

by ÑAi→Bo = ΠAiBi→AoBoNAo→Bi , where Π is a bipartite quantum operation that general-

izes the usual encoding scheme E and decoding scheme D. Note that the bipartite quantum

operation Π here is required to be B to A non-signalling, which makes the composition of Π

and N feasible [CDP08, DW16]. We say such Π is an Ω-assisted code if it can be imple-

mented by local operations with Ω-assistance. In the following, we eliminate Ω for the case of

unassisted codes. We write Ω = NS and Ω = PPT for NS-assisted and PPT-assisted codes,

respectively. These codes have also been applied to other basic tasks of quantum information

processing (see e.g., [LM15a, APE03, WFD17, Rai01, FWTD17]). In particular:

• an unassisted code reduces to the product of encoder and decoder, Π = DBi→BoEAi→Ao ;

• a NS-assisted code corresponds to a bipartite quantum operation which is non-signalling

from Alice to Bob and vice-versa;

• a PPT-assisted code corresponds to a bipartite operation whose Choi-Jamiołkowski op-

erator is positive under partial transpose over systems BiBo.

Ai BoBB

Ao Bi

Ai Bo

BB

Figure 5.3 : The task of quantum channel simulation via another quantum channel. The sub-

script i stands for “input” while o stands for “output”.

Definition 5.12 For any two quantum channels N and M, the minimum error of simulation

from N to M under Ω-assisted codes is defined as

ωΩ (N ,M) :=
1

2
inf
Π∈Ω

‖Π ◦ N −M‖♦, (5.41)

where ‖ · ‖♦ is the diamond norm.
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Definition 5.13 The channel simulation rate from N to M under Ω-assisted codes is defined

as

SΩ (N ,M) := lim
ε→0

inf
{ n
m

∣∣∣ ωΩ

(
N⊗n,M⊗m

)
≤ ε
}
, (5.42)

where the infimum is taken over ratios n
m with n,m ∈ N.

In this framework of channel simulation, the classical capacityC (N ) and the quantum capacity

Q (N ) of the channel N are given by

C (N ) = S
(
N , îd2

)−1
and Q (N ) = S (N , id2)

−1 , (5.43)

where îd2 is the one-bit noiseless channel and id2 is the one-qubit noiseless channel.

If we consider simulating the given channel N via a m-dimensional noiseless quantum

channel idm, then the one-shot ε-error quantum simulation cost under Ω-assisted codes is de-

fined as

S
(1)
Ω,ε (N ) := logmin

{
m ∈ N | ωΩ (idm,N ) ≤ ε

}
. (5.44)

The asymptotic quantum simulation cost is given by

SΩ (N ) = lim
ε→0

lim
n→∞

1

n
S
(1)
Ω,ε

(
N⊗n

)
. (5.45)

5.3.2 Channel simulation via noisy quantum channels

We show that the minimum error of simulation under NS-assisted (and PPT-assisted) codes can

be given by SDPs. The one-shot ε-error quantum simulation cost under NS-assisted codes can

also be given by an SDP.

Lemma 5.14 ( [LM15a, DW16]) Let JΠ and JN denote the Choi-Jamiołkowski operators of

the quantum channel N and code Π, respectively. Then the Choi-Jamiołkowski operator of the

effective channel ÑAi→Bo = ΠAiBi→AoBo ◦ NAo→Bi is given by

JÑ = TrAoBi

(
JT
N ⊗ 1AiBo

)
JΠ. (5.46)

Combining with the SDP (2.82) for diamond norm and the constraints of the code Π, we

have the following result.

Proposition 5.15 For any two quantum channels N and M with the corresponding Choi-

Jamiołkowski matrices JN and JM, the minimum error of simulation from N to M under

86



5.3. CHANNEL SIMULATION VIA QUANTUM CHANNELS

NS-assisted codes ωNS (N ,M) is given by the following SDP,

min γ (5.47a)

s.t.TrBo YAiBo ≤ γ1Ai , (5.47b)

YAiBo ≥ JÑ − JM, YAiBo ≥ 0, (5.47c)

JÑ = TrAoBi

(
JT
N ⊗ 1AiBo

)
JΠ, (5.47d)

JΠ ≥ 0, TrAoBo JΠ = 1AiBi , (CPTP) (5.47e)

TrAo JΠ =
1Ai

|Ai|
⊗ TrAoAi JΠ, (A �→ B) (5.47f)

TrBo JΠ =
1Bi

|Bi|
⊗ TrBiBo JΠ. (B �→ A) . (5.47g)

To obtain ωNS∩PPT (N ,M), we only need to add the PPT constraint J
TBiBo

Π ≥ 0, where TBiBo

denotes the partial transpose over systems BiBo.

The constraints in Eq. (5.47e) represent the CP and TP conditions of the bipartite operation

Π. The constraints in Eqs. (5.47f) and (5.47g) represent the non-signalling conditions that A

cannot signal to B and B cannot signal to A, respectively.

Corollary 5.16 The minimum error to simulate a quantum channel N from a noiseless quan-

tum channel idm under NS-assisted codes ωNS (idm,N ) is given by the following SDP,

min γ (5.48a)

s.t.TrBo YAiBo ≤ γ1Ai , (5.48b)

YAiBo ≥ JÑ − JN , YAiBo ≥ 0, (5.48c)

JÑ ≥ 0, TrBo JÑ = 1Ai , (5.48d)

JÑ ≤ 1Ai ⊗ VBo , TrVBo = m2. (5.48e)

To obtain ωNS∩PPT (idm,N ), we only need to add the PPT constraint

−1Ai ⊗ V T
Bo

≤ mJTB

Ñ ≤ 1Ai ⊗ V T
Bo
. (5.49)

Proof The Choi-Jamiołkowski operator of the operation idm is given by

Jm =

m−1∑
i,j=0

|ii〉〈jj|AoBi , (5.50)

which is the unnormalized maximally entangled state. The main idea is to exploit the symmetry

of Jm and simplify the SDP (5.47).
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Note that Jm is invariant under any local unitaryUAo⊗UBi . If J̃Π is optimal for SDP (5.47),

we can verify that
(
UAo ⊗ UBi

)
J̃Π
(
UAo ⊗ UBi

)†
is also optimal. Any convex combination

of optimal solutions remains optimal. Thus, without loss of generality we can take

JΠ =

∫
dU
(
UAo ⊗ UBi

)
J̃Π
(
UAo ⊗ UBi

)†
(5.51)

=
Jm
m

⊗ CAiBo +

(
1− Jm

m

)
⊗DAiBo , (5.52)

where the integral is taken over the Haar measure and C, D are operators on system AiBo.

Combining Eq. (5.51) and SDP (5.47), we know that Eq. (5.47d) is equivalent to JÑ = mC.

Eq. (5.47e) is equivalent to C ≥ 0, D ≥ 0 and TrBo

(
C +

(
m2 − 1

)
D
)
= m1Ai . Since JÑ is

the Choi-Jamiołkowski matrix of the effective channel, we have TrBo JÑ = TrBo mC = 1Ai

and TrBo mD = 1Ai . This implies that Eq. (5.47g) is trivial and Eq. (5.47f) is equivalent toC+(
m2 − 1

)
D =

1Ai
|Ai| ⊗TrAi

(
C +

(
m2 − 1

)
D
)
. Denote VBo = m

|Ai| TrAi

(
C +

(
m2 − 1

)
D
)
.

We have JÑ +
(
m2 − 1

)
mD = 1Ai ⊗VBo . Eliminating variable D, we have the desired SDP.

�
From the definition of S

(1)
NS,ε (N ) and SDP (5.48), we have the following SDP for the one-

shot quantum simulation cost.

Proposition 5.17 For any quantum channel NAi→Bo and error tolerance ε ≥ 0, the one-shot

ε-error quantum simulation cost under NS-assisted codes is given by the following SDP,

S
(1)
NS,ε (N ) = logmin

⌈√
TrVBo

⌉
(5.53a)

s.t.TrBo YAiBo ≤ ε1Ai , (5.53b)

YAiBo ≥ JÑ − JN , YAiBo ≥ 0, (5.53c)

JÑ ≥ 0, TrBo JÑ = 1Ai , (5.53d)

JÑ ≤ 1Ai ⊗ VBo . (5.53e)

Remark 5.18 With the same reasoning as Remark 5.5, we can also write Eq. (5.53) as

S
(1)
NS,ε (N ) = δ +

1

2
logminTrVBo (5.54a)

s.t.TrBo YAiBo ≤ ε1Ai , (5.54b)

YAiBo ≥ JÑ − JN , YAiBo ≥ 0, (5.54c)

JÑ ≥ 0, TrBo JÑ = 1Ai , (5.54d)

JÑ ≤ 1Ai ⊗ VBo , (5.54e)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an integer.
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5.3. CHANNEL SIMULATION VIA QUANTUM CHANNELS

Note that the one-shot quantum simulation cost under NS∩PPT-assisted codes is not an SDP,

since the objective function m appears in the conditions TrVBo = m2 and −1Ai ⊗ V T
Bo

≤
mJTB

Ñ ≤ 1Ai ⊗ V T
Bo

with different powers. We do not see a way to obtain a linear objective

function.

It is also worth mentioning that the zero-error quantum simulation cost was studied by

Duan and Winter in [DW16]. The authors show that the zero-error NS-assisted simulation cost

is given by the conditional min-entropy of the channel’s Choi-Jamiołkowski matrix [DW16,

Theorem 2]. We can recover their result by setting ε = 0 in SDP (5.53). This will lead to

YAiBo = 0 and thus JÑ = JN . Then we have

S
(1)
NS,0 (N ) =

1

2
logmin

{
TrVBo | JN ≤ 1Ai ⊗ VBo

}
+ δ. (5.55)

The right hand side is the conditional min-entropy of JN which is additive (cf. [Tom12]). Then

we can obtain that

SNS,0 (N ) := lim
n→∞

1

n
S
(1)
NS,0

(
N⊗n

)
=

1

2
logmin

{
TrVBo | JN ≤ 1Ai ⊗ VBo

}
. (5.56)

5.3.3 The channel’s max-information and the channel’s robustness

In this section, we introduce a novel entropy called the channel’s smooth max-information

and show that it has an operational interpretation regarding the quantum simulation cost of a

channel. We further introduce the channel’s robustness and illustrate its connection with the

channel’s max-information.

The channel’s max-information

Recall that the max-relative entropy of ρ ∈ S≤ (A) with respect to σ ≥ 0 is defined as [Dat09b,

Ren05]

Dmax (ρ‖σ) = log inf{t > 0 | ρ ≤ t · σ}. (5.57)

The max-information that we will use in the following discussion (same as 2Imax introduced

in Eq. (2.53)) is defined as

Imax (A : B)ρ := inf
σB∈S=(B)

Dmax (ρAB‖ρA ⊗ σB) . (5.58)

Definition 5.19 For any quantum channel NA′→B , the channel’s max-information of N is

defined as

Imax (A : B)N := Imax (A : B)NA′→B(ΦAA′ ) , (5.59)

where ΦAA′ is the maximally entangled state on AA′.
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The following argument shows that for any full rank input state ρA′ with a purification φAA′ , it

holds that

Imax (A : B)N = Imax (A : B)NA′→B(φAA′ ) . (5.60)

From the definitions (5.57), (5.58) and (5.59), we have

Imax (A : B)N = log inf
{
t > 0

∣∣∣ NA′→B (ΦAA′) ≤ t · ΦA ⊗ σB, σB ∈ S= (B)
}
. (5.61)

Since we have

NA′→B (φAA′) = |A| · NA′→B

(√
φAΦAA′

√
φA

)
(5.62)

= |A| ·
√
φANA′→B (ΦAA′)

√
φA, (5.63)

then the first condition in (5.61) is equivalent to NA′→B (φAA′) ≤ t · φA ⊗ σB and it implies

Eq. (5.60).

From Eqs. (5.55) and (5.61), we can write the one-shot zero-error quantum simulation cost

as the channel’s max-information,

S
(1)
NS,0 (N ) =

1

2
Imax (A : B)N + δ. (5.64)

In the following, we show this relation beyond the zero-error case.

Definition 5.20 For any quantum channel NA′→B , the channel’s smooth max-information is

defined as

Iεmax (A : B)N := inf
1
2
‖Ñ−N‖♦≤ε

Ñ∈ CPTP(A′:B)

Imax (A : B)Ñ , (5.65)

where CPTP (A′ : B) denotes the set of all the CPTP maps from A′ to B.

We show that the one-shot ε-error quantum simulation cost is exactly given by the channel’s

smooth max-information. This provides the operational meaning of this new measure.

Theorem 5.21 For any quantum channel NA′→B and error tolerance ε ≥ 0, it holds that

S
(1)
NS,ε (N ) =

1

2
Iεmax (A : B)N + δ, (5.66)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an integer.

Proof Note that the constraints JÑ ≥ 0, TrB JÑ = 1A in Eq. (5.54d) uniquely define a

CPTP map Ñ according to the Choi-Jamiołkowski isomorphism. Applying the SDP (2.82) of
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the diamond norm, we find

S
(1)
NS,ε (N ) = δ +

1

2
logminTrVB (5.67a)

s.t.
1

2
‖Ñ − N‖♦ ≤ ε, (5.67b)

Ñ ∈ CPTP
(
A′ : B

)
, (5.67c)

JÑ ≤ 1A ⊗ VB. (5.67d)

From Eqs. (5.55) and (5.64), we know that

Imax (A : B)N = logmin {TrVB | JN ≤ 1A ⊗ VB} . (5.68)

Combining SDPs (5.67) and (5.68), we obtain the desired result. �
In the setting of the entanglement-assisted one-shot capacity of quantum channels, Matthews

and Wehner gave a converse bound in terms of the channel’s hypothesis testing relative en-

tropy [MW14]. Moreover, it was recently shown that the activated NS-assisted one-shot capac-

ity is exactly given by the channel’s hypothesis testing relative entropy [WFT17] – generalizing

the corresponding classical results [PPV10, Mat12]. This suggests that the operational min- and

max-type one-shot analogs of the channel’s mutual information are the channel’s hypothesis

testing relative entropy and the channel’s smooth max-information, respectively.

Remark 5.22 From this result, we can operationally verify that the data-processing inequality

holds for the channel’s smooth max-information, i.e., Iεmax (A0 : B0)T ◦N◦F ≤ Iεmax (A1 : B1)N
holds for any CPTP maps NA′

1→B1
, FA′

0→A′
1

and TB1→B0 . This follows from the fact that we

need less resources to simulate a quantum channel with higher noise. Or we can directly prove

it in the following proposition.

The channel’s robustness and log-robustness

We introduce the log-robustness of a quantum channel and explain its relation with channel’s

max-information. As the name suggests, the robustness quantifies the minimal mixing required

to make the given resource useless. In terms of quantum channels, a natural class of useless

channels is the constant channel, i.e., it sends any input state to a fixed state. Denote the class

of constant channels as

G :=
{
N ∈ CPTP (A : B)

∣∣ ∃ σ s.t. N (ρ) = σ, ∀ ρ
}
. (5.69)

Definition 5.23 The robustness of a quantum channel N : L (A) → L (B) is defined as

Rg (N ) := inf

{
t ≥ 0

∣∣∣∣ ∃ M ∈ CPTP (A : B) s.t.
N + tM
1 + t

∈ G
}
. (5.70)

91



Definition 5.24 The log-robustness of a quantum channel N : L (A) → L (B) is defined as

LRg (N ) := log (1 +Rg (N )) . (5.71)

Then its corresponding smoothed version is defined as

LRε
g (N ) := inf

1
2
‖Ñ−N‖♦≤ε

Ñ∈CPTP(A:B)

LRg

(
Ñ
)
. (5.72)

Robustness has a very nice geometric interpretation as shown in Figure 5.4. For any given

quantum channel N , we need to find another channel M such that a convex combination of

them F = (N + tM) / (1 + t) is a constant channel. We hope to minimize the weight of M
in this combination, i.e., to make F as close as possible to the channel N .

CPTP
N

M

FG Rg(N )

1+Rg(N )

Figure 5.4 : Geometric interpretation of the channel’s robustness defined in Eq. (5.70).

The following result shows the relations between the max-information, log-robustness and

max-relative entropy of a quantum channel.

Proposition 5.25 For any quantum channel N , it holds

Iεmax (A : B)N = min
F∈G

Dε
max (N‖F) = LRε

g (N ) . (5.73)

Proof We only need to show the case when ε = 0 and the general result follows by our

unifying way of channel smoothing. The first equality follows by the noticing that the Choi-

Jamiołkowski operator of every constant channel F (ρA) = σB is given by 1A⊗σB . As for the

second equality, note that N+tM
1+t ∈ G if and only if there exists F ∈ G such that N + tM =

(1 + t)F . Suppose F (ρA) = σB for any ρA ∈ S= (A). Then N + tM = (1 + t)F holds for

certain M ∈ CPTP (A : B) if and only if JN ≤ (1 + t)1A ⊗ σB . Then the second equality

holds by definitions. �
Together with the previous result S

(1)
NS,ε (N ) = 1

2I
ε
max (A : B)N+δ, we know that the quan-

tum simulation cost can be characterized by the minimum “distance” to the class of constant

channels, and it also provides an operational interpretation for the channel’s log-robustness.
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5.3.4 Asymptotic equipartition property and quantum reverse Shannon theorem

In the following, we prove the asymptotic equipartition property (AEP) of the channel’s smooth

max-information and explore its close relation to the quantum reverse Shannon theorem. In the

framework of quantum channel simulation, the quantum capacity is given by the optimal rate

of using N to simulate the qubit noiseless channel id2, while the channel simulation cost is

given by the optimal rate of using id2 to simulate the channel N . Thus, it operationally holds

that

QE (N ) ≤ QNS (N ) ≤ SNS (N ) ≤ SE (N ) , (5.74)

where the above four notations represent entanglement-assisted quantum capacity, NS-assisted

quantum capacity, NS-assisted quantum simulation cost and entanglement-assisted quantum

simulation cost, respectively. The QRST [BDH+14, BCR11] shows that the quantum simu-

lation cost is equal to its quantum capacity under entanglement-assistance, i.e., QE (N ) =

SE (N ). The QRST under NS-assistance means that QNS (N ) = SNS (N ).

The AEP of the channel’s smooth max-information is the claim that

lim
ε→0

lim
n→∞

1

n
Iεmax (A : B)N⊗n = I (A : B)N , (5.75)

where I (A : B)N := maxρA∈S=(A) I (A : B)NA′→B(φAA′ ) is the mutual information of the

quantum channel, φAA′ is a purification of ρA and

I (A : B)ρ = min
σB∈S=(B)

D (ρAB‖ρA ⊗ σB) (5.76)

is the mutual information of a quantum state. Based on the operational interpretation of the

channel’s max-information (cf. Theorem 5.21) and the known result QE (N ) = 1
2I (A : B)N

[BSST02], we have

AEP (5.75) ⇐⇒ QE (N ) = SNS (N ) . (5.77)

Thus, the QRST implies the AEP for the channel’s smooth max-information. We now directly

prove the AEP in Theorem 5.26. This proof then also implies the QRST in the presence of

non-signalling correlations.

In the following, we will utilize various smooth entropies. Recall that the smooth max-

information of a quantum state is defined as

Iεmax (A : B)ρ := min
ρ̂≈ερ

Imax (A : B)ρ̂ . (5.78)

We also employ the following variation

Îεmax (A : B)ρ := min
ρ̂≈ερ

ρ̂A=ρA

Imax (A : B)ρ̂ , (5.79)
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which has the relation [ABJT18]

Îεmax (A : B)ρ ≤ Iε/6max (A : B)ρ + g (ε) with g (ε) = O (log (1/ε)) . (5.80)

Theorem 5.26 For any quantum channel NA′→B we have the AEP for the channel’s smooth

max-information:

lim
ε→0

lim
n→∞

1

n
Iεmax (A : B)N⊗n = I (A : B)N . (5.81)

Proof The proof strategy is as follows. We first use the post-selection technique to show

that the channel’s smooth max-information is upper bounded by the quantity in Eq. (5.79). By

Eq. (5.80) we can then use the properties of the smooth max-information developed in [BCR11]

to show one direction of the proof. The other direction can be proved via the continuity of the

mutual information of quantum states.

Consider n uses of the channel N and let ωn
RAA′ be the purification of the de Finetti state

ωn
AA′ =

∫
σ⊗n
AA′d (σAA′) with pure states σAA′ = |σ〉〈σ|AA′ and d (·) the measure on the

normalized pure states induced by the Haar measure. Furthermore we can assume without loss

of generality that |R| ≤ (n+ 1)|A|2−1. Note that ωn
A′ is a full rank state. We have the following

inequality chain

Iεmax (A : B)N⊗n = min
1
2‖Ñn−N⊗n‖♦≤ε

Ñn∈CPTP(A′n:Bn)

Imax (RA : B)Ñn(ωn
RAA′)

, (5.82)

≤ min
1
2‖(Ñn−N⊗n)(ωn

RAA′)‖1
≤ε1

Ñn∈CPTP(A′n:Bn)

Imax (RA : B)Ñn(ωn
RAA′)

, (5.83)

≤ min
Ñn(ωn

RAA′)≈ε2N⊗n(ωn
RAA′)

Ñn∈CPTP(A′n:Bn)

Imax (RA : B)Ñn(ωn
RAA′)

, (5.84)

where ε1 = ε (n+ 1)−(|A
′|2−1), ε2 = ε1. In the first equality, we choose ωn

RAA′ as the

input state of the channel’s max-information. In the first inequality, we use the post-selection

technique (cf. [BCR11, Prop. D.4]). This relaxes the diamond norm to the trace norm. In the

second inequality, we replace the trace norm with the purified distance since 1
2‖ρ − σ‖1 ≤

P (ρ, σ).

From Lemma 5.28 below, we know that for any pure state φAA′ , the following two sets are

the same,{
Ñ n (ωn

RAA′) ≈ε2 N⊗n (ωn
RAA′)

∣∣∣ Ñ n ∈ CPTP
(
A′n : Bn

)}
=
{
σnRAB ≈ε2 N⊗n (ωn

RAA′)
∣∣∣ σnRA = ωn

RA

}
. (5.85)
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Combining Eqs. (5.84) and (5.85), we have

Iεmax (A : B)N⊗n ≤ Îε2max (RA : B)N⊗n(ωn
RAA′)

. (5.86)

From Eq. (5.80), denote ε3 = ε2/6, we have

Iεmax (A : B)N⊗n ≤ Iε3max (RA : B)N⊗n(ωn
RAA′)

+ g (ε2) . (5.87)

Then we can use some known properties of the smooth max-information from [CBR14, BCR11],

which leads to

Iε3max (RA : B)N⊗n(ωn
RAA′)

≤ Iε4max (B : RA)N⊗n(ωn
RAA′)

+ f (ε4, ε4) (5.88)

≤ Iε4max (B : A)N⊗n(ωn
AA′)

+ 2 log |R|+ f (ε4, ε4) (5.89)

= Iε4max (B : A)N⊗n
(∑

i∈I pi(σi
AA′)

⊗n
) + 2 log |R|+ f (ε4, ε4) (5.90)

≤ max
σi
AA′

Iε4max (B : A)N⊗n
(
(σi

AA′)
⊗n

) + log |I|+ 2 log |R|+ f (ε4, ε4) (5.91)

≤ max
σAA′

Iε4max (B : A)N⊗n(σ⊗n
AA′)

+ log |I|+ 2 log |R|+ f (ε4, ε4) , (5.92)

where ε4 = ε3/2, f (ε, ε′) := log
(

1
1−

√
1−ε2

+ 1
1−ε′

)
and |I| = (n+ 1)2|A||A′|−2. In the sec-

ond line, we swap the system order according to [CBR14, Corollary 5]. In the third line, we

get rid of purification system R according to [BCR11, Lemma B.12]. In the fourth line, we

express the integral ωn
AA′ =

∫
σ⊗n
AA′d (σAA′) into convex combination of finite number of oper-

ators according to [BCR11, Corollary D.6]. In the fifth line, we use the quasi-convexity of the

smooth max-information [BCR11, Lemma B.21]. In the last line, we relax the maximization

to all pure states σAA′ .

Combining Eqs. (5.87), (5.92) and the AEP for the smooth max-information from [BCR11,

Lemma B.24], we get

lim
ε→0

lim
n→∞

1

n
Iεmax (A : B)N⊗n ≤ max

σAA′
lim
ε→0

lim
n→∞

1

n
Iε4max (B : A)N⊗n(σ⊗n

AA′)
= I (A : B)N .

(5.93)

On the other hand, suppose the optimal solution of I (A : B)N is taken at ρA′ with a pu-

rification φAA′ . Since we can always find a full rank state that is arbitrarily close to ρA′ , thus

it gives the mutual information arbitrarily close to I (A : B)N due to the continuity. In the

following, we can assume that ρA′ is of full rank without loss of generality and have the chain

95



of inequalities

Iεmax (A : B)N⊗n

= min
1
2
‖Ñn−N⊗n‖♦≤ε

Ñn∈ CPTP(A′n:Bn)

min
σn
B∈S=(B⊗n)

Dmax

(
Ñ n

A′→B

(
φ⊗n
AA′
)
‖φ⊗n

A ⊗ σnB

)
(5.94)

≥ min
1
2
‖Ñn−N⊗n‖♦≤ε

Ñn∈ CPTP(A′n:Bn)

min
σn
B∈S=(B⊗n)

D
(
Ñ n

A′→B

(
φ⊗n
AA′
)
‖φ⊗n

A ⊗ σnB

)
(5.95)

= min
1
2
‖Ñn−N⊗n‖♦≤ε

Ñn∈ CPTP(A′n:Bn)

I (A : B)Ñn
A′→B

(φ⊗n
AA′)

(5.96)

≥ I (A : B)N⊗n
A′→B(φ

⊗n
AA′)

− (8nε log |A|+ 2h2 (2ε)) (5.97)

= nI (A : B)NA′→B(φAA′ ) − (8nε log |A|+ 2h2 (2ε)) (5.98)

= nI (A : B)N − (8nε log |A|+ 2h2 (2ε)) , (5.99)

where h2 (·) is the binary entropy. In the third line, we use the fact that max-relative entropy is

never smaller than the relative entropy [Dat09b]. The fourth line follows from the definition of

the mutual information of a quantum state. The fifth line follows from the continuity of quan-

tum mutual information in Lemma 5.29. The sixth line follows from the additivity of quantum

mutual information. The last line follows from the assumption that φAA′ is the optimizer of

I (A : B)N . Finally, we have

lim
ε→0

lim
n→∞

1

n
Iεmax (A : B)N⊗n ≥ I (A : B)N . (5.100)

Combining Eqs. (5.93) and (5.100), we conclude the claim. �

Remark 5.27 Since the channel simulation cost has already been proved to be a strong con-

verse rate [BDH+14], the AEP result should hold in a more general form:

lim
n→∞

1

n
Iεmax (A : B)N⊗n = I (A : B)N . (5.101)

But the continuity approach, specifically Eq. (5.99), in the above proof of Theorem 5.26 does

not work well to obtain this more general result.

Lemma 5.28 For any pure state φAA′ and quantum state ρAB such that φA = ρA, the follow-

ing two sets are the same,{
NA′→B (φAA′) ≈ε ρAB | N ∈ CPTP

(
A′ : B

)}
= {σAB ≈ε ρAB | σA = ρA} . (5.102)

Proof Denote the l.h.s. and r.h.s. as S1 and S2 respectively. It is clear that S1 ⊆ S2 and we now

show the other direction. For any quantum state σAB ∈ S2, denote σAB = σ
−1/2
A σABσ

−1/2
A .
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Then, we have σAB ≥ 0 and σA = 1A. From the Choi-Jamiołkowski isomorphism, we know

that there exists a CPTP map NA′→B such that σAB = NA′→B (ΦAA′), where ΦAA′ denotes

the un-normalized maximally entangled state. Thus, we get σAB = NA′→B

(
σ
1/2
A ΦAA′σ

1/2
A

)
.

Denoting ψAA′ = σ
1/2
A ΦAA′σ

1/2
A , we have that ψAA′ is a purification of σA and since σA =

ρA = φA we get that φAA′ is also a purification of σA. Due to Uhlmann’s theorem [Uhl76],

there exists a unitary U on the system A′ such that ψAA′ = U (φAA′) with U (·) = U · U †.

Hence, we find σAB = N ◦ U (φAA′) ∈ S1. This completes the proof. �

Lemma 5.29 For any quantum states ρAB and σAB such that ρA = σA and 1
2‖ρ − σ‖1 ≤ ε,

it holds that

|I (A : B)ρ − I (A : B)σ | ≤ 8ε log |A|+ 2h2 (2ε) , (5.103)

where h2 (·) is the binary entropy.

Proof Since I (A : B)ρ = H (A)ρ −H (A|B)ρ, we have

|I (A : B)ρ − I (A : B)σ | = |H (A|B)ρ −H (A|B)σ | ≤ 8ε log |A|+ 2h2 (2ε) , (5.104)

where H (A) and H (A|B) are von Neumann entropy and conditional entropy respectively.

The second inequality follows from the Alicki-Fannes inequality [AF04].

�

5.3.5 Examples

In this section, we apply our results to some basic and important channels. For classical chan-

nels, the one-shot ε-error quantum simulation cost can be given by a linear program as shown

in Eq. (5.105). Using the symmetry of the quantum depolarizing channel, we can also simplify

its n-shot simulation cost as a linear program. Moreover, the zero-error simulation cost of some

fundamental channels can be analytically solved.

Example 1. For any classical channel N (y|x), its simulation cost is given by a linear program,

S
(1)
NS,ε (N ) = logmin

⌈√∑
Vy

⌉
(5.105a)

s.t. Yxy ≥ Ñ (y|x)−N (y|x) , Yxy ≥ 0, ∀x, y, (5.105b)

Ñ (y|x) ≥ 0, ∀x, y,
∑

y
Ñ (y|x) = 1, ∀x, (5.105c)

Ñ (y|x) ≤ Vy, ∀x, y,
∑

y
Yxy ≤ ε, ∀x. (5.105d)
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Example 2. The quantum depolarizing channel is given by N (ρ) = (1− p) ρ + p · 1
d with

dimension d. Its Choi matrix JN commutes with any local unitary U ⊗U and J⊗n
N is invariant

under any permutation of the tensor factors. Exploiting these symmetries, we can simplify the

SDP (5.53) for N⊗n to a linear program (5.108). The results of a numerical implementation

are shown in Figure 5.5. We can see that as the number of channel uses n increases, the average

quantum simulation cost will approach its entanglement-assisted quantum capacity [BSST99],

i.e., half of the quantum mutual information of the channel.

For the quantum depolarizing channel N (ρ) = (1− p) ρ + p · 1
d , its Choi-Jamiołkowski

matrix is given by JN = q1Φd + q2Φ
⊥
d where q1 = d (1− p) + p

d , q2 = p
d and Φd is the

maximally entangled state with dimension d, Φ⊥
d = 1− Φd. Then we have

J⊗n
N =

n∑
k=0

pkP
n
k

(
Φd,Φ

⊥
d

)
with pk = qk1q

n−k
2 , (5.106)

and Pn
k

(
Φd,Φ

⊥
d

)
denotes the summation of n-fold tensor products of Φd and Φ⊥

d with exactly

k-fold of Φd. For example, P 3
1

(
Φd,Φ

⊥
d

)
= Φ⊥

d ⊗Φ⊥
d ⊗Φd+Φ⊥

d ⊗Φd⊗Φ⊥
d +Φd⊗Φ⊥

d ⊗Φ⊥
d .

Due to the symmetries of J⊗n
N , we can take the optimal solution in SDP (5.53) as

JÑn =

n∑
k=0

rkP
n
k

(
Φd,Φ

⊥
d

)
, Y =

n∑
k=0

ykP
n
k

(
Φd,Φ

⊥
d

)
, and V = s1. (5.107)

Finally we have the LP as follows,

S
(1)
NS,ε

(
N⊗n

)
= logmin

⌈√
dn · s

⌉
(5.108a)

s.t. yk − rk + pk ≥ 0, yk ≥ 0, 0 ≤ rk ≤ s, ∀k (5.108b)

n∑
k=0

(
n

k

)(
1

d

)k (
d− 1

d

)n−k

rk = 1, (5.108c)

n∑
k=0

(
n

k

)(
1

d

)k (
d− 1

d

)n−k

yk ≤ ε. (5.108d)

98



5.3. CHANNEL SIMULATION VIA QUANTUM CHANNELS
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Figure 5.5 : Exact value by the linear program (5.108) of the average simulation cost for three

different error tolerances ε ∈ {5×10−4, 5×10−3, 5×10−2} and the qubit depolarizing channel

with failure probability p = 0.15. The lowest line marks the entanglement-assisted quantum

capacity of the channel (roughly 0.657 qubits per channel use).

Recall that the primal and dual SDPs of the zero-error simulation cost are given by [DW16]

Primal: SNS,0 (N ) =
1

2
logmin {TrVB | JN ≤ 1A ⊗ VB} , (5.109)

Dual: SNS,0 (N ) =
1

2
logmax {Tr JNXAB | TrAXAB ≤ 1B, XAB ≥ 0} . (5.110)

We study some fundamental channels and show their analytical solutions by explicitly con-

structing feasible solutions in both primal and dual problems, respectively. Using the weak

duality, we can argue that the feasible solutions we construct are optimal.

Example 3. The quantum depolarizing channel is N (ρ) = (1− p) ρ + p · 1
d with dimension

d. Taking

VB =
(
d (1− p) +

p

d

)
1B, and XAB =

d−1∑
i,j=0

|ii〉〈jj|, (5.111)

in the primal and dual problems respectively, we can verify that they are feasible solutions.

Thus, we have

1

2
log
(
d2 (1− p) + p

)
=

1

2
log Tr JNXAB (5.112)

≤ SNS,0 (N ) (5.113)

≤ 1

2
log TrVB (5.114)

=
1

2
log
(
d2 (1− p) + p

)
. (5.115)
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We find that

SNS,0 (N ) =
1

2
log
(
d2 (1− p) + p

)
. (5.116)

Example 4. The amplitude damping channel is N (ρ) =
∑1

i=0EiρE
†
i with E0 = |0〉〈0| +

√
1− r|1〉〈1|, E1 =

√
r|0〉〈1| and 0 ≤ r ≤ 1. The optimal solutions are given by

VB =
(
1 +

√
1− r

)
|0〉〈0|+

(√
1− r + 1− r

)
|1〉〈1| (5.117)

XAB = (|00〉+ |11〉) (〈00|+ 〈11|) . (5.118)

We find that

SNS,0 (N ) =
1

2
log
(
2
(
1 +

√
1− r

)
− r
)
. (5.119)

Example 5. The dephasing channel is N (ρ) = (1− p) ρ + pZρZ with Z = |0〉〈0| − |1〉〈1|.
The optimal solutions are given by

VB = (|2p− 1|+ 1)1B and XAB = (|00〉+ |11〉) (〈00|+ 〈11|) . (5.120)

We find that

SNS,0 (N ) =
1

2
log (|4p− 2|+ 2) . (5.121)

Example 6. The quantum erasure channel is N (ρ) = (1− p) ρ + p|e〉〈e| with |e〉 orthogonal

to the input Hilbert space. The optimal solutions are given by

VB = d (1− p)

d−1∑
i,j=0

|i〉〈i|+ p|d〉〈d|, (5.122)

XAB =

d−1∑
i,j=0

|ii〉〈jj|+ 1

d

d−1∑
i=0

|i〉〈i| ⊗ |d〉〈d|. (5.123)

We find that

SNS,0 (N ) =
1

2
log
(
d2 (1− p) + p

)
. (5.124)
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5.4 Discussion

5.4.1 Summary of results

1. The zero-error coherence simulation cost under MIO is given by

S
(1),0
c,MIO (N ) = max

ρ∈I
Cmax (N (ρ)) + δ,

S0
c,MIO (N ) = max

ρ∈I
Cmax (N (ρ)) ,

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an

integer.

2. We have introduced the channel’s max-relative entropy and shown that the one-

shot ε-error coherence simulation cost under MIO can be given by

S
(1),ε
c,MIO (N ) = min

M∈MIO
Dε

max (N||M) + δ,

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the logarithm of an

integer.

3. We have introduced the channel’s max-information, the channel’s log-robustness

and shown that the one-shot ε-error quantum simulation cost is given by

S
(1)
NS,ε (N ) =

1

2
Iεmax (A : B)N + δ =

1

2
LRg (N ) + δ =

1

2
min
M∈G

Dε
max (N‖M) + δ,

where δ ∈ [0, 1] is the least constant such that the last three terms are the loga-

rithm of an integer.

4. The AEP for the channel’s smooth max-information holds

lim
ε→0

lim
n→∞

1

n
Iεmax (A : B)N⊗n = I (A : B)N .

5. The AEP for the channel’s smooth max-information implies the quantum reverse

Shannon theorem under non-signalling assistance.

5.4.2 Outlook

The first part of this chapter has studied the minimal amount of coherent resources required

to implement a given quantum channel. It shows that the coherence simulation cost can be
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succinctly expressed by its minimum “distance” to the set of MIO operations, while the dis-

tance measure is characterized by the channel’s max-relative entropy. However, we do not

know if this “distance” type of characterization holds for other sets of free operations. Like

any resource theory framework, another interesting question is to ask whether the maximal

coherence generated from a channel is equal to the coherence consumed to implement this

channel. Specifically, it asks whether a channel’s coherence-generating capacity is equal to its

coherence simulation cost. At this moment we only know that the reversibility holds for any

classical-quantum channels, while the general result is still open.

In the second part of this chapter we have studied NS-assisted channel simulation via

quantum noiseless channels and proved that it asymptotically converges to the entanglement-

assisted capacity. Since the latter allows a single-letter characterization, it is natural to consider

a second-order refinement thereof. A second-order expansion of an achievable rate was estab-

lished in [DTW16] but no matching second-order converse bound is known. Our one-shot

NS-assisted quantum simulation cost may provide some insights in this direction.
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Appendix A

Distance characterization of resource theory

In this chapter we summarize some other distance characterizations appeared in different re-

source theory. We will see that the distillation and dilution processes are closely related with

the hypothesis testing relative entropy and the max-relative entropy respectively while their

asymptotics are characterized by the relative entropy distance.

Entanglement theory

The relative entropy of entanglement is given by [VPRK97, VP98]:

Er,SEP (ρAB) = min
σ∈SEP(A:B)

D (ρAB‖σAB) . (A.1)

The PPT-relative entropy of entanglement is given by [Rai99a]:

Er,PPT (ρAB) = min
σ∈PPT(A:B)

D (ρAB‖σAB) . (A.2)

The Rains bound is given by [Rai01, ADVW02]:

R (ρAB) = min
σ∈PPT′(A:B)

D (ρAB‖σAB) . (A.3)

These are bounds for LOCC and PPT-assisted distillable entanglement, i.e.,

ED,LOCC (ρAB) ≤ ED,PPT (ρAB) ≤ R (ρAB) ≤ Er,PPT (ρAB) ≤ Er,SEP (ρAB) . (A.4)

The one-shot distillable entanglement under separable-preserving operations is bounded by

[BD11]⌊
min

σ∈SEP(A:B)
Dε

H (ρAB‖σAB)
⌋
≤ E

(1),ε
D,SEPP (ρAB) ≤ min

σ∈SEP(A:B)
Dε

H (ρAB‖σAB) . (A.5)

The one-shot entanglement cost under separable-preserving operations is bounded by [BD11]

min
σ∈SEP(A:B)

Dε
max (ρAB‖σAB) ≤ E

(1),ε
D,SEPP (ρAB) ≤ min

σ∈SEP(A:B)
Dε

max (ρAB‖σAB) + 1.

(A.6)



Coherence theory

The asymptotic distillable coherence [WY16, RFWA18] and coherence cost [ZLY+18, Chi18]

under MIO and DIO are given by

Cd,DIO (ρ) = Cd,MIO (ρ) = Cc,MIO (ρ) = Cc,DIO (ρ) = Cr (ρ) := min
σ∈I

D (ρ‖σ) . (A.7)

The one-shot coherence cost under MIO is bounded by

min
σ∈I

D
√
ε

max (ρ‖σ) ≤ Cc,MIO (ρ) ≤ min
σ∈I

D
√
ε

max (ρ‖σ) + 1. (A.8)

The one-shot coherence cost under DIO is bounded by

min
σ∈Aρ

D
√
ε

max (ρ‖σ) ≤ Cc,DIO (ρ) ≤ min
σ∈Aρ

D
√
ε

max (ρ‖σ) + 1, (A.9)

where Aρ :=
{

1
t ((1 + t)Δ (ρ)− ρ) | t > 0, (1 + t)Δ (ρ)− ρ ≥ 0

}
and Aρ is the closure.

Channel capacity

There are two sets of useless operations in terms of channel capacity. The set of constant

channels:

G := {M ∈ CPTP (A : B) | ∃ σ ∈ S= (B) s.t. M (ρ) = σ, ∀ρ ∈ S= (A) } , (A.10)

and the set of constant-bounded subchannels:

V := {M ∈ CP (A : B) : ∃ σ ∈ S= (B) s.t. M (ρ) ≤ σ, ∀ρ ∈ S= (A)}. (A.11)

Definition A.1 For any relative divergence D (·‖·), define its corresponding channel’s diver-

gence as

D (N‖M) := max
ρA′

D (NA′→B (φAA′) ‖MA′→B (φAA′)) , (A.12)

where φAA′ is a purification of ρA′ .

This is a natural generalization of divergence between two CP maps. If the relative entropy

between two quantum states characterizes some kind of distance between these two states,

then the definition above is the worst-case distance between two quantum channels.

Some known distance characterizations are given by:
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• One-shot NS-assisted activated classical capacity of quantum channels [WFT17]:

C
(1),ε
NS,a (N ) = R (N , ε) := min

M∈G
Dε

H (N‖M) . (A.13)

where R (N , ε) is the Matthews-Wehner converse bound [MW14]. This is also a con-

verse bound for entanglement-assisted classical capacity and it it asymptotically tight,

lim
ε→0

lim
n→∞

1

n
min

Mn∈G
Dε

H

(
N⊗n‖Mn

)
= min

M∈G
D (N‖M) = I (A : B)N = CE (N ) .

• Υ-information converse bound on one-shot unassisted classical capacity of quantum

channels [WFT17]:

C(1),ε (N ) ≤ min
M∈V

Dε
H (N‖M) . (A.14)

• Υ-information converse bound on Holevo capacity and classical capacity [WFT17]:

χ (N ) ≤ Υ(N ) := min
M∈V

D (N‖M) , C (N ) ≤ Υ∞ (N ) . (A.15)
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Appendix B

Algorithm for the Rains bound

We provide an algorithm to numerically calculate the Rains bound with high accuracy. In

particular, the calculation of upper and lower bounds for the Rains bound have near-machine

precision while the final result of Rains bound itself is within error tolerance 10−6 by default.

This algorithm closely follows the approach in [ZFG10, GZFG15] which intends to calculate

the PPT-relative entropy of entanglement.

Note that the only difference between the Rains bound and the PPT-relative entropy of

entanglement is the feasible set. Due to the similarity between these two quantities, we can

have a similar algorithm for the Rains bound. For the sake of completeness, we will restate

the main idea of this algorithm and clarify that our adjustment will work to calculate the Rains

bound. In the following discussion, we will consider the natural logarithm for convenience.

The key idea for this algorithm is based on the cutting-plane method combined with semidef-

inite programming. Clearly, calculating the Rains bound is equivalent to the optimization prob-

lem

min
σ∈PPT′ (−Tr ρ lnσ) , with PPT′ =

{
σ ≥ 0

∣∣ ‖σTB‖1 ≤ 1
}
. (B.1)

If we relax the minimization over all quantum states, the optimal solution is taken at σ =

ρ. Thus −Tr ρ ln ρ provides a trivial lower bound on (B.1). Since the objective function is

convex with respect to σ over the Rains set, its epigraph is supported by tangent hyperplanes at

every interior point σ(i) ∈ int PPT′. Thus we can construct a successively refined sequence of

approximations to the epigraph of the objective function restricted to the interior of the Rains

set.

Specifically, for an arbitrary positive definite operatorX , we have a spectral decomposition

X = UXdiag (λX)U †
X with unitary matrix UX and diagonal matrix diag (λX) formed by the

eigenvalues λX . Then we have the first-order expansion

ln (X +Δ) = lnX + UX

(
D (λX) ◦ U †

XΔUX

)
U †
X +O

(
‖Δ‖2

)
, (B.2)



where ◦ denotes the Hadamard product and D (λ) is the Hermitian matrix given by

D (λ)i,j =

⎧⎨⎩
lnλi−lnλj

λi−λj
, λi �= λj ,

1
λi
, λi = λj .

(B.3)

For any given set of feasible points {σ(i)}Ni=0 ⊂ int PPT′, we have spectral decompositions

σ(i) = U(i)diag
(
λ(i)
)
U †
(i). Then epi (−Tr ρ lnσ) |int PPT′ is a subset of all (σ, t) ∈ int PPT′×R

satisfying

−Tr ρ

(
lnσ(i) + U(i)

(
D
(
λ(i)
)
◦ U †

(i)

(
σ − σ(i)

)
U(i)

)
U †
(i)

)
≤ t, i = 0, · · · , N. (B.4)

Equivalently, we can introduce slack variables si on the l.h.s of Eq. (B.4) and have

TrE(i)σ + t− si = −Tr ρ lnσ(i) +TrE(i)σ(i), si ≥ 0, i = 0, · · · , N, (B.5)

where E(i) = U(i)

(
D
(
λ(i)
)
◦ U †

(i)ρU(i)

)
U †
(i). So the optimal value of optimization problem

min t (B.6a)

s.t.TrE(i)σ + t− si = −Tr ρ lnσ(i) +TrE(i)σ(i), i = 0, · · · , N, (B.6b)

si ≥ 0, i = 0, · · · , N, (B.6c)

σ ∈ PPT′ (B.6d)

provides a lower bound on (B.1). For any feasible point σ∗ ∈ PPT′, −Tr ρ lnσ∗ provides an

upper bound on (B.1). For each iteration of the algorithm, we add a interior point σ(N+1) of the

Rains set to the set
{
σ(i)
}N
i=0

, which may lead to a tighter lower bound and update the feasible

point σ∗ if σ(N+1) provides a tighter upper bound. We use the variables R and R to store the

upper and lower bounds. Since R and R are nondecreasing and nonincreasing, respectively, at

each iteration, we can terminate the algorithm when R and R are close enough, say, less than

given tolerance ε. The full algorithm is presented in Algorithm 1.
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Algorithm 1 Rains bound algorithm

1: Input: bipartite state ρ ∈ S= (AB) and dimensions of subsystem dA, dB

2: Output: Upper bound R, lower bound R

3: if ρ ∈ PPT′ then
4: return R = R = 0

5: else
6: initialize ε = 10−6, N = 0, σ∗ = σ(0) = 1AB

dAdB
, R = −Tr ρ ln ρ, R = −Tr ρ lnσ∗

7: while R−R ≥ ε do
8: solve SDP (B.6) with additional constraint t ≥ R.

9: store optimal solution (t, σ) and update lower bound R = t

10: if gap between upper and lower bounds is within given tolerance, R−R ≤ ε then
11: return R, R

12: else
13: add one more point σ(N+1), and set N = N + 1

14: if −Tr ρ lnσ(N) ≤ −Tr ρ lnσ∗ then
15: update feasible point σ∗ = σ(N), and upper bound R = −Tr ρ lnσ∗

Note that for the condition σ ∈ PPT′ (σ ≥ 0,
∥∥σTB

∥∥
1
≤ 1
)
, Lemma B.1 ensures that it

can be expressed as semidefinite conditions.

Lemma B.1 σ ∈ PPT′ if and only if σ ≥ 0 and there exist operators σ+, σ− ≥ 0 such that

σTB = σ+ − σ− and Tr (σ+ + σ−) ≤ 1.

Proof If σ ∈ PPT′, then σ ≥ 0. Use the spectral decomposition σTB = σ+ − σ−, where

σ+ and σ− are positive operator with orthogonal support. Then
∣∣σTB

∣∣ = σ+ + σ− and

Tr (σ+ + σ−) =
∥∥σTB

∥∥
1
≤ 1. On the other hand, if there exist positive operators σ+ and

σ− such that σTB = σ+ − σ− and Tr (σ+ + σ−) ≤ 1, then
∥∥σTB

∥∥
1
= ‖σ+ − σ−‖1 ≤

‖σ+‖1 + ‖σ−‖1 = Tr (σ+ + σ−) ≤ 1. Thus σ ∈ PPT′. �

For given
{
σ(i)
}N
i=0

, the step 8 in Algorithm 1 is an SDP which can be explicitly given by

min t (B.7a)

s.t.TrE(i)σ + t− si = −Tr ρ lnσ(i) +TrE(i)σ(i), i = 0, · · · , N, (B.7b)

t ≥ R, si ≥ 0, i = 0, · · · , N, (B.7c)

σ, σ+, σ− ≥ 0, σTB = σ+ − σ−, Tr (σ+ + σ−) ≤ 1. (B.7d)

As for step 13, variable σ(N+1) can be given by

σ(N+1) = argmin {−Tr ρ lnσ : σ = αZ + (1− α)σ, α ∈ [0, 1]} , (B.8)
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where Z is some fixed reference point. This one-dimensional minimization can be efficiently

performed using the standard derivative-based bisection scheme [ZFG10].

Using this algorithm, we can check that the Rains bound is not additive, which has been

recently proved in [WD17b]. We also consider the states ρr in [WD17b]. Denote R1 the

lower bound calculated by our algorithm for R (ρr) and R2 the upper bound calculated by our

algorithm for R
(
ρ⊗2
r

)
. In Figure B.1, we can clearly observe that there is a strict gap between

R2 and 2R1, which implies R
(
ρ⊗2
r

)
≤ R2 < 2R1 ≤ 2R (ρr). Since the lower and upper

bounds derived from our algorithm only depend on the SDP in Eq. (B.7) and Eq. (B.8), both of

which can be solved to a very high (near-machine) precision, while the maximal gap in the plot

is approximately 10−2. Thus our algorithm provides a direct numerical evidence (not involving

any other entanglement measures) for the nonadditivity of the Rains bound.
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Figure B.1 : This figure shows the difference between the lower bound 2R1 on 2R (ρr) and the

upper bound R2 on R
(
ρ⊗2
r

)
. The solid line depicts 2R1 while the dashed line depicts R2. The

state ρr is the same defined as in Ref. [WD17b]

Remark B.2 It is worth mentioning that there is another approach recently developed to ef-

ficiently calculate the Rains bound in [FF18, FSP18]. In these works, the authors make use

of rational (Padé) approximations of the (matrix) logarithm function and then transform the

rational functions to SDPs. Without the successive refinement, their algorithm can be much

faster with relatively high accuracy. However, our algorithm is efficient enough in the case of

low dimensions. We can obtain almost the same result as Figure B.1 via both methods.
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