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Finite Block Length Analysis on Quantum
Coherence Distillation and Incoherent

Randomness Extraction
Masahito Hayashi , Fellow, IEEE, Kun Fang , and Kun Wang

Abstract— We give the first systematic study on the second
order asymptotics of the operational task of coherence distilla-
tion with and without assistance. In the unassisted setting, we
introduce a variant of randomness extraction framework where
free incoherent operations are allowed before the incoherent
measurement and the randomness extractors. We then show
that the maximum number of random bits extractable from a
given quantum state is precisely equal to the maximum number
of coherent bits distillable from the same state. This relation
enables us to derive tight second order expansions of both
tasks in the independent and identically distributed setting.
Remarkably, the incoherent operation classes that can empower
coherence distillation for generic states all admit the same second
order expansions, indicating their operational equivalence for
coherence distillation in both asymptotic and large block length
regimes. We then generalize the above line of research to the
assisted setting, arising naturally in bipartite quantum systems
where Bob distills coherence from the state at hand, aided by
the benevolent Alice possessing the other system. More precisely,
we introduce a new assisted incoherent randomness extraction
task and establish an exact relation between this task and the
assisted coherence distillation. It strengthens the one-shot relation
in the unassisted setting and confirms that this cryptographic
framework offers a new perspective to the study of quantum
coherence distillation. Likewise, this relation yields second order
characterizations to the assisted tasks. As by-products, we show
the strong converse property of the tasks above from their second
order expansions.
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I. INTRODUCTION

ACENTRAL problem of a general resource theory [1] is
resource distillation: the process of extracting canonical

units of resources from a given quantum state using a choice
of free operations. The usual asymptotic approach to studying
problems in quantum information theory is to assume that
there is an unbounded number of independent and identically
distributed (i.i.d.) copies of a source state available and that
the error measure asymptotically goes to zero. However, for
many practical applications there are natural restrictions on the
code length imposed, for example, by limitations on how much
quantum information can be processed coherently. Therefore
it is crucial to go beyond the asymptotic treatment and
understand the intricate tradeoff between different operational
parameters of concern.

In general, suppose a quantity of interest is given by
R(ρ⊗n, ε) which is a function of the sequence of states
{ρ⊗n}n∈N and the error threshold ε. The typical information-
theoretical study focuses on finding the asymptotic rate
R1(ρ) := limε→0 limn→∞ 1

nR(ρ⊗n, ε). Together with a
strong converse property, this is equivalent to expanding
R(ρ⊗n, ε) = nR1 + o(n) where R1 is called the first order
coefficient. An estimation to the order o(n) is usually unsatis-
factory in the case with limited resources, motivating us to fur-
ther investigate the second order expansion, a refined estima-
tion of R(ρ⊗n, ε) to the order o(

√
n). More precisely, we aim

to find an expansion R(ρ⊗n, ε) = nR1 +
√
nR2 + o(

√
n)

where R2 is called the second order asymptotics. To achieve
this, we shall first consider the one-shot scenario where the
source is characterized by a single instance of unstructured
quantum state, and then replace the unstructured state with
the i.i.d. state ρ⊗n to retrieve the desired second order result.

The significance of second order expansions is multifold.
First, second order expansions provide a useful approximation
for finite block length n, refining optimal rates that typi-
cally correspond to the first order asymptotics in asymptotic
expansions. Second, they determine the convergence rate to
the first order asymptotics, analogous to the relation between
the Central Limit Theorem and the Berry-Esseen Theorem,
as the latter determines the convergence rate in the former.
Finally, second order expansions can be used to derive the
strong converse property, an information-theoretic property
that rules out a possible tradeoff between the transformation
error and the rate of resulting resource of a protocol.
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In this paper, we focus on the resource theory of quantum
coherence [2] and investigate in-depth the second order asymp-
totics of the coherence distillation task under various settings.
In the following two paragraphs, we summarize the state-of-
the-art research progress of both the unassisted and assisted
coherence distillation tasks, point out the major concerns, and
present shortly our strategy to solve these concerns and the
obtained results.

Unassisted coherence distillation and randomness extrac-
tion: Quantum coherence is a physical resource that is essen-
tial for various information processing tasks [3]–[9]. A series
of efforts have been devoted to building this resource theory
in recent years [2], [10]–[13], characterizing in particular the
state transformations and operational uses of coherence in
fundamental resource manipulation protocols [5], [14]–[19].
The task of coherence distillation in the asymptotic scenario
has been first investigated in [14] and has been recently
completed in [20]. Despite their theoretical importance, the
asymptotic assumptions become unphysical in reality due to
our limited access to a finite number of copies of a given state,
making it necessary to look at non-asymptotic regimes. The
first step in this direction is to consider the one-shot setting
that distills coherence from a single instance of the prepared
state. Such a scenario has been investigated in [17] and has
been mostly completed in [19]. These works estimate the one-
shot distillable coherence under different free operations by
their corresponding one-shot entropies. The one-shot entropies
most accurately describe the operational quantity, yet they
tend to be difficult to calculate for large systems, even for
the independent and identically distributed (i.i.d.) case. This
motivates further investigations of second order expansions.

The usual approach to deriving the second order expansion
of an information task is to combine the one-shot entropy
bounds on the information quantity and the second order
expansion of the corresponding entropies (e.g., [21]–[27]).
However, as second order expansions have a strong depen-
dence on the error parameter ε, the existing one-shot entropy
bounds on distillable coherence [17], [28] are insufficient
to get a tight second order expansion. That is, the second
order coefficients in the expansion of the one-shot entropy
lower and upper bounds are often mismatched. To solve this,
we introduce a variant of randomness extraction framework in
the context of quantum coherence theory [29], [30] and build
an exact connection of this task with coherence distillation.
Such a connection provides a new perspective to the study
of the distillation process, leading to an almost tight one-shot
estimation of distillable coherence. Finally, expanding the one-
shot estimation, we obtain the desired second order expansion.

The exact one-shot relation between randomness extraction
and coherence distillation builds a bridge between two seemly
different information tasks, providing new perspectives to the
study of both problems. Moreover, our second order expan-
sions initiate the first large block length analysis in quantum
coherence theory, filling an important gap in the literature.

Assisted coherence distillation and randomness extrac-
tion: Chitambar et al. [15] originally proposed the assisted
distillation task, arising naturally in bipartite quantum systems
in which Bob aims to distill coherent bits from the state at

his hand, aided by the friendly Alice who possesses the other
system [31]–[42]. Streltsov et al. [43] pushed forward this task
by enlarging the set of free operation classes, mimicking the
bipartite operation hierarchy well studied in the entanglement
resource theory [44]. They coined this the resource theory
of coherence in distributed scenarios. Subsequent works have
been carried out both on the theoretical [45], [46] and exper-
imental [47]–[49] directions. Recently, Regula et al. [50] and
Vijayan et al. [51] independently studied the one-shot assisted
coherence distillation via different approaches, enhancing the
asymptotic results [15], [43] to the one-shot realm. However,
the existing results are unsatisfactory due to the following rea-
sons. Firstly, they made a priori assumption that the bipartite
state shared between Alice and Bob is a pure state. It contrasts
with the practical scenario that Bob only holds an extension,
rather than a purification, of Alice’s state. Secondly, they
considered a limited free operation class that Alice performs
measurements and Bob performs conditional incoherent oper-
ations. It would be meaningful to explore the power of other
free classes in the distributed incoherent operation hierarchy.
Lastly but most importantly, the previous one-shot bounds
cannot lead to tight second order asymptotics.

Our approach towards these concerns is largely inspired
by the ideas from the unassisted scenario. More specifically,
we propose a variant of randomness extraction framework
within the context of distributed quantum coherence theory,
which we call the assisted incoherent randomness extraction.
We establish an equivalence relation between this task and the
assisted coherence distillation in the one-shot regime. It uplifts
the relation between coherence distillation and incoherent
randomness extraction in the unassisted setting to the assisted
scenario. Then, we make use of this relation to draw a
complete characterization on these two tasks by proving a one-
shot lower bound on the assisted extractable randomness and
a one-shot upper bound on the assisted distillable coherence,
with matching dependence on the error threshold ε in the two
bounds. This characterization bestows us with desired second
order expansion for both tasks.

Outline and main contributions: The main contributions
of this paper are listed in Table I for references and can be
summarized as follows:

• In Section III, we first propose a variant of random-
ness extraction framework in the context of quantum
coherence theory, and then establish an exact relation
between the task of randomness extraction and the task
of quantum coherence distillation in the one-shot regime.
More precisely, we show that the maximum number of
secure randomness bits (�εO) extractable from a given
state is equal to the maximum number of coherent bits
(Cε

d,O) distillable from the same state. That is, for any
quantum state ρ, error tolerance ε ∈ [0, 1], it holds
Cε

d,O(ρ) = �εO(ρ), where free operation class O ∈
{MIO,DIO, IO,DIIO} whose definitions can be found in
Section III-A. We further give one-shot achievable and
converse bounds for �εO as well as Cε

d,O in terms of
hypothesis testing relative entropy, through which we get
the second order expansion of our information tasks.
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TABLE I

LIST OF RESULTS WITH REFERENCES OBTAINED IN THIS WORK REGARDING BOTH UNASSISTED AND ASSISTED COHERENCE DISTILLATION AND
INCOHERENT RANDOMNESS EXTRACTION TASKS. HERE O ∈ {MIO,DIO, IO,DIIO} IS A SINGLE PARTITE FREE OPERATION CLASS AND

F ∈ {LICC,LQICC, SI, SQI,QIP} IS A BIPARTITE FREE OPERATION CLASS

• In Section IV, we first propose the assisted incoherent
randomness extraction task within the quantum coherence
theory in the distributed scenario, and then set up an
equivalence relation between the assisted coherence
distillation and the assisted incoherent randomness
extraction in the one-shot regime. That is, we show that
the maximum number of coherent bits (Cε

d,QIP) that can
be distilled from a bipartite quantum state ρAB is equal
to the maximum number of secure randomness bits
(�εQIP) that can be extracted from the same state, where
QIP is the set of quantum-incoherent state-preserving
operations (cf. Section IV-A). Finally, we prove one-shot
achievability bounds for �εF and one-shot converse bounds
for Cε

d,F , where F ∈ {LICC,LQICC, SI, SQI,QIP}, in
terms of the hypothesis testing relative entropy. These,
together with the established one-shot equivalence
relation, yield a one-shot characterization to these two
quantities. Invoking the second order expansion of the
hypothesis testing relative entropy, we can get the second
order expansion of these rates.

• In Section V, we show the strong converse property of all
the investigated tasks, coherence distillation, incoherent
randomness extraction, and their assisted versions by
using the established second order expansions.

• In Section VI, we establish a series of relations
among various entropic quantities evaluated on the
dephased tripartite state ΔB(ΨRAB), where |Ψ�RAB is
a purification of ρAB and ΔB is a completely dephasing
channel on system B. These relations are essential to
our second order analysis and may find applications in
other quantum information processing tasks.

• In Appendix B, we conceive an alternative formulation
of the assisted incoherent randomness extraction.
The advantage of this alternative is that we can
establish an equivalent relation between the assisted
coherence distillation and the alternative assisted
incoherent randomness extraction for all free operation
classes under consideration. However, a second
order expansion for this alternative task is still
missing.

II. PRELIMINARIES

In this section, we define several quantities and set the nota-
tion that will be used throughout this paper. We label different
physical systems by capital Latin letters (e.g. A,B,C, L).
We often use these labels as subscripts to guide the reader
by indicating which system a mathematical object belongs to.
We drop the subscripts when they are evident in the context
of an expression (or if we are not talking about a specific
system). The corresponding Hilbert spaces of these physical
systems are denoted as HA,HB,HC ,HL. The corresponding
alphabet sets are denoted by the same letters in mathcal font
(e.g., A,B, C,L). For example, A := {1, 2, · · · , |A|} where
|A| is the dimension of Hilbert space HA. Let {|a�}a∈A be
the computational basis on Hilbert space HA. The set of
positive semidefinite operators on HA is denoted as P(A).
The set of quantum states, which are positive semidefinite
operators with unit trace, on HA is denoted as S(A). Denote
the completely mixed state on HA as πA. The identity operator
and the identity map are denoted as 1 and id, respectively.
A quantum operation ΛA→C is a completely positive trace-
preserving (CPTP) map from S(A) to S(C). All logarithms
in this work are taken base two.

For any ρ, σ ∈ P , the purified distance P
is defined in terms of the generalized quantum
fidelity F as P (ρ, σ) :=

√
1 − F (ρ, σ)2 with

F (ρ, σ) := �√ρ√σ�1 +
√

(1 − Tr ρ)(1 − Trσ) [52].
For any ρ ∈ S and σ ∈ P , their quantum hypothesis
testing relative entropy is defined as Dε

H(ρ�σ) :=
− logmin{TrMσ : TrMρ ≥ 1 − ε, 0 ≤ M ≤ 1}
[53]–[55]. The smooth max-relative entropy is defined as
Dε

max(ρ�σ) := minP (ρ̃,ρ)≤ε inf{λ : ρ̃ ≤ 2λσ} [56]. The
second order expansions of quantum hypothesis testing relative
entropy [22], [23] and smooth max-relative entropy [22] are,
respectively, given by

Dε
H(ρ⊗n�σ⊗n)

= nD(ρ�σ) +
√
nV (ρ�σ)Φ−1(ε) +O(log n), (1)

Dε
max(ρ

⊗n�σ⊗n)

= nD(ρ�σ) −
√
nV (ρ�σ)Φ−1(ε2) +O(log n), (2)
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where D(ρ�σ) := Tr[ρ(log ρ− log σ)] is the quantum relative
entropy, V (ρ�σ) := Tr[ρ(log ρ − log σ)2] − D(ρ�σ)2 is the
quantum information variance and Φ−1 is the inverse of the
cumulative distribution function of a standard normal random
variable.

For any σ ∈ P , we denote the number of distinct non-zero
eigenvalues of σ by ν(σ). Let λmax and λmin be the maximum
and minimum non-zero eigenvalues of σ, respectively. Set
λ(σ) := logλmax(σ)− log λmin(σ). The following θ function
is commonly used in one-shot information quantities:

θ(σ) := min{2�λ(σ)	, ν(σ)}. (3)

III. QUANTUM COHERENCE DISTILLATION AND

INCOHERENT RANDOMNESS EXTRACTION

In this section, we first review the resource theory of quan-
tum coherence and the operational task of quantum coherence
distillation. We then introduce a variant of the randomness
extraction framework in the context of quantum coherence
theory.

A. Resource Theory of Quantum Coherence

The resource theory of coherence consists of the follow-
ing ingredients [13]: the set of free states and the set of
free operations, that is, a set of quantum operations that
do not generate coherence. The free states, so-called inco-
herent states, are the quantum states which are diagonal in
a given reference orthonormal basis {|b�}b∈B. We will use
ΔB(·) :=

∑
b∈B |b�
b| · |b�
b| to denote the diagonal map

(completely dephasing channel) in this basis.1 Then the set
of incoherent states is denoted as I(B) := {ρ ∈ S(B) :
ρ = ΔB(ρ)}. For convenience, we will also use the cone
of diagonal positive semidefinite matrices, which is denoted
as I∗∗(B) := {X ∈ P(B) : X = ΔB(X)}. The maximal
resource state on HB is the maximally coherent state (MCS)
|ΨB� := 1/

√|B|∑|B|
b=1 |b� with dimension |B|. Denote its

density operator as ΨB := |ΨB�
ΨB|. The resource theory of
coherence is known not to admit a unique physically-motivated
choice of allowed free operations [2], [14], [57]–[59]. The
relevant choices of free operations that we will focus on are:
maximally incoherent operations (MIO) [10], defined to be all
operations Λ such that Λ(ρ) ∈ I for every ρ ∈ I; dephasing-
covariant incoherent operations (DIO) [57], [58], which are
maps Λ such that Δ ◦ Λ = Λ ◦ Δ; incoherent operations
(IO) [13], which admit a set of incoherent Kraus operators
{Kl} such that KlρK

†
l ∈ I∗∗ for all l and ρ ∈ I; the inter-

section of IO and DIO is denoted as DIIO := DIO ∩ IO [28].
Another two classes of free operations commonly studied
are strictly incoherent operations (SIO) [14] and physically
incoherent operations (PIO) [57]. We do not investigate further
details of SIO and PIO, as it has been recently shown that
quantum coherence is generically undistillable under these two
classes [20], [60]. Finally, the inclusion relations between free
operation classes can be summarized as DIIO � IO � MIO,

1In this section, we assume that Bob instead of the commonly used Alice
is the main party of all the operations, thus the symbol of our notations starts
from the letter B. We do so to keep consistent with the later assisted scenario
in which Alice serves as assistance.

Fig. 1. Schematic diagram of an incoherent randomness extraction protocol
given by (Λ,Δ, f). |ψ�BR is a purification of ρB . UΛ

B→CE is the Stine-
spring representation of ΛB→C ∈ O. Δ is a completely dephasing channel
and f is a hash function from alphabet C to L. ρ[Λ], ρ[Λ,Δ] and ρ[Λ,Δ, f ]
are respectively the output states in each step of the protocol. The systems in
blue belong to Bob and the systems in gray belong to Eve.

DIIO � DIO � MIO, while IO and DIO are not contained by
each other.

B. Framework of Quantum Coherence Distillation

The task of coherence distillation aims to transform a given
quantum state ρB to a maximally coherent state ΨC such that
the obtained maximally coherent state has dimension as large
as possible and that the transformation error is within a given
threshold. More formally, for any free operation class O, any
given state ρB ∈ S(B) and error threshold ε ∈ [0, 1], the
one-shot distillable coherence is defined as

Cε
d,O(ρB) := max

Λ∈O
{log |C| : P (ΛB→C(ρB),ΨC) ≤ ε} . (4)

Note that some previous works (e.g., [17], [18], [28]) esti-
mate the performance of distillation by the error criterion
P (ΛB→C(ρB),ΨC) ≤ √

ε. Here we use the definition in (4)
for convenience.

C. Framework of Incoherent Randomness Extraction

The task of incoherent randomness extraction aims to obtain
as many random bits as possible in Bob’s laboratory that is
secure from the possible adversary Eve. A general incoherent
randomness extraction protocol is characterized by a triplet
(Λ,Δ, f), where Λ is an incoherent operation in a certain
class, Δ is a completely dephasing channel and f is a hash
function. A detailed procedure of randomness extraction by
(Λ,Δ, f) is depicted in Figure 1. Here, we assume that Eve
has unlimited power in her system and all the information of
Eve about Bob’s systems is encoded in a purification. That is,
for any given quantum state ρB held by Bob, we denote its
purification as 2

|ψ�BR :=
∑
b∈B

√
pb|b�B|ψb�R with TrR |ψ�
ψ|BR = ρB, (5)

where R is the reference system held by Eve. Then the
extraction protocol follows three steps:

1) Bob first performs a free operation ΛB→C ∈ O on his
part of the system. If he uses a quantum operation whose
final state is always a specific incoherent state, say the
maximally mixed state πC , the resulting conditional
entropy equals log |C|, which increases unlimitedly as

2Note that |ψb� are not necessarily orthogonal to each other.
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|C| increases. To avoid such a trivial advantage for
Bob, similar to the study of quantum key distribution
[61]–[63] and private capacity in quantum Shannon
theory [64], we assume that the environment system HE

of the free operation Λ is also controlled by Eve. This is
because it is not easy to exclude the possibility that Eve
accesses a system that interacts with Bob’s operation.
Hence Eve has control over two systems HR and HE

in total. To cover such a worst scenario, we consider
the Stinespring representation UΛ of Λ, where UΛ is
the isometry from HB to HC ⊗HE . 3 After the action
of Λ, the total output state is a pure state

ρ[Λ]CER := UΛ|ψ�
ψ|(UΛ)†. (6)

2) Next, Bob performs an incoherent measurement, with
respect to the computational basis, on his part of the
state. The output state is then given by

ρ[Λ,Δ]CER := ΔC(ρ[Λ]CER). (7)

3) Finally, a hash function f is applied on his part of the
system to extract the randomness that is secure from
Eve. For any deterministic function f : C → L, and any
classical-quantum (CQ) state ρCR =

∑
c∈C tc|c�
c|C ⊗

ρR|c, denote ρf(C)R :=
∑

c∈C tc|f(c)�
f(c)|L ⊗ ρR|c.
Then the output state in the final step is given by

ρ[Λ,Δ, f ]LER := ρ[Λ,Δ]f(C)ER. (8)

To quantify the security of randomness in a quantum state
ρBR with respect to the reference system HR, we employ the
following measure:

dsec(ρBR|R) := min
σR∈S(R)

P (ρBR, πB ⊗ σR). (9)

This measure quantifies the closeness of a given quantum state
ρBR to an ideal state πB which contains perfect randomness
and is decoupled from the reference system HR. Based on this
security measure, the one-shot extractable randomness under
given free operation Λ ∈ O is defined as

�εΛ(ρB) := max
f

{
log |L| : dsec(ρ[Λ,Δ, f ]LER|ER) ≤ ε

}
.

(10)

The one-shot extractable randomness under free operation
class O is then defined by optimizing all possible choices
of operation Λ in O:

�εO(ρB) := max
Λ∈O

�εΛ(ρB). (11)

Note that the identity map id is always free in coherence the-
ory. Thus (id,Δ, f) is a valid incoherent randomness extrac-
tion protocol for any f , which was studied in [22, Section III].
That is, Bob directly performs an incoherent measurement Δ
on his given state ρB . In this case, the environment system HE

reduces to trivial and system HC = HB . It has been shown
in [22, Theorem 8] that for any η ∈ (0, ε],

Hε−η
min (B|R)σ + 4 log η − 3 ≤ �εid(ρB) ≤ Hε

min(B|R)σ,

(12)

3Note that a free operation does not necessarily admit a free dilation [57].
Thus UΛ is not necessarily incoherent though Λ is free.

where

Hε
min(B|R)ρ := max

ωR∈S(R)
−Dε

max(ρBR�1B ⊗ ωR) (13)

is the conditional min-entropy and σBR := ρ[id,Δ] is the
dephased classical-quantum state in the protocol.

Remark 1: On the one hand, the randomness extraction
protocol without using incoherent operations (e.g., the one
considered in [28, Figure 1.(b)]) is too restrictive, as such
a framework does not make good use of free resources at
hand. On the other hand, an extraction protocol that does not
consider Eve’s attack on the free operation Λ is too trivial
because Bob can generate an arbitrary amount of randomness
by using a free replacer channel Λ(·) = πC . Hence, the setup
in Figure 1 contributes to a reasonable randomness extraction
framework in the context of quantum coherence theory.

Remark 2: Note that performing incoherent unitary opera-
tions in the first step does not make any difference with the
protocol by identity map id. This justifies our consideration
of general incoherent operations. More precisely, for any
incoherent unitary U , it holds �εid(ρB) = �εU(ρB) with U(·) :=
U(·)U †. To see this, recall that any incoherent unitary on HB

can be written as UB =
∑

b∈B e
iθb |g(b)�
b| with a permutation

g and phase factors eiθb [2, Section II.A.2]. Then a direct cal-
culation gives that ρ[U ,Δ, f ] =

∑
b∈B pb|f(g(b))�
f(g(b))|⊗

|ψb�
ψb| = ρ[id,Δ, f ◦g], implying the equivalence of extrac-
tion protocols (U ,Δ, f) and (id,Δ, f ◦ g). Then �εid(ρB) =
�εU(ρB) follows by definition.

Remark 3: The randomness extraction framework proposed
here is also closely related to the one in [30]. But we should
note the following subtle differences: (i) the independence of
the resulting randomness is quantified using the trace distance
in [30] instead of the purified distance we use in (9). Though
the trace distance can give us the nice property of universal
composability (see [65]), the choice of purified distance in (9)
is crucial for obtaining the exact relation between coherence
distillation and randomness extraction in the next section,
which then becomes a key ingredient to proving the second
order expansions; (ii) while the paper [30] discusses the
large block length regime, its analysis focuses the exponential
decreasing rate for the amount of the leaked information ε, but
we will put more focus on the rate of extractable randomness
in the one-shot and large block length regime with constant ε.

The references [29] and [30, Section VI] also address
the randomness extraction via incoherent operations but with
additional constraints on Eve, which are different from our
setting here.

D. Relation Between Coherence Distillation and Randomness
Extraction

In this section, we present an exact connection between
incoherent randomness extraction and coherence distillation,
the proof of which showcases a nice one-to-one correspon-
dence between protocols in these tasks.

We first present a method of constructing a coherence dis-
tillation protocol from a given randomness extraction protocol
with the same performance, which will be used in showing the
one-shot connection. We note that this method has essentially
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been proposed in the proof of [28, Theorem 4], using the trace
distance in the security measure. Whereas in our formulation,
the purified distance is preferred and is crucial in establishing
tight second order asymptotics.

Proposition 1: For any quantum state ρB ∈ S(B), error
tolerance ε ∈ [0, 1] and incoherent randomness extraction
protocol (id,Δ, f) such that dsec(ρ[id,Δ, f ]LR|R) ≤ ε, there
exists a quantum operation Γ : S(B) → S(L) such that
Γ ∈ DIIO and P (ΓB→L(ρB),ΨL) ≤ ε.

The proof can be found in Appendix A.
Theorem 1 (Exact One-Shot Connection): For any quantum

state ρB ∈ S(B), error tolerance ε ∈ [0, 1] and free operation
class O ∈ {MIO,DIO, IO,DIIO}, the following equation
holds

Cε
d,O(ρB) = �εO(ρB). (14)

Remark 4: Recall that there is an exact characterization
of one-shot distillable coherence under MIO and DIO oper-
ations [17, Proposition 2]. Together with the above (14),
we have the following chain of equalities:

Cε
d,MIO(ρB) = Cε

d,DIO(ρB) = �εMIO(ρB) = �εDIO(ρB)
= min

X=Δ(X)
Tr X=1

Dε
H(ρB�X) − δ, (15)

where the minimum is taken over all Hermitian operators
X on HB satisfying the conditions and δ ≥ 0 is the least
number such that the solution corresponds to the logarithm of
an integer.

Remark 5: A one-shot relation between distillable coher-
ence and extractable randomness has appeared in [28, Equation
(80)]. Unlike the precise equation in (14), the relation in [28]
is given in the form of one-shot lower and upper bounds with
unmatched error dependence and additional correction terms.
However, the clean form in (14) plays a pivotal role in deriving
the second order expansions where the error dependence
matters.

Proof of Theorem 1: We first show the direction
�εO(ρB) ≥ Cε

d,O(ρB). Denote Cε
d,O(ρB) = log |C| and

suppose that this rate is achieved by a free operation
Λ : S(B) → S(C) such that P (Λ(ρB),ΨC) ≤ ε. Consider a
randomness extraction protocol (Λ,Δ, id). Note that ρ[Λ]CER

is a purification of Λ(ρB). By Uhlmann’s theorem [66] there
exists an extension of ΨC , denoted as ΨC ⊗ σ∗

ER, such that
P (Λ(ρB),ΨC) = P (ρ[Λ]CER,ΨC ⊗ σ∗

ER). Then we have

dsec (ρ[Λ,Δ, id]CER|ER) (16)

= min
σER∈S(ER)

P (ΔC(ρ[Λ]CER), πC ⊗ σER) (17)

≤ P (ΔC(ρ[Λ]CER), πC ⊗ σ∗
ER) (18)

= P (ΔC(ρ[Λ]CER),ΔC(ΨC ⊗ σ∗
ER)) (19)

≤ P (ρ[Λ]CER,ΨC ⊗ σ∗
ER) (20)

= P (Λ(ρA),ΨC) (21)

≤ ε, (22)

where the second equality follows by ΔC(ΨC) = πC , the
second inequality follows by the data-processing inequality
of purified distance, the third equality follows from the

assumption of σ∗
ER. Thus we know that log |C| is a achiev-

able randomness extraction rate, which implies �εO(ρB) ≥
log |C| = Cε

d,O(ρB).
For the other direction, we denote �εO(ρB) = log |L| and

suppose that this rate is achieved by an extraction protocol
(Λ,Δ, f) with Λ ∈ O. Observe that applying the protocol
(Λ,Δ, f) on quantum state ρB is the same as applying a
protocol (id,Δ, f) on Λ(ρB) with purification ρ[Λ]CER and
reference system ER. By Proposition 1 there exists a quantum
operation Γ : S(C) → S(L) such that Γ ∈ DIIO and
P (Γ(Λ(ρB)),ΨL) ≤ ε. Since Γ ∈ DIIO ⊆ O and Λ ∈ O,
we have Γ◦Λ ∈ O and this operation achieves the distillation
rate log |L|. This implies Cε

d,O(ρB) ≥ log |L| = �εO(ρB) and
completes the proof. �

E. Second Order Analysis

In this section, we discuss the second order expansions
of distillable coherence and extractable randomness. For this,
we first show a one-shot characterization of distillable coher-
ence by the hypothesis testing relative entropy.

Proposition 2 (One-Shot Characterization): For any quan-
tum state ρB ∈ S(B), free operation class O ∈
{MIO,DIO, IO,DIIO}, error tolerance ε ∈ (0, 1) and 0 <
η < ε, 0 < δ < min{(ε− η)2/3, 1 − (ε− η)2}, it holds

D
(ε−η)2−2δ
H (ρB� Δ(ρB)) − c(ρB, ε, δ, η)

≤ Cε
d,O(ρB) ≤ Dε2

H (ρB�Δ(ρB)), (23)

where c(ρB, ε, δ, η) = log θ(ρB) + log θ(Δ(ρB)) + log((ε −
η)2 − δ) − log(δ5η4(ε− η)2(1 − (ε− η)2 + δ)) + 11.

Proof: The upper bound follows from a known result
in [17, Proposition 2] (see also (15)). Choosing a feasible
solution X as Δ(ρ), we have Cε

d,O(ρB) ≤ Cε
d,MIO(ρB) ≤

Dε2

H (ρB�Δ(ρB)) where the first inequality follows by the
fact that O ⊆ MIO. As for the lower bound, we have
Cε

d,O(ρB) = �εO(ρB) ≥ �εid(ρB) ≥ Hε−η
min (B|R)σ +4 log η− 3

where the first equality follows from Theorem 1, the first
inequality follows since id ∈ O, the second inequality follows
from (12). By (101) of Proposition 4 we can further lower
bound the conditional min-entropy by the hypothesis testing
relative entropy. This gives us the one-shot lower bound stated
in (23). �

Now we are ready to present our main result in this section.
Theorem 2 (Second Order Expansion): For any quantum

state ρB ∈ S(B), error tolerance ε ∈ (0, 1) and free operation
class O ∈ {MIO,DIO, IO,DIIO}, the following second order
expansions hold

Cε
d,O(ρ⊗n

B ) = �εO(ρ⊗n
B ) = nD(ρB�Δ(ρB))

+
√
nV (ρB�Δ(ρB))Φ−1(ε2) + O(logn), (24)

where Φ−1 denotes the inverse of the cumulative distribution
function of a standard normal random variable.

Proof: The first equality follows from the one-shot rela-
tion in Theorem 1. We now prove that the second order
expansion holds for Cε

d,O(ρ⊗n
B ). This can be seen as a direct

consequence of expanding the one-shot characterization in
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Proposition 2. Given the i.i.d. state ρ⊗n
B , we have

Cε
d,O(ρ⊗n

B ) ≤ Dε2

H (ρ⊗n
B �Δ(ρB)⊗n). (25)

Expanding the r.h.s. via formula (1) we have the second order
upper bound. On the other hand, we have

Cε
d,O(ρ⊗n

B ) ≥ D
(ε−η)2−2δ
H (ρ⊗n

B �Δ(ρB)⊗n) − c(ρ⊗n
B , ε, δ, η).

(26)

By definition (3), θ(σ⊗n) ≤ 2�λ(σ⊗n)	 = 2�nλ(σ)	 which
scales at most linearly in n. Choosing η and δ proportional
to 1/

√
n, we know that the correction term c(ρ⊗n, ε, δ, η) ∈

O(log n) and Φ−1((ε − η)2 − 2δ) = Φ−1(ε2) + O(1/
√
n).

Thus expanding the r.h.s. of (26) via formula (1) leads to
the second order lower bound which matches exactly with the
upper bound. �

Remark 6: From Proposition 4 in Section VI, the first
and second order asymptotics can also be written as con-
ditional entropy H(B|R)σBR and conditional information
variance V (B|R)σBR respectively, where σBR = ρ[id,Δ]
is the dephased classical-quantum state from the randomness
extraction protocol.

Remark 7: Comparing the second order expansion of
�εid(ρ

⊗n
B ) in [22, Corollary 16] and the result above, we can

conclude that a general incoherent randomness extraction pro-
tocol (Λ,Δ, f) has no advantage over the protocol (id,Δ, f)
in the sense that they lead to the same first order asymptot-
ics [30] and the second order asymptotics of extractable ran-
domness. However, this does not rule out a possible advantage
in the third or higher order terms.

Remark 8: The distillable coherence under operation classes
MIO/DIO/IO/DIIO not only have the same first order asymp-
totics as observed in [14], [17], [28] but also have the same
second order asymptotics, indicating that they are equivalently
powerful for coherence distillation in the large block length
regime. The same argument goes to the incoherent randomness
extraction.

Remark 9: For any quantum state ρB =
∑

i,j ρij |i�
j|B
written in the computational basis, we can assign it to a
bipartite maximally correlated state ρmc :=

∑
i,j ρij |i�
j|A ⊗

|i�
j|B . The second order expansion of distillable entan-
glement of ρ⊗n

mc under local operations and classical com-
munication (LOCC) is also given by nD(ρ�Δ(ρ)) +√
nV (ρ�Δ(ρ))Φ−1(ε2) + O(log n) [26, Proposition 10].

Together with the result in Theorem 2, the coincidence of
these second order expansions leads to a new evidence to the
long-standing conjecture (see e.g. [2, Section II.D]) that any
incoherent operation acting on a state ρB is equivalent to a
LOCC operation acting on the associated maximally correlated
state ρmc.

Remark 10: Compared with the one-shot estimation in [28,
Equations (37,46,47)], we can verify that their upper and lower
bounds on the one-shot distillable coherence agree in the first
order term but disagree in the second order term. In particular,
the dependence on ε is qualitatively different in their upper and
lower bounds. Thus, one could certainly argue that the bounds
in [28] are not as tight as they should be in the asymptotic
limit.

IV. ASSISTED COHERENCE DISTILLATION AND ASSISTED

INCOHERENT RANDOMNESS EXTRACTION

In this section, we first introduce the resource theory
of quantum coherence in the distributed scenario and then
formally define two different resource processing tasks with
assistance from the environment within this resource theory.
The first is the assisted quantum coherence distillation initially
investigated in [15], [43]. The second is a variant of the ran-
domness extraction task adapted into the distributed scenario,
which plays a crucial role in establishing the second order
characterization of the former task.

A. Resource Theory of Quantum Coherence in Distributed
Scenarios

Motivated by the local operations and classical
communication known from entanglement theory [44],
Chitambar et al. [15] seminally introduced the framework
of local incoherent operations and classical communication
(LICC) in the distributed resource theory of quantum
coherence, which was later further explored by Streltsov
et al. [43]. In this scenario, there are two separate parties,
Alice and Bob, that are connected via a classical channel and
restricted to performing local incoherent operations. We think
of Alice as an assistant who helps Bob to manipulate
coherence. Here we briefly summarize several sets of free
bipartite quantum operations widely studied in the distributed
resource theory of coherence and refer the interested readers
to [43], [67] for more details:

• LICC: the set of local incoherent operations and classical
communication [15]. That is, Alice and Bob perform
local incoherent operations and share their outcomes via
a classical channel. Throughout this work, we assume
without loss of generality that the free local operations
are chosen to be MIO 4;

• LQICC: the set of local quantum-incoherent opera-
tions and classical communication [15]. That is, Alice
can adopt arbitrary quantum operations while Bob is
restricted to quantum incoherent operations, and they
share the outcomes via a classical channel;

• SI: the set of separable incoherent operations [43]:

ΛAB→A�B�(·) :=
∑

i

(Ai ⊗Bi)(·)(Ai ⊗Bi)†, (27)

where both Ai and Bi are incoherent Kraus operators
satisfying

∑
i A

†
iAi ⊗B†

iBi = 1AB;
• SQI: the set of separable quantum-incoherent opera-

tions [43] of the form (27), where Bi are incoherent
Kraus operators satisfying

∑
i A

†
iAi ⊗B†

iBi = 1AB .

The two free classes LQICC and SQI lead to the same set of
free states, which is called the quantum-incoherent states [15],
[43] (system A is quantum and system B is incoherent) and

4One may choose other sets of local incoherent operations, say SIO or IO,
but all of these free local operations lead to the same result in the distributed
setting [50, Section III]. We choose MIO since QIP reduces to MIO in the
single partite scenario.
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bears the form

QI(A:B) :=

{
σAB =

∑
b∈B

pbσ
b
A ⊗ |b�
b|B :

pb ≥ 0,
∑
b∈B

pb = 1, σb
A ∈ S(A)

}
. (28)

This motivates us to define the maximal set of free opera-
tions that preserve QI, the set of quantum-incoherent state
preserving operations QIP [67]:

QIP :=
{
ΛAB→A�B� a quantum operation:

∀σAB ∈ QI, ΛAB→A�B�(σAB) ∈ QI
}
. (29)

By definition the following inclusion relations hold:

LICC ⊆ LQICC ⊆ SQI ⊆ QIP,

LICC ⊆ SI ⊆ SQI ⊆ QIP. (30)

In the following, we assume F be some chosen free bipar-
tite operation class in {LICC,LQICC, SI, SQI,QIP}, which is
different from the free class O ∈ {MIO,DIO, IO,DIIO} in
the previous section.

B. Framework of Assisted Coherence Distillation

In the task of assisted coherence distillation, Alice and Bob
work together to transform a given quantum state ρAB (not
necessarily pure) to an MCS in the system B such that the
error is within certain threshold and the obtained MCS has
dimension as large as possible, under the constraint that the
available quantum operations are chosen from F . We call this
task the assisted coherence distillation since we can think of
Alice as a helpful environment which holds an extension ρAB

of ρB possessing a certain amount of quantum coherence. See
Figure 2 for illustration. More formally, for any free operation
class F , any given state ρAB ∈ S(AB) and error tolerance
ε ∈ [0, 1], the one-shot assisted distillable coherence of ρAB

is defined as

Cε
d,F(ρAB) := max

{
log |B�| : (31)

P (TrA� Λ(ρAB),ΨB�) ≤ ε, ΛAB→A�B� ∈ F
}
,

where system A� is at Alice’s hand, system B� is at Bob’s
hand, and |ΨB�� is an MCS in B�.

C. Framework of Assisted Incoherent Randomness Extraction

The task of assisted incoherent randomness extraction aims
to obtain as many random bits as possible at Bob’s laboratory
that is secure from possible attackers such as Eve, under
the assistance of a helpful friend Alice. In the beginning,
Alice and Bob share a bipartite quantum state ρAB with
purification |ψ�RAB such that the reference system R held
by Eve. A general assisted incoherent randomness extraction
protocol is characterized by a triplet (Λ,Δ, f), where Λ ∈ F ,
and is composed of three steps:

1) Alice and Bob perform a free operation ΛAB→A�B� ∈ F
on their joint system. Let UAB→A�B�E be a Stinespring

Fig. 2. Schematic diagram of the assisted coherence distillation. Alice and
Bob together perform a free bipartite quantum operation ΛAB→A�B� ∈ F
to distill an MCS |ΨB� �. The systems in red belong to Alice and the systems
in blue belong to Bob. The shaded box depicts a one-way LQICC strategy
in which Alice performs a measurement MA→X and sends the outcome x
to Bob. Conditioned on x, Bob performs an incoherent operation Λx

B→B� to
distill |ΨB� �.

Fig. 3. Schematic diagram of an assisted incoherent randomness extraction
protocol given by [Λ,Δ, f ]. The systems in red belong to Alice, the systems
in blue belong to Bob, and the systems in gray belong to Eve.

isometry representation of Λ. We assume the environ-
ment system E of Λ is also controlled by Eve. Since
Alice is a friend of Bob, Eve has no access to system
A�. Hence Eve has control over two systems ER. After
the action of Λ, the whole system is in a pure state
ρ[Λ]A�B�ER := UAB→A�B�E(|ψ�
ψ|RAB)U †

AB→A�B�E .

(32)

2) Bob dephases system B� via the dephasing channel ΔB� .
This yields the classical-quantum state

ρ[Λ,Δ]A�B�ER :=ΔB�(ρ[Λ]A�B�ER) (33)

=
∑
b∈B

pb|b�
b|B� ⊗ σb
A�ER, (34)

where pb := Tr
b|ρ[Λ]A�B�ER|b� and σb
A�ER :=


b|ρ[Λ]A�B�ER|b�/pb.
3) A hash function f is applied on B� to extract the

randomness that is secure from Eve, leading to the final
output state

ρ[Λ,Δ, f ]A�LER :=ρ[Λ,Δ]A�f(B�)ER (35)

=
∑
b∈B

pb|f(b)�
f(b)|L ⊗ σb
A�ER.

(36)

A detailed procedure of the assisted randomness extraction via
(Λ,Δ, f) is depicted in Figure 3.

Using the security measure (9), the one-shot assisted
extractable randomness of ρAB via Λ is defined as

�εΛ(ρAB) := max
f

{log |L| : dsec (ρ[Λ,Δ, f ]LER|ER) ≤ ε} .
(37)
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Correspondingly, the one-shot assisted extractable randomness
of ρAB is defined as

�εF(ρAB) := max
Λ∈F

�εΛ(ρAB). (38)

Notice that the identity map idAB→AB is free in this
distributed framework, thus (idAB→AB,ΔB, f) is an valid
assisted incoherent randomness extraction protocol for any
hash function f . In this protocol, Bob does not perform any
assisted incoherent operation and directly dephases his state
ψB ≡ TrRA ψRAB via ΔB . Hence, the environment system
HE ceases to exist and we concern with the extractable ran-
domness in state ΔB(ψRB) that is secure from R. Following
the argument around (12), we conclude for any η ∈ (0, ε] that

�εF(ρAB) ≥ Hε−η
min (B|R)σ + 4 log η − 3, (39)

where σRAB := ΔB(ψRAB) is the dephased classical-
quantum state and Hε

min is defined in (13).
Remark 11: In the above assisted randomness extraction

framework, we do not require that the extracted randomness by
Bob is secure from Alice. That is, L and A� may be classically
correlated in the output state ρ[Λ,Δ, f ]A�LER (cf. the shaded
area of Figure 3). This assumption is reasonable since we
regard Alice as a benevolent friend of Bob who aims to extract
randomness. We only require that the extracted randomness be
secure from the evil Eve who controls the systems ER.

Remark 12: Assume that Bob ignores the assistance from
Alice, i.e., Bob performs a free operation ΛB→B� ∈ DIIO
(which is also free in the assisted framework) to extract
randomness without touching A, we recover a slightly more
general randomness extraction framework than that was inves-
tigated in Section III-C by allowing the state shared between
B and the reference system R to be a mixed state ψRB =
TrA ψRAB . Whereas in Section III-C, ψRB is assumed to be
pure a priori.

Remark 13: Recently, Yang, Horodecki and Winter initiated
the research of distributed private randomness distillation [68],
in which Alice and Bob trust each other and collaborate
to extract independent randomness private against Eve. Our
assisted randomness extraction task is different from theirs
mainly in two aspects: First, we do not require that Alice
and Bob share independent randomness. All we need is that
Bob possesses randomness private against Eve. Second, our
free operations are naturally motivated within the resource
theory of quantum coherence towards the distributed scenario,
which is different from their closed local operations and
dephasing channel communication. They mentioned in the
Outlook section that the distributed randomness extraction
under the framework of coherence theory is a notable topic to
pursue. Our assisted randomness extraction task investigated
here is the first step towards this direction.

D. Relation Between Assisted Coherence Distillation and
Assisted Incoherent Randomness Extraction

We present an equivalent relation between the assisted
coherence distillation and the assisted incoherent randomness
extraction in the one-shot regime, extending Proposition 1 to
the assisted scenario.

Theorem 3 (Exact One-Shot Connection): Let ρAB be a
bipartite quantum state and ε ∈ [0, 1]. It holds that

Cε
d,QIP(ρAB) = �εQIP(ρAB). (40)

The proof of Theorem 3 is divided into two pieces: we first
conclude the “≤” direction in Lemma 1 and then prove the
“≥” direction in Lemma 2. Actually, for the “≤” direction,
we can obtain a much stronger statement that Cε

d,F(ρAB) ≤
�εF(ρAB) for arbitrary F . That is, the optimal rate of assisted
randomness extraction is always larger than the optimal rate
of assisted coherence distillation.

Lemma 1: Let F ∈ {LICC,LQICC, SI, SQI,QIP}. Let ρAB

be a bipartite quantum state and ε ∈ [0, 1]. It holds that

Cε
d,F(ρAB) ≤ �εF(ρAB). (41)

Proof: This is shown by the same technique employed
in proving Theorem 1. Nevertheless, we write down
the details for completeness. Let Cε

d,F(ρAB) = logM
and let ΛAB→A�B� ∈ F achieves this rate, i.e.,
P (TrA� ΛAB→A�B�(ρAB),ΨB�) ≤ ε and |B�| = M . Con-
sider the following assisted randomness extraction protocol
(Λ,Δ, id), where the hash function is chosen as the identity
map id. Since ρ[Λ]A�B�ER purifies ΛAB→A�B�(ρAB) (it also
purifies TrA� ΛAB→A�B�(ρAB)) and ΨB� is a pure state, the
Uhlmann’s theorem [66] guarantees that there exists a quantum
state σ∗

A�ER in A�ER such that

P (TrA� ΛAB→A�B� (ρAB),ΨB�)
= P (ρ[Λ]A�B�ER,ΨB� ⊗ σ∗

A�ER). (42)

Consider the following chain of inequalities regarding state
ρ[Λ]LER:

dsec (ρ[Λ,Δ, id]LER|ER)
:= min

σER∈S(ER)
P (ρ[Λ,Δ, id]LER, πL ⊗ σER) (43)

(a)

≤ P (ρ[Λ,Δ, id]LER, πL ⊗ σ∗
ER) (44)

(b)
= P ((ΔB� ⊗ TrA�)(ρ[Λ]A�B�ER),

(ΔB� ⊗ TrA�)(ΨB� ⊗ σ∗
A�ER)) (45)

(c)

≤ P (ρ[Λ]A�B�ER,ΨB� ⊗ σ∗
A�ER) (46)

(d)
= P (TrA� ΛAB→A�B�(ρAB),ΨB�) (47)

≤ ε, (48)

where σ∗
ER := TrA� σA�ER in (a), (b) follows from L ≡ B�

and ΔB�(ΨB�) = πB� , (c) follows from the data-processing
of purified distance, and (d) follows from (42). That is, logM
is an achievable assisted randomness extraction rate, yielding
the desired inequality. �

The “≥” direction in (40) turns out to be more difficult.
We first present a technical result that is utilized in the proof
of this direction. This result is of independent interest as it
offers a systematic method to construct an assisted coherence
distillation protocol from a given assisted randomness extrac-
tion protocol (that does not use free operations) with the same
performance.
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Proposition 3: Let idAB→AB is the identity map. Given an
assisted randomness extraction protocol (id,Δ, f) such that
dsec(ρ[id,Δ, f ]LR|R) ≤ ε, we can construct from the protocol
a quantum operation Γ : AB → L such that Γ ∈ QIP and
P (ΓAB→L(ρAB),ΨL) ≤ ε, where L is in Bob’s possession.

The proof is given at the end of this section.
Remark 14: We emphasize that this technical result holds

for the QIP class, i.e., we can only show that the devised
quantum operation Γ belongs to QIP. This limits us to
enhance Theorem 3 (more concretely Lemma 2 below) to other
free classes of operations. It remains an interesting problem
whether one can further construct a distillation operation Γ
that belongs to a less powerful free class such as LICC. As
a possible solution, we conceive an alternative definition of
the assisted incoherent randomness extraction task in Appen-
dix B. For this new variant, we can establish the equivalence
relation (40) for all free operation classes under consideration.
However, we have difficulty in obtaining one-shot achievability
bound for that new task; the lower bound concluded in (39)
does not hold anymore. We left it as an open problem to
obtain complete characterization (one-shot, second order, and
asymptotic analyses) for that task.

Lemma 2: Let ρAB be a bipartite quantum state and
ε ∈ [0, 1]. It holds that

Cε
d,QIP(ρAB) ≥ �εQIP(ρAB). (49)

Proof: Let �εQIP(ρAB) = log |L| and let the randomness
extraction protocol (Λ,Δ, f) with ΛAB→A�B� ∈ QIP achieves
this rate, i.e., dsec (ρ[Λ,Δ, f ]LER|ER) ≤ ε. The key obser-
vation is that applying the randomness extraction protocol
(Λ,Δ, f) on quantum state ρAB is the same as applying the
randomness extraction protocol (id,Δ, f) on quantum state
σA�B� ≡ ΛAB→A�B�(ρAB) with purification ρ[Λ]A�B�ER and
reference systems ER. For the latter protocol, Proposition 3
guarantees that there exists a quantum operation ΓA�B�→L

such that Γ ∈ QIP and P (Γ(σA�B�),ΨL) ≤ ε. Compositing
these two quantum operations Λ and Γ yields

P (ΓA�B�→L◦ ΛAB→A�B�(ρAB),ΨL)
= P (ΓA�B�→L(σA�B�),ΨL) ≤ ε. (50)

That is to say, the composite operation Γ◦Λ distills an MCS of
rank |L| such that the error is bounded by ε. Since Λ ∈ QIP,
Γ ∈ QIP, and the class QIP is closed under composition [67],
we have Γ◦Λ ∈ QIP. As so, we have constructed an operation
in QIP that distills MCS at rate log |L| and thus complete the
proof. �

Now we proceed to prove the claim in Proposition 3. The
following lemma is utilized, whose proof can be checked by
definition.

Lemma 3: Let |ui� and |vi� be the purification of ρi and σi

such that F (ρi, σi) = 
ui|vi�. Then we have

F
(∑

i

pi |i�
i| ⊗ ρi,
∑

i

qi|i�
i| ⊗ σi

)
=
∑

i

√
piqiF (ρi, σi)

= F

(∑
i

√
pi|i�|ui�,

∑
i

√
qi|i�|vi�

)
. (51)

Proof of Proposition 3: Let σ∗
R be a quantum state that

attains the minimum in

dsec( ρ[id,Δ, f ]LR|R)
:= min

σR∈S(R)
P (ρ[id,Δ, f ]LR, πL ⊗ σR). (52)

and then we have

P (ρ[id,Δ, f ]LR, πL ⊗ σ∗
R) ≤ ε (53)

The relation between purified distance P and fidelity F gives

F (ρ[id,Δ, f ]LR, πL ⊗ σ∗
R) ≥

√
1 − ε2. (54)

We decompose the pure tripartite state |ψ�RAB into the basis
B of system B as

|ψ�RAB :=
∑
b∈B

√
pB(b)|b�B|ψb�RA, (55)

where pB a probability distribution and {|ψb�} a set of pure
states in RA which are not necessarily mutually orthogonal.
Define the incoherent isometry Uf from HB to HLB such that

∀b ∈ B, Uf |b�B := |f(b)�L|b�B. (56)

Notice that

Uf |ψ�ABR =
∑
b∈B

√
pB(b)Uf |b�B |ψb�RA (57)

=
∑
b∈B

√
pB(b)|f(b)�L|b�B|ψb�RA. (58)

Since the mapping f : B → L is non-injective, where L is the
alphabet of L, each new basis � may corresponds to several
bases b such that f(b) = �. As so, we can equivalently write
Uf |ψ�ABR as

Uf |ψ�ABR =
∑

∈L

√
r
|��L ⊗ |φ
�RAB, (59)

where the normalized vectors |φ
�RAB and normalization
factors r
 for � ∈ L satisfy

√
r
|φ
�RAB :=

∑
b∈B:f(b)=


√
pB(b)|b�B ⊗ |ψb�RA. (60)

Let |φ∗�RAB on HRAB be a purification of σ∗
R. By the

Uhlmann’s theorem [66], for each |φ
�RAB there exists a
unitary U
 on HAB such that

F (TrAB |φ
�
φ
|RAB, σ
∗
R) = F (U
|φ
�RAB , |φ∗�RAB).

(61)

Define the conditional unitary U :=
∑


∈L |��
�|L ⊗ U
. We
have

F
(
UUf |ψ�RAB , |Ψ�L ⊗ |φ∗�RAB

)
(a)
= F

(∑

∈L

√
r
|��L ⊗ U
|φ
�RAB ,

∑

∈L

1√|L| |��L ⊗ |φ∗�RAB

)
(62)

(b)
=
∑

∈L

√
r

|L|F

(
U
|φ
�RAB, |φ∗�RAB

)
(63)
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(c)
=
∑

∈L

√
r

|L|F (TrAB |φ
�
φ
|RAB , σ

∗
R) (64)

(d)
= F

(∑

∈L

r
|��
�|L ⊗ TrAB |φ
�
φ
|RAB ,

∑

∈L

1
|L| |��
�|L ⊗ σ∗

R

)
(65)

(e)
= F (ρ[id,Δ, f ]LR, πL ⊗ σ∗

R) , (66)

where (a) follows by definition, (b) and (d) follow from
Lemma 3, (c) follows from Eq. (61), and (e) follows from
the fact that

ρ[id,Δ, f ]LR = TrAB UfΔB (ΨRAB)U †
f (67)

=
∑

∈L

r
|��
�|L ⊗ TrAB |φ
�
φ
|RAB. (68)

Now we construct the required operation ΓAB→L as

ΓAB→L(·) := TrAB

[
UUf(·)U †

fU
†
]
. (69)

See Figure 4 for illustration of this construction. First we show
that ΓAB→L can transform ρAB to an MCS ΨL within error
ε. Consider the following chain of inequalities:

F
(
ΓAB→L (ρAB), |Ψ�
Ψ|L

)
= F

(
TrAB

[
UUfρABU

†
fU

†
]
, |Φ�
Φ|L

)
(70)

(a)

≥ F (UUf |ψ�RAB , |Φ�L ⊗ |φ∗�RAB) (71)
(b)
= F (ρ[id,Δ, f ]LR, πL ⊗ σ∗

R) (72)
(c)

≥
√

1 − ε2, (73)

where (a) follows by the data-processing inequality of the
fidelity F under TrABR, (b) follows by (66), and (c) follows
from (54). This implies that P (ΓAB→L(ρAB),ΨL) ≤ ε. It
remains to check that ΓAB→L ∈ QIP. Note that Γ admits the
following Kraus decomposition

Γ(·) =
∑
b∈B

KbUf(·)U †
fK

†
b (74)

with operators Kb := 
b|U . This is indeed a Kraus decompo-
sition since∑

b∈B

(
U †

fK
†
b

)
(KbUf ) = U †

f

(∑
b∈B

K†
bKb

)
Uf

= U †
fU

†
(∑

b∈B
|b�
b|B

)
UUf = U †

fU
†UUf = 1. (75)

On the other hand, one can verify that for any bases b, b� ∈ B
and any quantum state ρb�

A in A,

KbUf

(
|b��
b�|B ⊗ ρb�

A

)
U †

fK
†
b

= Tr
[
Kbρ

b�
AK

†
b

]
|
b|Uf(b�)|b��|2|f(b�)�
f(b�)|L (76)

∈ I∗∗(L). (77)

That is to say, Γ transforms arbitrary quantum-incoherent state
in QI to some incoherent state in I, which in turn is a strict

Fig. 4. Schematic diagram of the QIP distillation protocol in Proposition 3.
The systems in red belong to Alice and the systems in blue belong to Bob. The
isometry Uf and conditional unitary U in the dashed box are not necessarily
incoherent. The shaded area depicts the designed operation ΓAB→L, which
belongs to QIP.

subset of QI. Thus we conclude that Γ ∈ QIP and complete
the proof. �

E. Second Order Analysis

We now give second order characterizations to both assisted
coherence distillation and assisted randomness extraction.
We do so by first establishing one-shot achievability and
converse bounds for these two tasks in terms of the hypothesis
testing relative entropy. These two bounds have matching
dependence on the error threshold ε. Then we derive a second
order characterization by invoking the second order expansion
of the hypothesis testing relative entropy. As a direct corollary,
we show that the ultimate rate in the asymptotic setting
is uniquely determined by the quantum incoherent relative
entropy of coherence.

Theorem 4 (One-Shot Characterization): Let the operation
class F ∈ {LICC,LQICC, SI, SQI,QIP}. Let ρAB be a
bipartite quantum state and ε ∈ (0, 1). For arbitrary η ∈ (0, ε)
and δ ∈ (0,min{(ε− η)2/3, 1 − (ε− η)2}), it holds that

D
(ε−η)2−2δ
H (ρAB�ΔB(ρAB)) − c(ρAB , ε, δ, η)

(a)

≤ �εF(ρAB) (78a)
(b)

≤ �εQIP(ρAB) (78b)
(c)
= Cε

d,QIP(ρAB) (78c)
(d)

≤ Dε2

H (ρAB�ΔB(ρAB)) , (78d)

where the correction term c is defined as

c(ρAB, ε, δ, η) := log θ(ρAB) + log θ(ΔB(ρAB)) (79)

+ log((ε− η)2 − δ) + 11
− log(δ5η4(ε− η)2(1 − (ε− η)2 + δ)).

The proof of Theorem 4 is divided into the following
steps: the achievability part (a) is drawn in Lemma 4; the
inequality (b) follows directly from the inclusion relation (30);
the equality (c) has already been shown in Theorem 3; and the
converse part (d) is proved in Lemma 5. However, we note
that the one-shot characterization for the assisted coherence
distillation Cε

d,QIP(ρAB) cannot be generalized to other classes
of free operations since (c) only holds for QIP.

Lemma 4 (Achievability): Let the operation class
F ∈ {LICC,LQICC, SI, SQI,QIP}. Let ρAB be a bipartite

Authorized licensed use limited to: The University of Toronto. Downloaded on February 14,2022 at 01:03:13 UTC from IEEE Xplore.  Restrictions apply. 



HAYASHI et al.: FINITE BLOCK LENGTH ANALYSIS 3937

quantum state and ε ∈ (0, 1). For arbitrary η ∈ (0, ε) and
δ ∈ (0,min{(ε− η)2/3, 1 − (ε− η)2}), it holds that

�εF(ρAB) ≥ D
(ε−η)2−2δ
H (ρAB�ΔB(ρAB)) − c(ρAB, ε, δ, η).

(80)

where the correction term c is defined in (79).
Proof: In (39) we already obtained the following lower

bound for arbitrary free class F in terms of the smooth
conditional min-entropy:

�εF(ρAB) ≥ Hε−η
min (B|R)σ + 4 log η − 3, (81)

where σRAB := ΔB(|ψ�
ψ|RAB) is the dephased classical-
quantum state. Moreover, we establish in Proposition 4 a
relation between the smooth min entropy Hε

min and the
hypothesis testing relative entropy Dε

H regarding state σRAB .
Adapting (101) into (81), we have the desired (80). �

Our converse bound proved below asserts that the
quantum-incoherent hypothesis testing relative entropy of
coherence upper bounds the one-shot assisted distillable
coherence of ρAB via arbitrary free operations F ∈
{LICC,LQICC, SI, SQI,QIP}. This result can be viewed as a
one-shot analog of [43, Theorem 2], in which Streltsov et al.
showed that the quantum-incoherent relative entropy of coher-
ence upper bounds the asymptotic assisted distillable coher-
ence of ρAB . Note that (d) in (78d) is immediately concluded
from Lemma 5 by choosing σAB ≡ ΔB(ρAB) in (82).

Lemma 5 (Converse): Let the operation class F ∈
{LICC,LQICC, SI, SQI,QIP}. Let ρAB be a bipartite quantum
state and ε ∈ (0, 1). It holds that

Cε
d,F(ρAB) ≤ min

σAB∈QI
Dε2

H (ρAB�σAB) . (82)

Proof: Assume Cε
d,F(ρAB) = logM , that is, there exists

a free operation DAB→C ∈ F such that

P (DAB→C(ρAB),ΨM ) ≤ ε. (83)

By the definition of purified distance P , the above condition
is equivalent to

Tr [DAB→C(ρAB)ΨM ] ≥ 1 − ε2. (84)

Let MAB := D†(ΨM ), where D† is the adjoint of D. Since
D is completely positive, so is D†. This gives MAB ≥ 0.
On the other hand, Tr [DAB→C(ρAB)ΨM ] ≤ 1 implies
MAB ≤ 1AB . Now we have

Tr [ρABMAB] = Tr
[
ρABD†(ΨM )

]
(85)

= Tr [D(ρAB)ΨM ] ≥ 1 − ε2. (86)

That is to say, MAB is a feasible solution for Dε2

H (ρAB�σAB).
Then

Dε2

H (ρAB�σAB) ≥ − logTr [σABMAB] (87)

= − logTr
[
σABD†(ΨM )

]
(88)

= − logTr [D(σAB)ΨM ] . (89)

Since D is quantum-incoherent state preserving,
we know that D(σAB) is an incoherent state in C
and thus Tr [D(σAB)ΨM ] ≤ 1/M . Then we have

Dε2

H (ρAB�σAB) ≥ − log 1/M = Cε
d,F(ρAB). As the

argument holds for any σ ∈ QI, we can complete the proof
by minimize over σ. �

The matching dependence on the error parameter ε of the
achievable and converse bounds in Theorem 4 yields tight
second order expansions of the assisted distillable coherence
as well as the assisted incoherent extractable randomness.

Theorem 5 (Second Order Expansion): Let the operation
class F ∈ {LICC,LQICC, SI, SQI,QIP}. Let ρAB be a
bipartite quantum state and ε ∈ [0, 1]. The following second
order expansions hold:

Cε
d,QIP

(
ρ⊗n

AB

)
= nD (ρAB�ΔB(ρAB))

+
√
nV (ρAB�ΔB(ρAB))Φ−1(ε2)

+O(log n), (90)

�εF
(
ρ⊗n

AB

)
= nD (ρAB�ΔB(ρAB))

+
√
nV (ρAB�ΔB(ρAB))Φ−1(ε2)

+O(log n). (91)

Proof: The proof follows from Theorem 4 and a similar
argument of the proof of Theorem 2. �

Remark 15: From Proposition 4 in Section VI, the first and
second order asymptotics can also be written as conditional
entropy H(B|R)σABR and conditional information variance
V (B|R)σABR respectively, where σABR = ρ[id,Δ] is the
dephased classical-quantum state from the assisted random-
ness extraction protocol.

Remark 16: As a consequence of Theorem 5, we find
the quantum-incoherent relative entropy of coherence,
defined as C

A|B
R (ρAB) := minσAB∈QI D (ρAB�σAB) =

D (ρAB�ΔB(ρAB)) [15, Eq. (4)], quantifies the ultimate
power of assistance in both the coherence distillation and
incoherent randomness extraction tasks, in the sense that it is
the best distillation and extraction rates that can be achieved
using the largest free class QIP in the distributed scenario. This
bestows the quantum-incoherent relative entropy of coherence
a new operational meaning.

Remark 17: Our results—the single-shot result in Theo-
rem 4, the second order result in Theorem 5, and its corollary
in Remark 16—together paint an ‘almost’ complete picture
for the assisted coherence distillation task. What’s more, they
cover many known results as special cases:

1) When ρAB = ρA ⊗ ρB is a product state, our results
reduce to the unassisted coherence distillation [14],
as QIP reduces to MIO in the single party setting.
Theorem 5 matches the second order results for the
coherence distillation without assistance in Theorem 2.

2) When ρAB is pure or maximally correlated, Remark 16
enhances the results of Theorem 5 and Proposi-
tion 6 in [43] by stating that the quantum-incoherent
relative entropy of coherence CA|B

R (ρAB) is the ultimate
rate that can be achieved in the assisted coherence
distillation even if we make use of the largest free
operation class QIP. Note that the same conclusion was
previously obtained in [67, Proposition 19] for the pure
state case.
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V. STRONG CONVERSE PROPERTY

The direct part of resource distillation states that for any rate
below the optimal rate, there is a corresponding distillation
protocol that accomplishes the task successfully. More pre-
cisely, if we denote the transformation error in the protocol for
n uses of the underlying resource by ε, then for any rate below
the optimal rate there exists a protocol, whose transformation
error ε vanishes in the asymptotic limit n→ +∞. Such rates
are called achievable, and the optimal rate is defined as the
supremum over all achievable rates. In contrast, the converse
part states that for any distillation protocol with a rate above
the optimal rate, the error does not vanish asymptotically. That
is, it is bounded away from 0 in the asymptotic limit n→ +∞.
This is usually called weak converse. In principle, it leaves
open the possibility of a trade-off between the error and the
rate of a protocol. However, the strong converse property
rules out such a possibility, stating that for any distillation
protocol with a rate above the optimal rate, the corresponding
transformation error ε incurred in the protocol converges
to one. In other words, such protocols become worse with
increasing block length n and eventually fail with certainty
in the asymptotic limit. In this part, we showcase a standard
argument how a second order result automatically implies the
strong converse property.

As a concrete example, we consider the task of unassisted
coherence distillation whose strong converse property has been
pointed out by [28, Theorem 16]. Here we give an alternative
proof. For simplicity, we denote Cr(ρ) := D(ρ�Δ(ρ)) and
Vr(ρ) := V (ρ�Δ(ρ)). For any achievable rate Rn, we have
Rn ≤ 1

nC
ε
d,O(ρ⊗n). By Theorem 2, we have

Rn ≤ Cr(ρ) +

√
Vr(ρ)
n

Φ−1(ε2) + f(n), (92)

with f(n) ∈ O (log n/n). Rearranging (92) and using
monotonicity of Φ yields

ε2 ≥ Φ
(√

n

Vr(ρ)
(Rn − Cr(ρ)) + g(n)

)
, (93)

with g(n) = −√
nf(n)/

√
Vr(ρ). Thus limn→+∞ g(n) = 0.

Note that limx→+∞ Φ(x) = 1. For any achievable rate Rn >
Cr(ρ), the argument in (93) diverges to +∞ and thus we have
ε→ 1 as n→ ∞. This implies the strong converse property of
coherence distillation under O ∈ {MIO,DIO, IO,DIIO}. Sim-
ilar argument works for the incoherent randomness extraction.

Moreover, following the same argument outlined above,
we can conclude from Theorem 5 that both the assisted
coherence distillation via QIP and the assisted incoher-
ent randomness extraction via arbitrary free operation class
F ∈ {LICC,LQICC, SI, SQI,QIP} satisfy the strong converse
property. This promises the unique role of CA|B

R (ρAB) in the
two assisted tasks.

VI. RELATIONS AMONG ENTROPIES OF A DEPHASED

TRIPARTITE QUANTUM STATE

Let ρAB be a bipartite quantum state with purification
|ψ�RAB , i.e., TrR ψRAB = ρAB . Assume the following

decomposition into the basis B of system B:

|ψ�RAB :=
∑
b∈B

√
pB(b)|b�B|ψb�RA, (94)

where pB a probability distribution and {|ψb�} a set of pure
states in AR which are not necessarily mutually orthogonal.
By definition, we have ρAB = TrR ψRAB . DephasingB yields
the classical-quantum state

σRAB := ΔB(ψRAB) =
∑
a∈B

pb|b�
b|B ⊗ |ψb�
ψb|RA. (95)

Notice that σAB = ΔB(ρAB). In the following, we establish a
list of relations among the various entropies evaluated on the
dephased quantum state σRAB . These relations are essential
to the above second order analysis. They are of independent
interest and may find applications in other quantum informa-
tion processing tasks.

Before presenting the relations, we first introduce some
notations. For two Hermitian operators X and Y , we denote
by {X ≥ Y } the projector onto the space spanned by the
eigenvectors of X − Y with non-negative eigenvalues. Let
ρ ∈ S(H), σ ∈ P(H), and ε ∈ [0, 1]. The informa-
tion spectrum relative entropy of ρ w.r.t. σ is defined as
[22, Definition 8]

Dε
s(ρ�σ) := sup {x : Tr ρ{ρ ≤ 2xσ} ≤ ε} . (96)

The Nussbaum and Szkoła’s distributions are used inten-
sively in the analysis that follows. Assume the eigenvalue
decompositions ρ =

∑
x rx|vx�
vx| and σ =

∑
y sy|uy�
uy|.

Their Nussbaum and Szkoła’s distributions [69] are defined
as Pρ,σ(x, y) := rx|
vx|uy�|2 and Qρ,σ(x, y) := sy|
vx|uy�|2.
These distributions satisfy the property that

D(Pρ,σ�Qρ,σ) = D(ρ�σ) and V (Pρ,σ�Qρ,σ) = V (ρ�σ).
(97)

Proposition 4: Let ε ∈ (0, 1) and δ ∈ (0,min{ε2/3,
1 − ε2}). We have the following relations regarding the
dephased tripartite quantum state σRAB (95):

Dε
s(PσBR,1B⊗σR�QσBR,1B⊗σR)

= −D1−ε
s (PρAB ,ΔB(ρAB)�QρAB ,ΔB(ρAB)), (98)

D(σBR�1B ⊗ σR) = −D(ρAB�ΔB(ρAB)), (99)

V (σBR�1B ⊗ σR) = V (ρAB�ΔB(ρAB)), (100)

Hε
min(B|R)σ ≥ Dε2−2δ

H (ρAB�ΔB(ρAB)) − c(ρAB, ε, δ),
(101)

where the correction term is defined as

c(ρAB, ε,δ) := log θ(ρAB) + log θ(ΔB(ρAB))

+ log(ε2 − δ) − log(δ5ε2(1 − ε2 + δ)) + 8. (102)

Proof of Eq. (98): For reduced state σR assume the spec-
tral decompositions σR =

∑
r qr|vr

R�
vr
R|, For the reduced

states {ψb
R}b, assume the spectral decompositions

ψb
R =

∑
r

pR|B(r|b)|vr|b�
vr|b|R, (103)
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where pR|B is a conditional probability distribution, and
{|vr|b�} is an orthonormal basis of R for each b. Set pBR :=
pR|BpB , we have the following spectral decompositions

1B ⊗ σR =
∑
b,r

qr|b�
b|B ⊗ |vr�
vr |R, (104)

σBR =
∑
b,r

pBR(b, r)|b�
b|B ⊗ |vr|b�
vr|b|R. (105)

Notice that σR and ρAB are two marginal states of pure
tripartite state ΨABR and thus they have the same eigenvalues
due to the Schmidt theorem. That is, we can denote the
eigenvalue decomposition of ρAB as ρAB =

∑
r qr|ur�
ur|,

where {|ur�} is an orthonormal basis of AB. What’s more,
since each conditional sate |ψb�RA (95) is pure, the two
marginal states ψb

R and ψb
A has the same eigenvalues from

the Schmidt theorem. That is, there exists {|ua|b�} is an
orthonormal basis of A for each b such that

|ψb�RA =
∑

r

√
pR|B(r|b)|ur|b�A|vr|b�R. (106)

Correspondingly, we can decompose σAB as

σAB = ΔB(ρAB) =
∑
b,a

pBR(b, a)|b�
b|B ⊗ |ua|b�
ua|b|A,

(107)

Consider the Nussbaum and Szkoła’s distributions for the
operators σBR and 1B ⊗ σR:

PσBR,1B⊗σR((b�, r�), (b, r)) (108a)

:= PBR(b, r�)|
vb�
r� |vr�|2δbb� = PBR(b, r�)|
vb

r� |vr�|2,
and

QσBR,1B⊗σR ((b�, r�), (b, r))

:= qr|
vb�
r� |vr�|2δbb� = qr|
vb

r� |vr�|2, (108b)

and the Nussbaum and Szkoła’s distributions for the operators
ρAB and σAB :

PρAB ,σAB (r, b, a) = qr|
ur|b, ψb
a�|2, (109a)

QρAB ,σAB (r, b, a) = PB,R(b, a)|
ur|b, ψb
a�|2. (109b)

Since |Ψ�ABR =
∑

r

√
qr|ur

AB�|vr
R�, it holds 
vr|Ψ�
Ψ|vr� =

qr|ur�
ur|. On the other hand, Eqs. (94) and (106) together
imply that

|ψ�ABR =
∑
b,a

√
pBR(b, a)|ua|b�A ⊗ |b�B ⊗ |va|b�R. (110)

This leads to

PρAB ,σAB (r, b, a)

= qr|
ur|b, ψb
a�|2 (111)

= qr
b, ψb
a|ur�
ur|b, ψb

a� (112)

= 
b, ψb
a, vr|ψ�
ψ|b, ψb

a, vr� (113)

= Tr[(|b, ψb
a�
b, ψb

a| ⊗ 1R)|ψ�
ψ|]|
vr |vb
a�|2 (114)

= PB,R(b, a)|
vb
a|vr�|2 (115)

= PσBR,1B⊗σR(b, a, r). (116)

Hence we can check that

Dε
s (PσBR,1B⊗σR�QσBR,1B⊗σR)

(a)
= sup

{
x : PσBR,1B⊗σR{(b, a, r)|
logPσBR,1B⊗σR(b, a, r)
− logQσBR,1B⊗σR(a, r) ≤ x} ≤ ε

}
(117)

(b)
= sup

{
x : PσBR,1B⊗σR{(b, a, r)|
logPB,R(b, a) − log qr ≤ x} ≤ ε

}
(118)

(c)
= sup

{
x : PρAB ,ΔB(ρAB){(b, a, r)|
logPB,R(b, a) − log qr ≤ x} ≤ ε

}
(119)

(d)
= sup

{
x : PρAB ,ΔB(ρAB){(b, a, r)|
logQρ,Δ(ρ)(b, a, r)
− logPρ,Δ(ρ)(b, a, r) ≤ x} ≤ ε

}
(120)

(e)
= −D1−ε

s

(
PρAB ,ΔB(ρAB)�QρAB ,ΔB(ρAB)

)
, (121)

where (a) and (e) follow by definition, (b) follows by (108),
(c) follows by (116), and (d) follows by (109). This con-
cludes (98). �

Proof of Eqs. (99) and (100): We first show (99). Con-
sider the following chain of equalities:

D(σBR�1B ⊗ σR)
(a)
= D(PσBR,1B⊗σR�QσBR,1B⊗σR) (122)
(b)
=
∑
b,r

PσBR,1B⊗σR(b, r)[logPσBR,1B⊗σR(b, r)

− logQσBR,1B⊗σR(b, r)] (123)
(c)
=
∑
b,r

PρAB ,σAB (r, a)[log pa − log qr] (124)

(d)
=
∑
b,r

PρAB ,σAB (r, a)[logQρAB ,σAB (r, a)

− logPρAB ,σAB (r, a)] (125)
(e)
= −D(PρAB ,σAB�QρAB ,σAB ) (126)
(f)
= −D(ρAB�σAB), (127)

where (a) and (f) follow from the property of Nussbaum and
Szkoła’s distributions (97), (b) and (e) follow by definition,
(c) and (d) follow by (108), (109), (116). This completes the
proof of (99). We can then prove (100) in a similar way. �

Proof of Eq. (101): First notice that σR and ρAB are two
marginal of the pure tripartite state ψABR, thus they have the
same eigenvalues. This gives θ(σR) = θ(ρAB). Consider the
following chain of inequalities:

Hε
min (B|R)σ

:= − inf
τR

Dε
max(σBR�1B ⊗ τR) (128)

≥ −Dε
max(σBR�1B ⊗ σR) (129)

(a)

≥ −D1−ε2+δ
s (PσBR,1B⊗σR�QσBR,1B⊗σR)

− log θ(ρAB) + log(δε2) (130)
(b)
= Dε2−δ

s (PρAB ,Δ(ρAB)�QρAB,Δ(ρAB))

− log θ(ρAB) + log(δε2) (131)
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(c)

≥ Dε2−2δ
H (ρAB�ΔB(ρAB)) − c(ρAB , ε, δ), (132)

where (a) follows from [22, Eq. (29)] and the fact that
θ(1A ⊗ σR) = θ(σR) = θ(ρAB), (b) follows from (98),
and (c) follows from [22, Eq. (27)] with the correction term
c(ρAB, ε, δ) given in (102). Note that the constraints δ < 1−ε2
and δ < ε2/3 are imposed in (a) and (c), respectively. This
completes the proof. �

VII. CONCLUSION

Our work initiated the first systematic second order analysis
on coherence distillation with and without assistance, filling an
important gap in the literature. In the unassisted setting, we
introduced a variant of randomness extraction framework in
the context of quantum coherence theory, establishing an exact
relation between this cryptographic task and the operational
task of quantum coherence distillation. Based on this relation,
we gave a finite block length analysis on these tasks, providing
in particular explicit second order expansions of distillable
coherence and extractable randomness under a diverse range
of free operations. We then lifted the obtained results to the
assisted setting in which Alice served as an assistant to help
Bob do the manipulations. A crucial step for our second
order expansions was the hypothesis testing characterizations
of the one-shot rate with almost tight error dependence. These
one-shot characterizations could be suitable for analysis even
beyond the i.i.d. assumption of the source state if combining
with a more refined result of hypothesis testing relative entropy
(e.g., [70] and the references therein).

Many interesting problems remain open. First, in the unas-
sisted setting the coincidence of the second order expansions
of �εO and �εid indicates that optimizing the free incoherent
operations before the incoherent measurement can improve the
extractable randomness by the order O(log n) at most. One
may explore whether there is any advantage of performing
incoherent operations in the third or higher order terms.
Second, as a reverse problem of coherence distillation, the
coherence cost considers the minimum number of coherent
bits required to prepare a quantum state. It is known that the
first order asymptotics of coherence cost under IO operations
is given by the coherence information [14]. But what is
the second order expansion? Recall the critical role of the
randomness extraction framework in our second order analysis.
For coherence cost, we may consider a randomness extraction
scenario with Eve having limited power. Such a scenario has
been studied in [29] and [30, Section VI] and the correspond-
ing randomness extraction rate happens to coincide with the
coherence information. Finally, regarding the assisted scenario,
it would be interesting to extend the exact one-shot relation
between Cε

d,QIP and �εQIP to other free operation classes. It is
also appealing to explore further the alternative formulation in
Appendix B and identify achievable rate in terms of hypothesis
testing relative entropy with ε-square error dependence.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let σ∗
R be a quantum state that attains the mini-

mum in
dsec(ρ[id,Δ, f ]LR|R) = min

σR∈S(R)
P (ρ[id,Δ, f ]LR, πL ⊗ σR).

(A.133)

Let |φ∗�BR on HB ⊗ HR be a purification of σ∗
R. Thus we

have

F (ρ[id,Δ, f ]LR, πL ⊗ σ∗
R) ≥

√
1 − ε2. (A.134)

Define the incoherent isometry Uf from HB to HL ⊗HB as

Uf |b�B := |f(b)�L ⊗ |b�B. (A.135)

We choose normalized vectors |φ
�BR and normalization
factors r
 such that

Uf |ψ�BR =
∑

∈L

√
r
|��L ⊗ |φ
�BR, (A.136)

√
r
|φ
�BR :=

∑
b∈B:f(b)=


√
pb|b�B ⊗ |ψb�R. (A.137)

By Uhlmann’s theorem [66] there exists a unitary U
 on HB

such that

F (TrB |φ
�
φ
|BR, σ
∗
R)

= F (U
|φ
�BR, |φ∗�BR) = 
φ∗|U
|φ
�. (A.138)

Take U :=
∑


∈L |��
�|L ⊗ U
. We have

F (UUf |ψ�BR, |ΨL� ⊗ |φ∗�BR)
(a)
= F

(∑

∈L

√
r
|�� ⊗ U
|φ
�,

∑

∈L

1√|L| |�� ⊗ |φ∗�
)

(A.139)

(b)
=
∑

∈L

√
r


1√|L|F (U
|φ
�, |φ∗�) (A.140)

(c)
=
∑

∈L

√
r


1√|L|F (TrB |φ
�
φ
|, σ∗
R) (A.141)

(d)
= F

(∑

∈L

r
|��
�| ⊗ TrB |φ
�
φ
|,
∑

∈L

1
|L| |��
�| ⊗ σ∗

R

)
(A.142)

(e)
= F (ρ[id,Δ, f ]LR, πL ⊗ σ∗

R), (A.143)

where (a) follows by definition, (b) and (d) follow from
Lemma 3, (c) follows from Eq. (A.138) and (e) fol-
lows from the fact that ρ[id,Δ, f ]LR =

∑

∈L r
|��
�| ⊗

TrB |φ
�
φ
|. We construct a quantum operation ΓB→L(·) :=
TrB[UUf (·)U †

fU
†], whose schematic diagram is given in

Figure 5. Then ΓB→L(ρB) = TrBR[UUf |ψ�
ψ|BRU
†
fU

†] and
we can check that

F
(
ΓB→L(ρB),ΨL

)
≥ F

(
UUf |ψ�BR, |ΨL� ⊗ |φ∗�BR

)
(A.144)

= F
(
ρ[id,Δ, f ]LR, πL ⊗ σ∗

R

)
(A.145)

≥
√

1 − ε2, (A.146)

where the first inequality follows by the data-processing
inequality of quantum fidelity under TrBR, the equal-
ity follows by (A.143) and the second inequality follows
from (A.134). This implies that P (ΓB→L(ρB),ΨL) ≤ ε.

It remains to check Γ ∈ DIIO. Note that Γ admits a Kraus
decomposition Γ(·) =

∑
b∈BKbUf (·)U †

fK
†
b with operators

Kb = 
b|U . For any computational basis |x� and any b ∈ B,
we have

KbUf |x�
x|U †
fK

†
b = |
b|Uf(x)|x�|2|f(x)�
f(x)| ∈ I∗∗,

(A.147)
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Fig. 5. Schematic diagram of the DIIO distillation protocol in Proposition 1.
The isometry Uf is incoherent. The unitary U , represented by the inner dashed
box, is a controlled unitary but is not necessarily incoherent. The overall
operation ΓB→L, represented by the dashed box, belongs to DIIO.

by direct calculation. Thus Γ ∈ IO. For any computational
basis |x� and |y�, we can first check that

Γ(|x�
y|) = 
y|U †
f(x)Uf(y)|x�|f(x)�
f(y)|. (A.148)

Thus it holds

Γ(Δ(|x�
y|)) = Γ(δx,y|x�
x|)
= δx,yΓ(|x�
x|) = δx,y|f(x)�
f(x)|, (A.149)

and

Δ(Γ(|x�
y|)) = δf(x),f(y)
y|U †
f(x)Uf(y)|x�|f(x)�
f(x)|

= δf(x),f(y)δx,y|f(x)�
f(x)|
= δx,y|f(x)�
f(x)|. (A.150)

Combining (A.149) and (A.150), we have Γ ◦ Δ = Δ ◦ Γ,
indicating that Γ ∈ DIO. Finally we have Γ ∈ DIIO. �

APPENDIX B
AN ALTERNATIVE FORMULATION OF ASSISTED

INCOHERENT RANDOMNESS EXTRACTION

In this appendix, we consider an alternative formulation of
the assisted incoherent randomness extraction framework that
is different from the one discussed in Section IV-C. In this
formulation, Bob is more discreet in the sense that he accepts
the assistance from Alice but does not allow her to possess
any information about the extracted randomness.

A. Task Description

In the beginning, Alice and Bob share a bipartite quantum
state ρAB with purification |ψ�RAB such that the reference
system R held by Eve. A general assisted incoherent random-
ness extraction protocol is characterized by a triplet (Λ,Δ, f),
where Λ ∈ F a free operation and f a hash function. The
protocol has three steps:

1) Alice and Bob first perform a free operation
ΛAB→C ∈ F on their joint system, where C is in Bob’s
possession. That is, there is no output system at Alice’s
hand anymore. This can be done by performing a partial
trace operation. Let UAB→CE be a Stinespring isometry
representation of Λ. We assume the environment system
E of Λ is also controlled by Eve. After the action of Λ,
the whole system is in a pure state

τ [Λ]CER := UAB→CE(|ψ�
ψ|RAB)U †
AB→CE ,

(B.151)

Fig. 6. Alternative formulation of the assisted randomness extraction
framework given by [Λ,Δ, f ]. The system in red belongs to Alice, the
system in blue belong to Bob, and the two systems in gray belong to Eve.
In the shaded area, we illustrate an incoherent randomness extraction protocol
[id,Δ, f ] (without assistance!) for the state τC with purification τ [Λ]CER.

where we use τ instead of ρ in (B.151) to indicate that
we consider an alternative formulation here.

2) Bob dephases system C into the incoherent basis
via ΔC .

3) Bob performs the hash function f to extract randomness.
These two steps lead to the final output state

τ [Λ,Δ, f ]LER := τ [Λ,Δ]f(C)ER

=
∑
b∈B

pb|f(b)�
f(b)|L ⊗ σb
ER,

(B.152)

where pb := Tr
b|τ [Λ]CER|b� and σb
ER :=


b|τ [Λ]CER|b�/pb.

A detailed procedure of this alternative assisted randomness
extraction via (Λ,Δ, f) is depicted in Figure 6. Likewise,
the one-shot assisted extractable randomness via F of the
quantum state ρAB in this alternative formulation is defined
as

�̃εF(ρAB) := max
ΛAB→C∈F

max
f

{log |L| :

dsec (τ [Λ,Δ, f ]LER|ER) ≤ ε} . (B.153)

Remark 18: As one can tell, the essential difference
between this formulation and the original definition in
Section IV-C lies in what kind of incoherent operation Λ ∈ F
that Alice and Bob can use. In the original definition, Alice
and Bob can adopt operations of the form ΛAB→A�B� such
that the output A� is at Alice’s hand and B� is at Bob’s
hand. As a result, Alice has some information on Bob’s
extracted randomness that is secure from Ever. However,
in this alternative formulation, we rule out this possibility by
only allowing operations of the form ΛAB→C such that the
output system C is under the full control of Bob. Apparently,
Bob in the alternative formulation is more stringent since
he solely makes use of Alice while does not allow her to
possess any secrecy. However, this difference does not cause
any trouble in the assisted coherence distillation scenario, since
ΛAB→A�B� can be converted to ΛAB→C by doing an extra
partial trace TrA� without affecting the distillation rate.

Based on the argument in Remark 18, we conclude that
Bob in the original assisted randomness extraction framework
(cf. Section IV-C) can extract more randomness than in this
alternative framework.
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Proposition 5: Let F ∈ {LICC,LQICC, SI, SQI,QIP}. Let
ρAB be a bipartite quantum state and ε ∈ [0, 1]. It holds that

�̃εF (ρAB) ≤ �εF(ρAB). (B.154)

B. New Equivalence Relation

The main advantage of this alternative assisted incoherent
randomness extraction framework is that we can establish an
equivalence relation between the assisted coherence distillation
described in Section IV-B and the alternative assisted incoher-
ent randomness extraction described here, for all free operation
classes under consideration. This equivalence hence is much
stronger than that was concluded in Theorem 3, holding only
for the QIP class.

Theorem 6 (Equivalence Relation II): Let F ∈
{LICC,LQICC, SI, SQI,QIP}. Let ρAB be a bipartite quantum
state and ε ∈ [0, 1]. It holds that

Cε
d,F(ρAB) = �̃εF (ρAB). (B.155)

Proof: “≤”: This direction can be shown using similar
argument in Lemma 1.

“≥”: Let �εF(ρAB) = log |L| and let [Λ,Δ, f ] achieves
this rate such that ΛAB→C ∈ F . The key observation is
that an assisted incoherent randomness extraction protocol
[ΛAB→C ,ΔC , f ] for state ρAB can be regarded as an incoher-
ent randomness extraction protocol [idC→C ,ΔC , f ] (without
assistance) for the state τC ≡ ΛAB→C(ρAB), with purification
τ [Λ]CER defined in (B.151) and joint reference system ER
(cf. the shaded area of Figure 6). That is, for the state τC ,
there exists a hash function f such that

dsec (τ [id,Δ, f ]LER|ER) ≤ ε. (B.156)

Recalling the one-to-one correspondence between coherence
distillation protocol and incoherent randomness extraction
protocol in Proposition 1, we conclude from (B.156) that
there exists a quantum operation ΓC→L ∈ DIIO such that
P (ΓC→L(τC),ΨL) ≤ ε. Compositing these two quantum
operations yields

P (ΓC→L (τC),ΨL)
= P (ΓC→L ◦ ΛAB→C(ρAB),ΨL) ≤ ε. (B.157)

That is to say, the composite operation Γ ◦Λ distills an MCS
of rank |L| such that the error is bounded by ε. It then suffices
to show that Γ ◦ Λ ∈ F . In the following, we handle case by
case to show that the conditions Λ ∈ F and Γ ∈ DIIO together
indeed imply that Γ ◦ Λ ∈ F .

Cases that F ≡ LICC or F ≡ LQICC. We only consider
F ≡ LQICC since the other case F ≡ LICC can be
shown similarly. We focus on the last round of classical
communication in the local incoherent operations and classical
communication operation ΛAB→C ∈ LQICC. It must be that
Bob sends her outcome to Bob. More specifically, in the last
round, Bob performs a POVM {Ex

A} such that Ex
A ≥ 0 and∑

xE
x
A = 1. She sends the outcome x to Bob. Conditioned

on x, Bob performs an operation Dx
B→C ∈ MIO on the post-

measurement state. After that, he continues to do the operation
ΓC→L. Since ΓC→L ∈ DIIO, we know Γ ◦ Dx ∈ MIO as

DIIO ⊆ MIO and MIO is closed under composition. As one
can tell, the only difference between Λ and Γ ◦ Λ is that in
the last round Bob performs different conditional operations;
for the former Dx is taken, while for the latter Γ ◦ Dx

is adopted. They are both free local incoherent operations.
Hence, Γ ◦ Λ ∈ LQICC.

Cases that F ≡ SI or F ≡ SQI. We only consider F ≡ SI
since the other case F ≡ SQI can be shown similarly. Assume
the incoherent operations ΛAB→C ∈ SI has the form

ΛAB→C(·) =
∑

i

(Ai ⊗Bi)(·)(Ai ⊗Bi)†, (B.158)

where both Ai and Bi are incoherent Kraus operators. Since
DIIO ⊂ IO, ΓC→L admits an incoherent Kraus decomposition
as ΓC→L(ρ) =

∑
lKlρK

†
l , where Kl are incoherent Kraus

operators. Thus, Γ ◦ Λ admits the decomposition

ΓC→L ◦ ΛAB→C(ρAB)

=
∑

l

Kl

(∑
i

(Ai ⊗Bi)ρ(Ai ⊗Bi)†
)
K†

l (B.159)

=
∑
l,i

(Ai ⊗KlBi) ρAB (Ai ⊗KlBi)
†
. (B.160)

The completeness condition holds since∑
l,i

(Ai ⊗KlBi)
† (Ai ⊗KlBi)

=
∑

i

(Ai ⊗Bi)†
(∑

l

K†
l Kl

)
(Ai ⊗Bi) (B.161)

=
∑

i

(Ai ⊗Bi)†(Ai ⊗Bi) = 1AB. (B.162)

What’s more, the Kraus operators KlBi are incoherent since
incoherent Kraus operators are closed under composition.
Hence Γ ◦ Λ ∈ SI.

Cases that F ≡ QIP. Notice that DIIO preserves the free
incoherent states I. On the other hand it holds by definition
that I ⊂ QI. Thus DIIO preserves QI. This implies that
Γ(QI) ⊂ QI. Since Λ ∈ QIP and QIP is closed under
composition, we conclude Γ ◦ Λ ∈ QIP. �

C. Comparison Among Various Assisted Tasks

We have considered three assisted tasks concerning a bipar-
tite quantum state ρAB in this work:

1) The assisted coherence distillation task introduced in
Section IV-B and the corresponding one-shot optimal
rate Cε

d,F(ρAB) (31),
2) The assisted incoherent randomness extraction task

introduced in Section IV-C and the corresponding one-
shot optimal rate �εF(ρAB) (38), and

3) An alternative formulation of the assisted incoher-
ent randomness extraction task introduced in Appen-
dix B and the corresponding one-shot optimal rate
�̃εF(ρAB) (B.153).

The following relation holds among these quantities as a
consequence of Proposition 5 and Theorem 6:

Cε
d,F(ρAB) = �̃εF (ρAB) ≤ �εF(ρAB). (B.163)
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Specially, for the class of QIP we obtain an equivalence
relation due to Theorem 3 and Theorem 6:

Cε
d,QIP(ρAB) = �̃εQIP(ρAB) = �εQIP(ρAB). (B.164)

To prove or disprove that the inequality in (B.163) is an
equality for other free classes is left to future work.
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