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Single-Shot Entanglement Manipulation of States
and Channels Revisited

Thomas Theurer , Kun Fang , Member, IEEE, and Gilad Gour

Abstract—We study entanglement distillation and dilution of
states and channels in the single-shot regime. With the help of
a recently introduced conversion distance, we provide compact
closed-form expressions for the dilution and distillation of pure
states and show how this can be used to efficiently calculate these
quantities on multiple copies of pure states. These closed-form
expressions also allow us to obtain second-order asymptotics.
We then prove that the ε-single-shot entanglement cost of mixed
states is given exactly in terms of an expression containing
a suitably smoothed version of the conditional max-entropy.
For pure states, this expression reduces to the smoothed max-
entropy of the reduced state, for which we provide a closed-form
expression. Analogously, we provide a closed-form expression
for the smoothed min-entropy and connect it to the ε-single-
shot distillable entanglement. Based on these results, we bound
the single-shot entanglement cost of channels. We then turn
to the one-way entanglement distillation of states and channels
and provide bounds in terms of a quantity we denote coherent
information of entanglement.

Index Terms—Quantum entanglement, single-shot entangle-
ment distillation, single-shot entanglement cost, min-entropy,
max-entropy.

I. INTRODUCTION

QUANTUM entanglement [1], [2] plays a fundamental
role in many technological applications that involve

two (or more) spatially separated parties such as quantum
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teleportation [3], superdense coding [4], and secure quantum
communication [5]. If these parties are restricted to local
operations and classical communication (LOCC) [2], [6], they
can manipulate and consume entanglement, but they cannot
create it. Entanglement is thus a valuable quantum resource
[7]. The fact that the previously mentioned protocols typically
require specific entangled states, most often in the form of
pure, maximally entangled states, makes the interconversion
between entangled states via LOCC an important primitive.
The interconversion between entangled states is traditionally
studied in two different limits [2], either in the limit where one
has access to (unboundedly) many identical and uncorrelated
copies of a given initial state and tries to convert them to as
many target states as possible or in the so-called single-shot
regime: Here, one asks how well one can approximate a given
target state with a single copy of an initial state and LOCC.
Whilst the asymptotic regime provides ultimate bounds on the
usefulness of a quantum state, the single-shot regime is closer
to what is relevant from an experimental perspective, where
one has only access to finitely many copies.

The maximally entangled states of dimension m play a
prominent role, not only because they are required in many
protocols, but also because they can be converted to all other
states of lower or equal dimension [8]. The special cases of
(approximate) entanglement interconversion where either the
target or the initial state are maximally entangled are thus
of special interest and studied under the name entanglement
distillation and dilution [9], [10], [11], [12], [13], [14]. More
precisely, single-shot entanglement dilution describes the task
where two distant parties try to convert, up to a fixed error ε,
a maximally entangled state of dimension m to a given target
state via LOCC. The minimal m such that this is possible
is then identified with the ε-single-shot entanglement cost
of the target state. Conversely, the ε-single-shot distillable
entanglement of an initial state ρ is determined by the maximal
dimension of a maximally entangled state to which ρ can be
converted (again up to an error ε and via LOCC). Importantly,
there are many different (but topologically equivalent) ways to
define the error ε, e.g., via the trace norm or the fidelity. In the
following, we will consider two choices, one based on the star
conversion distance recently introduced in [15], and the other
based on the fidelity. After an introduction of the necessary
notation in Sec. II, in Sec. III-A, we will provide closed-
form expressions for the ε-single-shot distillable entanglement
and the ε-single-shot entanglement cost of pure states with
respect to the star conversion distance. Moreover, we show
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that these quantities can be efficiently computed on multiple
copies of a given state and provide explicit algorithms to do so.
This allows us to derive analytical expressions for the second-
order correction terms of the asymptotic expressions [16]. To
conclude Sec. III-A, we provide formulas for the catalytic
variants of ε-single-shot entanglement distillation and dilution
and discuss generalizations in which we replace the maximally
entangled states with arbitrary pure entangled states.

In Sec. III-B, we then move on to the ε-single-shot entan-
glement cost of mixed states, where we restrict the error using
the square of the purified distance [17]. As one of our main
results, we prove that this entanglement cost can be expressed
exactly in terms of a smoothed version of the conditional
max-entropy [18], [19], strengthening a result by Buscemi
and Datta [17]. In Sec. III-C, we then show that on pure
states, the two definitions of the ε-single-shot entanglement
cost coincide and provide closed-form expressions for the
smoothed min- and max-entropy [18], [19]. This allows us to
express the ε-single-shot entanglement cost and the ε-single-
shot distillable entanglement in terms of these two smoothed
entropies, equipping them with an operational interpretation.
We conclude the section with an comparison to previous
results.

Historically, entanglement was primarily studied in the
framework of so-called static resource theories [7] which focus
on the value of quantum states [1], [2]. However, in typical
applications in which we hope for quantum advantages, we
are interested in performing a task (such as sending a secure
message) that is done with the help of a quantum channel
(called a dynamical resource). As demonstrated by quantum
teleportation, with LOCC, we can convert static entanglement
present in quantum states into channels outside of LOCC and
thus indirectly quantify the value of channels via the value of
states. From a conceptual point of view, it is however more
natural to quantify the value of operations directly [20]. Since
quantum states can be seen as a special case of quantum
operations with no input and a fixed output, quantifying the
value of operations is a unifying concept that can also be used
to quantify properties of operations that cannot be reduced to
static resources [20]. These observations have recently led to
the development of dynamical resource theories [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31] and in
particular dynamical resource theories of entanglement [22],
[29], [30], [32], [33]. The distillation and dilution of the
entanglement of channels is an important primitive in such
theories for the same reasons as in the static case and has
been studied under relaxations of LOCC such as complete
PPT-preservation [11], [34], [35] in [22], [36], and [37] and
under separability preservation in [38] and [39]. See also [31],
[40], and [41] (as well as [42], which is still awaiting proof)
for fundamental limitations on the distillation and dilution of
channel resources and [43] for yield-cost relations in general
resource theories. In Sec. III-D, we provide bounds on the
ε-single-shot entanglement cost of quantum channels under
LOCC which coincide in the zero-error limit.

An important subclass of LOCC is one-way LOCC in
which classical communication is only allowed in one direc-
tion. In Sec. IV, we introduce the coherent information of

entanglement, which is monotonic under one-way LOCC,
and use it to bound the one-way ε-single shot distillable
entanglement of both states and channels. We conclude with
a discussion and outlook in Sec. V.

II. NOTATION AND PRELIMINARIES

Unless stated otherwise, proofs are provided in App. B. In
this paper, we only consider finite-dimensional Hilbert spaces,
which we denote with capital Latin letters such as C. The
dimension of a Hilbert space C is denoted by |C|, and the set of
density matrices acting on it by D(C), with Pure(C) denoting
the subset of pure states. Density matrices are represented by
small Greek letters such as ρC , where the superscript indicates
that ρ acts on C. For, e.g., a state ρAB ∈ D(AB) we will also
use the convention that ρA = TrB

�
ρAB

�
denotes the marginal

on system A. Whenever we consider a copy of a Hilbert space
A, we will denote it as Ã and we reserve X to denote a classical
system or register.

In the following, we will mainly be concerned with two
spatially separated parties, Alice and Bob. To make clear
which system is under the control of whom, we will use A and
A′ to denote Alice’s systems and B and B′ for Bob’s. Quantum
channels will be denoted by calligraphic large Latin letters
such as N (with the exemption of the identity channel, which
we denote by id) and the set of all quantum channels from A
to B by CPTP(A → B), which stands for completely positive
and trace-preserving. Completely positive linear maps will be
denoted by CP and a collection of CP maps {Nx}

n
x=1 for whichPn

x=1 Nx is a quantum channel will be called an instrument.
Since we can always store the classical outcome x of any
instrument in a classical system X, we will interchangeably
also write

P
x Nx ⊗ |x〉〈x|X for the instrument.

The set of quantum channels that is implementable with
local operations and classical communication will be denoted
by LOCC. Since with LOCC, Alice and Bob can always attach
and remove local auxiliary systems, for bipartite systems
AB, we will assume in the following w.l.o.g. that |A| = |B|.
Whenever there exists an N ∈ LOCC such that N (ρ) = σ, we
write ρ

LOCC
−−−−−−→ σ. The set of channels that can be implemented

with local operations and one-way classical communication
from Alice to Bob will be denoted by LOCC1. Moreover, we
will denote superchannels [44], i.e., linear maps between quan-
tum channels that can be implemented by concatenating the
channel they act on with two other channels implementing a
pre- and post-processing, with capital Greek letters such as Θ.
We will be particularly concerned with LOCC superchannels,
i.e., superchannels that can be implemented by a pre- and post-
processing that are both in LOCC, see Fig. 1.

We utilize bold small Latin letters such as p for prob-
ability vectors, with px the x-th component of p, and let
Prob(d) be the set of probability vectors of length d. The
subset that contains the d-dimensional probability vectors with
non-increasing entries will be denoted as Prob↓(d) and for
p ∈ Prob(d), p↓ ∈ Prob↓(d) represents the vector that we obtain
by reordering the elements of p. For k ∈ [d], where [d] is a
short-hand notation for {1, . . . , d}, the k-th Ky-Fan norm of
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Fig. 1. Left: LOCC superchannel converting a channel N to a channel M = E2 ◦N ◦ E1, where both E1 and E2 are in LOCC. Right: If N is replaced by a
state, the superchannel simplifies. Solid lines represent quantum systems and the dashed line the spacial separation between Alice and Bob.

p ∈ Prob(d) is defined as

‖p‖(k) =

kX
x=1

p↓x. (1)

This definition can be extended to positive semidefinite oper-
ators A by denoting with ‖A‖(k) the sum of the k largest
eigenvalues of A (i.e., the Ky-Fan norm of its eigenvalues).
For p,q ∈ Prob(d), we write p � q if p majorizes q [45], i.e.,
if

‖p‖(k) ≥ ‖q‖(k) ∀k ∈ [d]. (2)

If p,q have different dimensions, we extend the definition
by padding the shorter vector with zeros. By fixing an arbi-
trary orthonormal basis |x〉C for every Hilbert space C, any
ψ ∈ Pure(AB) is then LOCC-equivalent to its standard formP

x
√

px|xx〉AB, where p ∈ Prob↓(|A|) contains the Schmidt
coefficients of ψ, which, w.l.o.g., we always assume to be
ordered non-increasingly. The number of non-zero Schmidt
coefficients of ψ, i.e., its Schmidt rank, is denoted by SR(ψ)
and Φm = 1√

m

Pm
x=1 |xx〉AB represents the maximally entangled

state of dimension m, where w.l.o.g., we will always assume
that m = |A| = |B|.

We use H(ρ) := −Tr(ρ log ρ) to denote the von-Neumann
entropy, and for ρ ∈ D(ABE), let H(A|B)ρ := H(ρAB) − H(ρB)
be the conditional von-Neumann entropy. For ρ, σ ∈ D(C)
and ‖·‖1 the trace norm, the trace distance between ρ and σ
is defined as 1

2 ‖ρ − σ‖1 and the relative entropy as D(ρ‖σ) :=
Tr(ρ log ρ)−Tr(ρ logσ). The (trace) conversion distance under
LOCC is commonly defined as

T
�
ρAB LOCC
−−−−→ σA′B′

�
:= min

τ∈D(A′B′)

�
1
2

τA′B′ − σA′B′


1 : ρAB LOCC
−−−−→ τA′B′

�
. (3)

On pure states ψ, φ ∈ Pure(AB), one can analogously define
the star conversion distance [15] (see also [16]) as

T?

�
ψAB LOCC
−−−−→ φAB

�
:= min

r∈Prob(|A|)

�
1
2
‖r − q‖1 : r � p

�
, (4)

where p, q ∈ Prob↓(|A|) are the Schmidt coefficients of ψ and
φ, respectively, and ‖p − q‖1 =

P
x |px−qx|. This definition can

easily be extended to pure bipartite states that do not belong
to the same Hilbert space [15]: Using LOCC, one can always

add and remove separable auxiliary states such that the Hilbert
spaces match. For ψ ∈ Pure(AB), φ ∈ Pure(A′B′), and d = |A| =
|B|, d′ = |A′| = |B′|, we thus define

T?

�
ψAB LOCC
−−−−→ φA′B′

�
:= T?

�
ψAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ φA′B′

�
. (5)

Importantly, the conversion distances discussed above are
topologically equivalent in the sense that [15, Lem. 3]

1
2

T 2
?

�
ψAB LOCC
−−−−→ φA′B′

�
≤ T

�
ψAB LOCC
−−−−→ φA′B′

�
≤

s
2T?

�
ψAB LOCC
−−−−→ φA′B′

�
(6)

and according to [15, Thm. 4], T? exhibits the following
closed-form expression that is derived via the concept of
approximate majorization [46]:

Theorem 1: Let ψ ∈ Pure(AB), φ ∈ Pure(A′B′), and p ∈
Prob↓(|A|),q ∈ Prob↓(|A′|) be their corresponding Schmidt
coefficients. Then,

T?

�
ψAB LOCC
−−−−→φA′B′

�
= max

k∈[SR(ψAB)]

˚
‖p‖(k)−‖q‖(k)

	
.

The purified distance between two states ρ, σ ∈ D (AB) is
defined as [47], [48], [49]

P (ρ, σ) :=
p

1 − F2 (ρ, σ), (7)

where F (ρ, σ) :=
√ρ√σ1 is the fidelity. For p,q ∈

Prob↓(|A|), P (r,q) :=
p

1 − F2(r,q) is the classical version of
the purified distance, and F(r,q) :=

P
x
√

rxqx. Analogously
to what was done above with the trace distance, one can
define a conversion distance based on the purified distance:
For ρ ∈ D(AB), σ ∈ D(A′B′), the purified conversion distance
is defined as

P
�
ρ

LOCC
−−−−→ σ

�
:= min

τ∈D(A′B′)

�
P (τ, σ) : ρ

LOCC
−−−−→ τ

�
. (8)

III. SINGLE-SHOT ENTANGLEMENT MANIPULATION WITH
LOCC

A. Pure State Entanglement Manipulation and the Star
Conversion Distance

The star conversion distance can be used to define and
calculate an ε-single-shot distillable entanglement, which we
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will do in the following. For any ε ∈ [0, 1] and ψ ∈ Pure(AB),
the ε-single-shot distillable entanglement is defined as

Distillε
�
ψAB�

:= max
m∈N

n
log m : T?

�
ψAB LOCC
−−−−→ Φm

�
≤ ε

o
. (9)

From the closed formula for T?, we get the following result.
Theorem 2: Let ε ∈ [0, 1), ψ ∈ Pure(AB), d := SR(ψAB),

and p ∈ Prob↓(|A|) be the Schmidt coefficients of ψAB. The
ε-single-shot distillable entanglement of ψAB is then given by

Distillε
�
ψAB� = min

k∈{`,...,d}
log

�
k

‖p‖(k) − ε

�
, (10)

where ` ∈ [d] is the integer satisfying ‖p‖(`−1) ≤ ε < ‖p‖(`).
For any ε ∈ [0, 1] and ψ ∈ Pure(AB), the ε-single-shot

entanglement cost is defined as

Costε
�
ψAB�

:= min
m∈N

n
log m : T?

�
Φm

LOCC
−−−−→ ψAB

�
≤ ε

o
. (11)

From the closed formula for T?, we get the following result.
Theorem 3: Let ε ∈ [0, 1), ψ ∈ Pure(AB), d := SR(ψAB),

and p ∈ Prob↓(|A|) be the Schmidt coefficients of ψAB. The
ε-single-shot entanglement cost of ψAB is then given by

Costε
�
ψAB� = log m, (12)

where m ∈ [d] is the integer satisfying ‖p‖(m−1) < 1−ε ≤ ‖p‖(m).
As explained in detail in App. C, the above Theorems allow

us to efficiently compute both the ε-single-shot distillable
entanglement and the ε-single-shot entanglement cost for
multiple copies of a given pure state.

Theorem 4: Let n ∈ N, ε ∈ [0, 1), and ψ ∈ Pure(AB).
This implies that both Distillε

�
ψ⊗n

�
and Costε

�
ψ⊗n

�
can be

computed efficiently.
The main idea behind the proof is to use that whilst p⊗n

has a number of entries that is exponential in n, it only
has a polynomial number of distinct entries, which allows to
determine ‖p⊗n‖(k) and therefore Distillε

�
ψ⊗n

�
and Costε

�
ψ⊗n

�
.

In App. C, we provide explicit algorithms to determine these
quantities.

Moreover, Thms. 2 and 3 also allow us to obtain the second-
order asymptotics of the entanglement cost and the distillable
entanglement: Let the Gaussian cumulative distribution func-
tion with mean value µ and variance ν be denoted by

Φµ,ν(x) :=
1
√

2πν

Z x

−∞

e−
(t−µ)2

2ν dt (13)

and the entropy variance V(p) of a probability distribution p
by

V(p) :=
X

i

pi(− log pi − H(p))2, (14)

where H(p) := −
P

i pi log pi is the Shannon entropy. As a
shorthand notation, we will also use Φ to denote Φ0,1. We
begin by stating the following Lemma, which is a consequence
of [16, Lem. 15] (see also [50, Lem. 16]).

Lemma 1: For any distribution p such that V(p) > 0, any
natural number n, and ε ∈ [0, 1), let

fn,ε(p) := min
˚
k : ‖p⊗n‖(k) > ε

	
,

f ′n,ε(p) := min
˚
k : ‖p⊗n‖(k) ≥ ε

	
. (15)

Then we have that

lim
n→∞

log f ′n,ε(p)−nH(p)
√

nV(p)

= lim
n→∞

log fn,ε(p)−nH(p)
√

nV(p)
= Φ−1(ε). (16)

By combining this Lemma with Thm. 3, one immediately
obtains the following Proposition.

Proposition 1: For any pure state ψ ∈ Pure(AB) with
Schmidt vector p, V(p) > 0, and ε ∈ [0, 1), it holds that

Costε(ψ⊗n) = nH(p) − Φ−1(ε)
p

nV(p) + o(
√

n). (17)

With slightly more work, it is also possible to obtain the
second-order asymptotics of the distillable entanglement.

Proposition 2: For any pure state ψ ∈ Pure(AB) with
Schmidt vector p, V(p) > 0, and ε ∈ [0, 1), it holds that

Distillε(ψ⊗n) = nH(p) + Φ−1(ε)
p

nV(p) + o(
√

n). (18)

The above two Propositions are the analogues of [16, Eqs.
(136) and (137)], where the error ε was measured with P
instead of T?. Since the considered distance measures are
topologically equivalent, one immediately recovers the asymp-
totic entanglement cost and distillable entanglement of pure
entangled states [2].

Recently, the phenomenon of entanglement catalysis [51]
has seen renewed interest, see for example the review article
[52]. In particular, the authors of [53] showed that for ψ, φ ∈
Pure(AB) with Schmidt coefficients p and q, respectively, ψ
can be converted to φ via an catalytic LOCC transformation
if and only if

H(p) ≥ H(q). (19)

In [53], the authors consider a sequence of catalyst states that
remain unchanged in the process but are allowed to build
an asymptotically vanishing amount of correlations with the
target state. Note that this allows for the compact condition
above. If no error is allowed at any stage of the protocol,
the allowed conversions are characterized by a continuous
family of inequalities that can be expressed in terms of the
Rényi divergences [54], [55]. In the following, we consider
the framework of [53].

Motivated by the above discussion, we define the star
conversion distance under catalytic LOCC (CLOCC) as

T?

�
ψAB CLOCC
−−−−−→ φAB

�
:= min

r∈Prob(|A|)

�
1
2
‖r − q‖1 : H(p) ≥ H(r)

�
. (20)

Denote by q̄(ε) the steepest ε-approximation of q [46], i.e., a
state q̄(ε) ∈ Bε (q) :=

˚
q′ ∈ Prob(|A|) : 1

2 ‖q
′ − q‖1 ≤ ε

	
which

satisfies that q̄(ε) � q′ for all q′ ∈ Bε (q). According to [46],
such a state exists and can be constructed explicitly.
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Lemma 2: Let ψ, φ ∈ Pure(AB) with Schmidt coefficients p
and q, respectively. Then

T?

�
ψAB CLOCC
−−−−−→ φAB

�
=

(
0if H(q) ≤ H(p),
ε : H(q̄(ε)) = H(p)else.

Analogously to the case without catalysis, we define the ε-
single-shot catalytic entanglement cost as

Costεc
�
ψAB�

:= min
m∈N

n
log m : T?

�
Φm

CLOCC
−−−−−→ ψAB

�
≤ ε

o
, (21)

and provide a closed-form expression.
Theorem 5: Denote by p the vector containing the Schmidt

coefficients of ψ ∈ Pure(AB). Then

Costεc
�
ψAB� = log

˙
2Hε(p)� , (22)

where
Hε(p) = min

r∈Bε(p)
H(r) = H

�
p̄(ε)� (23)

is the ε-smoothed Shannon entropy and p̄(ε) denotes the
steepest ε-approximation of p [46].

Next, we define the ε-single-shot catalytic distillable entan-
glement

Distillεc
�
ψAB�

:= max
m∈N

n
log m : T?

�
ψAB CLOCC
−−−−−→ Φm

�
≤ ε

o
, (24)

and show that one can evaluate it via an optimization over a
finite set.

Theorem 6: Denote by p the vector containing the Schmidt
coefficients of ψ ∈ Pure(AB). For ε ∈ [0, 1),

Distillεc
�
ψAB� = max

m∈N

n
log m : Hε (um) ≤ H (p)

o
,

and the optimization over m can be restricted to�
2H(p)˘ ≤ m ≤

j
2

H(p)+h(ε)
1−ε

k
, (25)

where h(x) = −x log(x)−(1−x) log(1−x) is the binary entropy.
To conclude this section, we want to quickly mention a

generalization of entanglement distillation and dilution where
one replaces the maximally entangled states with an arbitrary
pure resource state. For any ε ∈ [0, 1] and ψ ∈ Pure(AB), φ ∈
Pure(A′B′) entangled, we define

Costε
�
ψAB

ˇ̌̌
φA′B′

�
:= min

n
m ∈ N0 : T?

�
φ⊗m LOCC
−−−−→ ψ

�
≤ ε

o
(26)

and

Distillε
�
ψAB

ˇ̌̌
φA′B′

�
:= max

n
m ∈ N0 : T?

�
ψ

LOCC
−−−−→ φ⊗m

�
≤ ε

o
, (27)

where we understand that φ⊗0 corresponds to a separable state.
Thanks to Thm. 1 and Algorithms 1 and 2, which provide

an efficient way to evaluate
p⊗m


(k), both of the above

quantities can be evaluated exactly. To compute Costε (ψ|φ),

Algorithm 1 Efficient Evaluation of Ky-Fan Norms

Algorithm 2 Efficient Evaluation of Ky-Fan Norms via Binary
Search

one can use the following algorithm: Let m = 0 and check

if T?

�
φ⊗m LOCC
−−−−→ ψ

�
≤ ε (via Thm. 1 and Algorithms 1 or

2). If yes, return m, if no, increase m by one and repeat. The
algorithm will terminate eventually: Let p,q be the Schmidt
coefficients of ψ, φ. A (crude) upper bound is for example

Costε
�
ψAB

ˇ̌̌
φA′B′

�
≤

2666 log
�

p1
SR(ψ)

�
log(q1)

3777 . (28)

This can be seen as follows: First, notice that

T?

�
φ⊗m LOCC
−−−−→ψ

�
= max

k∈[SR(φ⊗m)]

˚
‖q⊗m‖(k)−‖p‖(k)

	
.

Since for k > SR(ψ)˚
‖q⊗m‖(k)−‖p‖(k)

	
≤ 0 (29)
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and for k ≤ SR(ψ) and m >
l

log
�

p1
SR(ψ)

�
/ log(q1)

m
,q⊗m


(k) ≤ SR(ψ)qm

1 < p1 ≤ ‖p‖(k) , (30)

T?

�
φ⊗m LOCC
−−−−→ψ

�
will be zero for such m. This bound (which

is independent of ε) thus provides a bound on the maximal
number of copies of φ that is needed in order to exactly create
a copy of ψ via LOCC.

To compute Distillε (ψ|φ), set m = 1 and check if

T?

�
ψ

LOCC
−−−−→ φ⊗m

�
> ε. If yes, return m − 1, if no, increase

m by one and repeat. The algorithm will terminate eventually,
too: Let p,q again be the Schmidt coefficients of ψ, φ and thus

T?

�
ψ

LOCC
−−−−→ φ⊗m

�
= max

k∈[SR(ψ)]

˚
‖p‖(k)−‖q⊗m‖(k)

	
≥‖p‖(SR(ψ))−‖q⊗m‖(SR(ψ))

≥1 − SR(ψ)qm
1 . (31)

This implies that

Distillε
�
ψAB

ˇ̌̌
φA′B′

�
≤

6664 log
�

1−ε
SR(ψ)

�
log(q1)

7775 . (32)

B. Single-Shot Entanglement Cost of Mixed States

According to [17, Def. 1], for any ε ∈ [0, 1], the ε-single-
shot entanglement cost is defined as

Costε
�
ρAB�

:= min
n

log m : P2
�

Φm
LOCC
−−−−→ ρAB

�
≤ ε

o
. (33)

Note that at first glance, for pure states, this definition conflicts
with Eq. (11). However, as we will show later, the two
definitions coincide. In a bit of abuse of notation, we will thus
not differentiate between the two, e.g., by adding a subscript
to denote the distance according to which we determine the
allowed error in the transformation.

To calculate the ε-single-shot entanglement cost, we will
rely on a convenient characterization of the purified conversion
distance: On bipartite states ψ ∈ Pure(AB), and for any k ∈
[|A|], let

E(k)(ψAB) := 1 − ‖p‖(k) , (34)

where p contains the Schmidt coefficients of ψAB. Applying a
convex-roof extension, for mixed states ρ ∈ D(AB), define

E(k)
�
ρAB� : = inf

X
x

pxE(k)
�
ψAB

x

�
= inf

 
1 −

X
x

px
TrA

�
ψAB

x

�
(k)

!
, (35)

where the infimums are over all pure-state decompositions
ρAB =

P
x pxψ

AB
x [17], [56], [57], [58]. These quantities have

an operational interpretation in the sense that for ψ, φ ∈

Pure(AB), ψAB LOCC
−−−−→ φAB if and only if [8], [59],

E(k)(ψAB) ≥ E(k)(φAB) ∀ k ∈ [|A|] . (36)

Moreover, according to [57, Thm. 8.8 and Sec. B4] and [60,
Lem. 5], for ρ ∈ D(AB) and m ∈ N,

P2
�

Φm
LOCC
−−−−→ ρAB

�
= E(m)

�
ρAB� , (37)

where E(m)
�
ρAB

�
is defined in Eq. (35) with k = m (see also

[61, Eq. (48)] for the case of pure states).
To provide formulas for the ε-single-shot entanglement cost,

it is convenient to utilize the concept of classical extensions of
a bipartite density matrix ρ ∈ D(AB): With any decomposition
{px, ρ

AB
x }x∈[k] of ρAB, i.e., ρAB =

P
x∈[k] pxρ

AB
x , one associates a

classical-quantum-state (see [17, Eq. (3)])

ρXAB :=
X
x∈[k]

px|x〉〈x|X ⊗ ρAB
x , (38)

where X is a classical system of dimension k. Such an
extension will be called a regular extension of ρAB if all ρAB

x
are pure states.

We further denote by Hmax the conditional max-entropy, i.e.,

Hmax(A|B)ρ := max
τ∈D(B)

log Tr
�
ΠAB
ρ

�
IA ⊗ τB�� , (39)

where ΠAB
ρ is the projection onto the support of ρAB =

TrC
�
ρABC

�
, and by Hε

max its smoothed version defined as

Hε
max(A|B)ρ = min

ω∈Bε(ρAB)
Hmax(A|B)ω, (40)

where

Bε
�
ρA� =

�
τ ∈ D(A) :

1
2

τA − ρA


1 ≤ ε

�
. (41)

For a classical extension

ρXAB =
X
x∈[k]

px|x〉〈x|X ⊗ ρAB
x (42)

of a bipartite state ρ ∈ D(AB), this implies that

Hmax(A|X)ρ = max
x∈[k]:px,0

log Tr
�
ΠA
ρx

�
, (43)

where ρA
x := TrB

�
ρAB

x

�
, and

Hε
max(A|X)ρ = min

ω∈Bε(ρXA)
max

x∈[k]:qx,0
log Tr

�
ΠA
ωx

�
, (44)

with
ωXA =

X
x∈[k]

qx|x〉〈x|X ⊗ ωA
x . (45)

It was pointed out in [17] that

Costε
�
ρAB�

= inf
ωXAB

n
Hmax(A|X)ω : P2 �ωAB, ρAB� ≤ εo, (46)

where the infimum is over all regular extensions of ρAB.
This means that the ε-single-shot entanglement cost can be

expressed in terms of a smoothed version of the conditional
max-entropy. As the main result of [17], it was further shown
in their Thm. 1 that the ε-single-shot entanglement cost can
be lower and upper bounded by a slight modification of
Hε

max (take Eq. (40), but relax the requirement in Eq. (41)
that τ is a density operator to the requirement that it is
positive semidefinite). In the following, we will show that
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(with our slight change in the smoothing), the ε-single-shot
entanglement cost can be expressed exactly in terms of the
conditional max-entropy. To this end, we introduce some
notation and a Lemma first.

For every classical-quantum-state

ρXA =
X
x∈[k]

px|x〉〈x|X ⊗ ρA
x , (47)

define
ρ(m) =

X
x∈[k]

px|x〉〈x|X ⊗ ρ(m)
x , (48)

with σ(m) an m-pruned version of σA defined as

σ(m) :=
ΠA

mσ
AΠA

m

Tr
�
σAΠA

m

� , (49)

where ΠA
m is a projection to a subspace spanned by m orthog-

onal eigenvectors corresponding to the m largest eigenvalues
of σA.1

Lemma 3: Let ρ ∈ D(XA) be a classical-quantum-state as in
Eq. (47), and for any m ∈ [|A|], let ρ(m) be as defined in Eq.
(48). Then, for any ε ∈ [0, 1],

Hε
max(A|X)ρ

= min
m∈[|A|]

�
log m :

1
2

ρ(m) − ρXA


1 ≤ ε

�
= min

m∈[|A|]

8<:log m :
X
x∈[k]

px
ρA

x


(m) ≥ 1 − ε

9=; . (50)

This Lemma shows that Hε
max(A|X)ρ can be directly evaluated

by calculating |A| trace distances, whilst a priori, it is defined
as an optimization problem over an ε-ball. Whilst this might
be of independent interest, it allows us to prove the promised
Theorem.

Theorem 7: For ρ ∈ D(AB), the ε-single-shot entanglement
cost is given by

Costε
�
ρAB� = inf

ρXAB
Hε

max(A|X)ρ , (51)

where the infimum is over all classical systems X and all
classical extensions ρXAB of ρAB. Moreover, the infimum is
attained for a classical extension with |X| = |AB|2 and can also
be taken over all regular extensions of ρAB.

It is worth noticing that both in the above Theorem as well
as in [17, Thm. 1], the ε in Hε

max stands for smoothing with
respect to the trace distance whilst the ε in Costε corresponds
to an error in conversion measured by the square of the
purified distance. This is in contrast to Eq. (46) where also
the conditional max-entropy is smoothed with respect to the
square of the purified distance.

C. Single-Shot Entanglement Manipulation Characterized by
Entropies

In this section, we show that the ε-single-shot distillable
entanglement and the ε-single-shot entanglement cost of pure

1Note that due to the possibility of degenerate eigenvalues, Πm and thus
σ(m) are not necessarily unique. However, for our purpose, this is irrelevant.

states can be expressed exactly in terms of a smoothed min-
entropy and a smoothed max-entropy, respectively. We begin
with the ε-single-shot entanglement cost as defined in Eq. (33):
For a pure state ρAB = ψAB, the optimization over classical
extensions ρXAB in Thm. 7 is trivial, since all of them are of
the form ρXAB = σX ⊗ ψAB. This allows us to simplify the
expression for Costε

�
ψAB

�
: Let

Hmax(ρ) := log Tr[Πρ] (52)

be the max-entropy [18] and

Hε
max(ρA) := min

ω∈Bε(ρA)
Hmax(ωA) (53)

its ε-smoothed version [19]. Via Eqs. (40) and (43), we thus
obtain the following Corollary.

Corollary 1: Let ψ ∈ Pure(AB) and ρA = TrB
�
ψAB

�
. It then

holds that
Costε

�
ψAB� = Hε

max(ρA). (54)

This equips the smoothed max-entropy with an operational
interpretation in terms of the ε-single-shot entanglement cost
of pure states. Moreover, by choosing X to be a trivial classical
system in Lem. 3, we obtain the following Corollary.

Corollary 2: Let ρ ∈ D(A) and ε ∈ [0, 1]. It then holds that

Hε
max(ρA) = min

m∈[|A|]

n
log m :

ρA


(m) ≥ 1 − ε
o
. (55)

Now notice that if ψ ∈ Pure(AB) and ρA = TrB
�
ψAB

�
as in

Cor. 1, it holds that
ρA


(m) = ‖p‖(m), where p ∈ Prob↓(|A|)

are the Schmidt coefficients of ψAB. We can thus rewrite Cor.
1 as

Corollary 3: Let ψ ∈ Pure(AB) and p ∈ Prob↓(|A|) be the
Schmidt coefficients of ψAB. It then holds that

Costε
�
ψAB� = min

m∈[|A|]

˚
log m : ‖p‖(m) ≥ 1 − ε

	
. (56)

As claimed earlier, this also shows that the two definitions
of Costε provided in Eqs. (11) and (33) indeed coincide on
pure states (see Thm. 3), and Prop. 1 thus applies to both.
This is interesting, since in Eq. (11), ε was bounding the star
conversion distance T?, whilst, in Eq. (33), it was bounding
the square of the purified distance P2. Moreover, we note that
the previous discussion also implies that the quantity f ′n,ε(p)
in Lem. 1 has an operational interpretation in terms of the
smoothed max-entropy.

By comparing Cor. 1 and Thm. 5, we note that

Costεc
�
ψAB� = log

˙
2Hε(p)�

≤ log
˙

2Hε
max(p)�

= Costε
�
ψAB� . (57)

While this confirms our knowledge that catalysis does not
increase the ε-single-shot entanglement cost, more impor-
tantly, it allows us to gain insides into the question when
catalysis grants an advantage, i.e., when the inequality is
strict. Consider for example the case ε = 0. If all non-
zero entries of p are equal (i.e., if ψAB is separable or a
maximally entangled state of arbitrary dimension), we have
that Hmax(p) = H(p), and catalysis is useless. However, even
if Hmax(p) , H(p), due to the ceiling function, it is possible
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that catalysis does not provide an advantage. On the contrary,
it is also easy to see that there exist ψAB such that catalysis
provides an advantage. Interestingly, this depends not only on
the difference between Hmax(p) and H(p), but also the value
of 2H(p). While Hmax(p) − H(p) ≥ 1 guarantees an advantage,
for 1 > Hmax(p) − H(p) > 0, both having and not having
an advantage is possible. Considering that Hε

max(p) is not
continuous in ε adds another layer of intricacy.

Next, we turn to the ε-single-shot distillable entanglement:
Let

Hmin(ρ) := − log ‖ρ‖∞ (58)

(where ‖ρ‖∞ denotes the operator norm of ρ, i.e., its largest
eigenvalue) be the min-entropy [18] and

Hε
min(ρA) := max

ω∈Bε(ρA)
Hmin(ωA) (59)

its ε-smoothed version [19]. Analogously to Cor. 2, we next
provide a closed-form expression for Hε

min(ρA) which might
be of independent interest.

Lemma 4: Let ρ ∈ D(A) with |A| = d and let p ∈ Prob(d)
contain the eigenvalues of ρ. Let further u(d) be the flat
distribution of dimension d. If 1

2

p − u(d)


1 ≤ ε, then

Hε
min(ρA) = log d, (60)

otherwise
Hε

min(ρA) = log min
`∈[d]

�
`

‖p‖(`) − ε

�
. (61)

In the Lemma above, we have two cases. With the help of
the following Lemma, we will now see that this is indeed
necessary, i.e., the first case is not included in the second.

Lemma 5: Let q ∈ Prob(n) and q , u(n). Thenq − u(n)


1 = 2 max
k∈[n]

�
‖q‖(k) −

k
n

�
.

Using the notation of Lem. 4, we now assume that

0 <
1
2

p − u(d)


1 < ε. (62)

In case that p = u(d), we find that

min
y∈[d]

y
‖p‖(y) − ε

= min
y∈[d]

y
y
d − ε

> min
y∈[d]

y
y
d

= d, (63)

which shows that the two cases in Lem. 4 are needed. In case
that p , u(d), it follows from our assumption and Lem. 5 that

ε > max
k∈[d]

�
‖p‖(k) −

k
d

�
(64)

and thus

min
y∈[d]

y
‖p‖(y) − ε

> min
y∈[d]

y
‖p‖(y) −

�
‖p‖(y) −

y
d

� = d, (65)

i.e., the two cases are thus needed too. Importantly, this implies
that in general, attaching an uncorrelated pure state ψC can
change the ε-smoothed min-entropy of ρA in the sense that

Hε
min(ρA) < Hε

min(ρA ⊗ ψC), (66)

a property which we would not expect of an entropy. To
resolve this, we define

H̃ε
min(ρA) := sup

ω∈Bε(ρA⊗ψC )
Hmin

�
ωAC� , (67)

where it is understood that the supremum is also over all
auxiliary systems C and ψC is an arbitrary pure state on this
system. From Lem. 4, we obtain the following Corollary.

Corollary 4: Let ρ ∈ D(A) with |A| = d, ε ∈ [0, 1), and let
p ∈ Prob(d) contain the eigenvalues of ρ. It then holds that

H̃ε
min(ρA) = log min

`∈[d]

�
`

‖p‖(`) − ε

�
. (68)

Combining this Lemma with the closed-form expression in
Thm. 2, we have the following entropic characterization of
the ε-single-shot distillable entanglement.

Theorem 8: Let ψ ∈ Pure(AB) and ε ∈ [0, 1). The ε-single-
shot distillable entanglement of ψAB is then given by

Distillε(ψAB) = log
j

2H̃ε
min(ρA)

k
,

where ρA = TrB(ψAB) is the reduced density matrix of ψAB.
It is now again interesting to note that also in the case of ε-
single-shot entanglement distillation, there are cases in which
catalysis provides an advantage and cases in which it does
not. Consider for example two pure states ψAB and φAB with
Schmidt coefficients p = (0.75, 0.15, 0.1) and q = (0.8, 0.2, 0),
respectively. A straightforward calculation shows that

Distill1/10(ψAB) = 0 < 1 = Distill1/10
c (ψAB), (69)

but
Distill1/10(φAB) = 0 = Distill1/10

c (φAB). (70)

At this point, we want to mention that [14] investigated a
variant of the ε-single-shot distillable entanglement too: The
authors of [14] defined the fidelity of distillation as

F(ρ,m) := sup
Λ∈LOCC

Tr(Λ(ρ)Φm) (71)

and their variant of the ε-single-shot distillable entanglement
as

E(1),ε
D (ρ) := log max{m ≥ 2 : F(ρ,m) ≥ 1 − ε}. (72)

Comparing this definition to our definition in Eq. (9), we see
that they differ in the way in which the allowed error ε is
introduced: Whilst we bound the error using the star conver-
sion distance [15], in [14], it was demanded that 1 − F ≤ ε.
Their definition does therefore not coincide with the one we
used. Importantly, for pure states, there exists a closed-form
formula for E(1),ε

D (ψ) too [14, Thm. 15, Cor. 16] which is
given in terms of a distillation norm [62]. In App. D, we
discuss in detail how this allows us to efficiently compute
E(1),ε

D (ψ⊗n) in a manner that is very similar to how we can
compute Distillε

�
ψ⊗n

�
. To conclude the discussion concerning

the entanglement manipulation of quantum states, we want
to mention that from Refs. [16] and [61], also analogs of
our Thm. 3/Cor. 1 and Thm. 2 can be extracted, again with
definitions of the error that differ from ours. Our choices of
the conversion distance lead to particularly compact formulas.

D. Single-Shot Entanglement Cost of Channels

In the following section, we will bound the entanglement
that it costs to simulate an arbitrary channel between two
parties with a given precision. Since any quantum state can
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Fig. 2. Optimal simulation of a quantum channel N A→B if given access to
Φm and LOCC using quantum teleportation. Solid lines represent quantum
systems, double lines classical systems, and the dashed line the spacial
separation between Alice and Bob.

be identified with its corresponding replacement channel, this
can be seen as a generalization of the results presented in
the previous section. Moreover, quantum teleportation [3]
demonstrates that LOCC and one ebit can be used to simulate
one identity qubit channel. It will therefore become apparent
when we talk about optimal protocols that our results are
closely related to teleportation too, see Fig. 2.

As in the state case, we will start by defining how we
quantify the error of a simulation N ′ of a given channel
N : For any channel N ∈ CPTP(A → B) and a maximally
entangled state Φm, we define the channel conversion fidelity
as

F
�

Φm
LOCC
−−−−→ N A→B

�
:= sup

Θ

min
ψ∈Pure(AÃ)

F
�
Θ [Φm] (ψAÃ),N Ã→B(ψAÃ)

�
, (73)

where the supremum is over all LOCC superchannels Θ that
map the state Φm to a channel in CPTP(Ã→ B). Analogously
to the ε-single-shot entanglement cost of a bipartite state
defined in Eq. (33), we use the channel conversion fidelity
to define the ε-single-shot entanglement cost of the channel
N A→B as

Costε(N ) := inf
m∈N

n
log m : P2

�
Φm

LOCC
−−−−→ N

�
≤ ε

o
, (74)

where

P2
�

Φm
LOCC
−−−−→ N

�
:= 1 − F2

�
Φm

LOCC
−−−−→ N

�
. (75)

To bound Costε(N ), we will use that the supremum and
minimum in the definition of the channel conversion fidelity
can be exchanged: This is the content of the following Lemma,
which can be shown with the help of [63, Prop. 8] and [64,
Lem. II.3].

Lemma 6: Let F
�

Φm
LOCC
−−−−→ N A→B

�
be defined as in Eq.

(73). It holds that

F
�

Φm
LOCC
−−−−→ N A→B

�
= min

ψ∈Pure(AÃ)
sup

Θ

F
�
Θ[Φm](ψAÃ),N Ã→B(ψAÃ)

�
(76)

where the supremum is again over all LOCC superchannels Θ

that map the state Φm to a channel in CPTP(Ã→ B).

Having access to Φm and LOCC, Alice and Bob can use
quantum teleportation to simulate the identity channel idA′→B′ ,
where |A′| = |B′| = m. Conversely, idA′→B′ allows us to
create Φm. Therefore, Φm

LOCC
←→ idA′→B′ , i.e., the state Φm is

equivalent to the channel idA′→B′ . In Eqs. (73) and (76), we can
thus replace Θ [Φm] with Θ

h
idA′→B′

i
and take the supremums

over all LOCC superchannels that map the identity channel
idA′→B′ to a channel in CPTP(Ã→ B). Importantly, every such
superchannel can be expanded as

Θ
h
idA′→B′

i
= FB′X→B ◦ idA′→B′

◦ E Ã→A′X

= FB′X→B ◦ E Ã→B′X

=
X
x∈[k]

FB′→B
(x) ◦ E Ã→B′

x , (77)

where X is a classical system (that can be exchanged via
LOCC), E Ã→A′X ∈ CPTP(Ã → A′X), and FB′X→B ∈

CPTP(B′X → B) (see Fig. 3). In the last line, we utilized that
this can be seen as the average of an instrument {E Ã→B′

x }x and
a channel FB′→B

(x) conditioned on its classical outcome x. From
this follows that the superchannels that we need to consider in
Eqs. (73) and (76) are of the form shown in Fig. 2, highlighting
the close relation to quantum teleportation.

The Theorem below shows that the conversion fidelity is
closely related to the monotones from Eq. (35), which can be
extended to quantum channels in the usual manner, i.e.,

E(k)
�
N A→B� := max

ψ∈Pure(AÃ)
E(k)

�
N Ã→B(ψAÃ)

�
. (78)

Using this definition, we get the following result, which is the
channel analog of Eq. (37).

Lemma 7: Let N ∈ CPTP(A → B) be a quantum channel.
It then holds that

1 − E(m)
�
N A→B�

≤ F
�

Φm
LOCC
−−−−→ N A→B

�
≤

q
1 − E(m)

�
N A→B

�
. (79)

This allows us to provide the promised bounds on
Costε(N A→B).

Theorem 9: Let N ∈ CPTP(A → B) be a quantum channel
and ε ∈ [0, 1). Then

max
ψ∈Pure(AÃ)

inf
σXAB

Hε
max(A|X)σ

≤ Costε(N A→B)

≤ max
ψ∈Pure(AÃ)

inf
σXAB

Hε/2
max(A|X)σ, (80)

where the infimums are over all classical systems X and all
classical extensions σXAB of σAB = N Ã→B(ψAÃ). Again, the
infimums are attained for a regular/classical extension with
|X| = |AB|2.

In the limit of ε approaching zero, this Theorem provides the
zero-error single-shot entanglement cost of a quantum channel.
With the help of Thm. 7, we can express the Theorem as

max
ψ∈Pure(AÃ)

Costε
�
N Ã→B

�
ψAÃ

��
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Fig. 3. Left: LOCC superchannel converting idA′→B′ (center) to a channel N ∈ CPTP(A → B). Right: Any such superchannel can be realized by the
following protocol: Alice applies a quantum instrument, sends the quantum output through the identity channel, and Bob applies a channel on its output that
is conditioned on the classical outcome of Alice’s instrument. Solid lines represent quantum systems, double lines classical systems, and the dashed line the
spacial separation between Alice and Bob.

≤Costε(N A→B)

≤ max
ψ∈Pure(AÃ)

Costε/2
�
N Ã→B

�
ψAÃ

��
. (81)

This shows that Costε(N A→B) is lower bounded by the cost of
the most expensive state that we can create with its help. This
is to be expected for a consistent definition, since otherwise
one might be able to build an entanglement perpetuum mobile.
It is however not obvious that this should also be an upper
bound since we intend to simulate a channel on an unknown
input state and potentially do not have access to another corre-
lated system (such as system A in Eq. (73)): Simply replacing
the input state with (an approximation of) the corresponding
output state of the channel we intend to simulate is thus not an
option. We conclude this section by noting that with the help of
postselection techniques [65], one can recover the asymptotic
entanglement cost of a quantum channel [66] from Thm. 9.

IV. ONE-WAY SINGLE-SHOT ENTANGLEMENT
MANIPULATION

A. State Distillation

In the following, we will explore a resource measure with
respect to one-way LOCC. While this measure may not exhibit
monotonicity under arbitrary LOCC, it can still be a valuable
tool for providing bounds on the distillable entanglement of
mixed bipartite states, as we will see in the following.

The most general one-way LOCC operation that Alice and
Bob can perform is for Alice to apply a quantum instrument
{Ex}x∈[n], with Ex ∈ CP(A → A′) and

Pn
x=1 Ex ∈ CPTP(A →

A′), send the outcome x to Bob, who then applies a quantum
channel F(x) ∈ CPTP(B → B′) that depends on the outcome
x received from Alice [67]. The overall operation can be
described by the quantum channel

N AB→A′B′ :=
nX

x=1

EA→A′
x ⊗ FB→B′

(x) . (82)

Definition 1: The coherent information of entanglement of
a state ρ ∈ D(AB) is defined as

E→
�
ρAB� := sup

E∈CPTP(A→AX)
I
�
A〉BX

�
E(ρ) , (83)

where the supremum includes a supremum over all classical
systems X with arbitrary dimension and

I(A〉B)ρ := −H(A|B)ρ (84)

is the coherent information [68].
As promised, we will now show that the coherent infor-

mation of entanglement is a resource measure with respect to
one-way LOCC.

Theorem 10: Let ρ ∈ D(AB) with m = |A| = |B|,
σ ∈ D(A′B′), and N ∈ LOCC1(AB → A′B′). The coherent
information of entanglement E→ is

1) monotonic under one-way LOCC, i.e.,

E→
�
N AB→A′B′ �ρAB�� ≤ E→

�
ρAB� ,

2) non-negative, i.e., E→(ρAB) ≥ 0, with equality if ρAB is
separable,

3) strongly monotonic under one-way LOCC, i.e., for any
ensemble {py, σ

A′B′
y } that can be obtained from ρAB using

one-way LOCC and subselection, it holds that

E→
�
ρAB� ≥X

y

pyE→
�
σA′B′

y

�
,

4) convex,
5) bounded by E→

�
ρAB

�
≤ log(m) = E→ (Φm),

6) and superadditive, i.e.,

E→
�
ρAB ⊗ σA′B′�≥ E→

�
ρAB�+ E→

�
σA′B′� .

The ε-single-shot distillable entanglement under one-way
LOCC (and the error bounded by the trace distance) is defined
as

Distillε→
�
ρAB�

:= max
n

log m : T
�
ρAB LOCC1
−−−−−→ Φm

�
≤ ε

o
. (85)

A simple formula for the above expression is presently not
available. However, we can provide an upper bound.

Theorem 11: Let ρ ∈ D(AB) and ε ∈ (0, 1/2). Then, the
one-way ε-single-shot distillable entanglement is bounded by

Distillε→
�
ρAB� ≤ 1

1 − 2ε
E→

�
ρAB�+ 1 + ε

1 − 2ε
h
�

ε

1 + ε

�
,

(86)
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where h(x) := −x log x−(1−x) log(1−x) is the binary Shannon
entropy.

This result should be compared to [69, Lem. 4], where
also an upper bound on a variant of the one-way ε-single-
shot distillable entanglement is provided (again with a slightly
different definition of the allowed error in terms of the fidelity).
The main difference is that in our bound, the optimization
over instruments (contained in E→

�
ρAB

�
) is independent of ε,

whilst the corresponding optimization in their bound is not.
The bound provided in Thm. 11 recovers the exact asymptotic
solution given in [70, Thm. 13].

For lower bounds on the one-way ε-single-shot distillable
entanglement, see again [69] as well as [71, Prop. 21]. Even
though [71] defined the conversion distance using the fidelity,
their bound holds for our definition too due to the following
Lemma.

Lemma 8: Let ρ ∈ D(AB), and Φm ∈ D(A′B′) be the
maximally entangled state with m := |A′| = |B′|. Then,

T
�
ρ

LOCC1
−−−−−→ Φm

�
= P2

�
ρ

LOCC1
−−−−−→ Φm

�
= 1 − sup

N∈LOCC1

Tr
�
ΦmN (ρ)

�
, (87)

where the supremum is over all N ∈ LOCC1(AB → A′B′),
and P is the purified distance as given in Eq. (7).

B. Channel Distillation

In Def. 1, we introduced the coherent information of entan-
glement of a quantum state and subsequently showed that
it is a measure of entanglement under one-way LOCC. The
following Definition contains the generalization to quantum
channels.

Definition 2: Let N ∈ CPTP(A→ B) be a quantum channel.
Its coherent information of entanglement is then defined as

E→
�
N A→B� := max

ψ∈Pure(AÃ)
E→

�
N Ã→B

�
ψAÃ

��
. (88)

Similarly, one can define the coherent information of a quan-
tum channel N A→B as

I(A〉B)N := max
ψ∈Pure(AÃ)

I
�
A〉B

�
N Ã→B(ψAÃ) . (89)

Interestingly, E→
�
N A→B

�
and I(A〉B)N coincide.

Theorem 12: Let N ∈ CPTP(A→ B) be a quantum channel.
It then holds that

E→
�
N A→B� = I(A〉B)N . (90)

Consider a channel N ∈ CPTP(A → B). The most general
bipartite state ρ ∈ D(A3B3) to which this channel can be
converted with the help of LOCC1 is given by

ρA3B3 = EA2B→A3B3 ◦N A→B �σAA2
�
, (91)

where E is in LOCC1. Since we can purify σ by enlarging
system A2 and adapting E accordingly, w.l.o.g., we will assume
that σ is pure. For any natural number m, let |A3| = |B3| = m
and we thus define the conversion distance

T
�
N A→B LOCC1

−−−−−→ Φm

�

:=
1
2

inf
E∈LOCC1
ψ∈Pure

ΦA3B3
m −EA2B→A3B3 ◦N A→B �ψAA2

�
1 , (92)

where a priori, the infimum also includes an infimum over |A2|.
Since the Schmidt rank of ψAA2 cannot exceed |A|, w.l.o.g., we
can fix |A2| = |A| (and adapt E accordingly). Observe that the
equation above implies that (see Eq. (3))

T
�
N A→B LOCC1

−−−−−→ Φm

�
= min

ψ,φ∈Pure
T
�
N A→B

�
ψAÃ

� LOCC1
−−−−−→ Φm

�
. (93)

The one-way ε-single-shot distillable entanglement is then
defined as (cf. Eq. (85))

Distillε→ (N ) := max
n

log m : T
�
N

LOCC1
−−−−−→ Φm

�
≤ ε

o
. (94)

Therefore, from Eqs. (85) and (93), we get that

Distillε→
�
N A→B� = max

ψ,φ∈Pure
Distillε

�
N A→B

�
ψAÃ

��
. (95)

Combining Thm. 11 and Thm. 12, we thus obtain
Theorem 13: Let N ∈ CPTP(A→ B) be a quantum channel.

It then holds that

Distillε→ (N ) ≤
1

1 − 2ε
I(A〉B)N +

1 + ε

1 − 2ε
h
�

ε

1 + ε

�
. (96)

V. DISCUSSION AND OUTLOOK

In this work, we studied entanglement distillation and dilu-
tion of states and channels in the single-shot regime [9], [10],
[13], [17], [22], [31], [36], [37], [38], [39], [40], [43], [72]. By
restricting the allowed error ε with the recently introduced star
conversion distance [15], we determined surprisingly compact
closed-form expressions for the ε-single-shot entanglement
cost and the ε-single-shot distillable entanglement of pure
states, which allowed us to obtain second-order asymptotics
[16] and efficient methods to calculate these quantities on
multiple copies. Furthermore, we discussed generalizations of
ε-single-shot entanglement distillation/dilution in which either
catalysis [51] is allowed or the maximally entangled states are
replaced by arbitrary pure entangled states. Since these results
are based on (approximate) majorization [45], [46], we expect
that similar results can be obtained in other majorization-based
resource theories such as coherence [73], [74], non-uniformity
[75], or quantum thermodynamics [76], [77], [78], [79], [80].

For mixed states, we expressed the ε-single-shot entangle-
ment cost introduced in [17] in terms of a smoothed version
of the conditional max-entropy [18], [19] and showed that on
pure states, it coincides with the ε-single-shot entanglement
cost based on the star conversion distance.

Furthermore, we provided closed-form expressions for the
smoothed min- and max-entropy [18], [19] and equipped them
with an operational interpretation in terms of the ε-single-shot
distillable entanglement and entanglement cost of pure states,
respectively. Based on these results, we provided bounds on
the entanglement cost of quantum channels that coincide in
the zero-error limit. Concerning entanglement distillation, we
introduced the coherent information of entanglement and used
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it to upper bound both the one-way ε-single-shot distillable
entanglement of states and channels.

Our work thus contributes to a better understanding of
how entanglement can be optimally manipulated and used to
implement a desired quantum channel and how this is related
to entropic quantities. This is highly relevant to optimize
technological applications in which entanglement plays a role,
which will lead to a better understanding of the relevance of
entanglement for quantum advantages.

APPENDIX A
ADDITIONAL REMARKS

In the Appendix, for completeness, we provide a few
additional comments. Technically Eq. (6) was not shown in
[15], but it follows directly from what was shown: As expected
for a consistent definition, and because one can always append
and remove separable states reversibly,

T
�
ρAB LOCC
−−−−→ σA′B′

�
= T

�
ρAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ σA′B′

�
. (97)

A technical proof is the following:

T
�
ρAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ σA′B′

�
= inf

τ∈D(AA′BB′)

�
1
2

τAA′BB′ − |11〉〈11|AB ⊗ σA′B′


1 :

ρAB ⊗ |11〉〈11|A
′B′ LOCC
−−−−→ τAA′BB′

�
≤ inf
τ∈D(A′B′)

�
1
2

|11〉〈11|AB⊗τA′B′−|11〉〈11|AB⊗σA′B′


1 :

ρAB ⊗ |11〉〈11|A
′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ τA′B′

�
= inf

τ∈D(A′B′)

�
1
2

τA′B′ − σA′B′


1 : ρAB LOCC
−−−−→ τA′B′

�
= T

�
ρAB LOCC
−−−−→ σA′B′

�
(98)

and

T
�
ρAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ σA′B′

�
= inf

τ∈D(AA′BB′)

�
1
2

τAA′BB′ − |11〉〈11|AB ⊗ σA′B′


1 :

ρAB ⊗ |11〉〈11|A
′B′ LOCC
−−−−→ τAA′BB′

�
≥ inf

τ∈D(AA′BB′)

�
1
2

TrAB τ
AA′BB′ − σA′B′


1 :

ρAB ⊗ |11〉〈11|A
′B′ LOCC
−−−−→ τAA′BB′

�
≥ inf

τ∈D(AA′BB′)

�
1
2

TrAB τ
AA′BB′ − σA′B′


1 :

ρAB ⊗ |11〉〈11|A
′B′ LOCC
−−−−→ TrAB τ

AA′BB′
�

= inf
τ∈D(A′B′)

�
1
2

τA′B′ − σA′B′


1 : ρAB LOCC
−−−−→ τA′B′

�

= T
�
ρAB LOCC
−−−−→ σA′B′

�
. (99)

We, therefore, find with the help of [15, Lem. 3] that

1
2

T 2
?

�
ψAB LOCC
−−−−→ φA′B′

�
=

1
2

T 2
?

�
ψAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ φA′B′

�
≤ T

�
ψAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ φA′B′

�
= T

�
ψAB LOCC
−−−−→ φA′B′

�
= T

�
ψAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ φA′B′

�
≤

s
2T?

�
ψAB ⊗ |11〉〈11|A′B′

LOCC
−−−−→ |11〉〈11|AB ⊗ φA′B′

�
=

s
2T?

�
ψAB LOCC
−−−−→ φA′B′

�
. (100)

Analogously to Eq. (97), and as expected, it also holds that

P
�
ρAB LOCC
−−−−→ σA′B′

�
= P

�
ρAB ⊗ |11〉〈11|A

′B′ LOCC
−−−−→ |11〉〈11|AB ⊗ σA′B′

�
, (101)

which follows from exactly the same arguments.

APPENDIX B
PROOFS OF THE RESULTS IN THE MAIN TEXT

In the following, we provide the proofs of the results
presented in the main text, which we repeat for readability.
Note that Thm. 1 was stated in [15] for the case AB = A′B′.
The generalization to AB , A′B′ is trivial. For completeness,
we provide it nevertheless.

Theorem 1: Let ψ ∈ Pure(AB), φ ∈ Pure(A′B′), and p ∈
Prob↓(|A|),q ∈ Prob↓(|A′|) be their corresponding Schmidt
coefficients. Then,

T?
�
ψAB → φA′B′� = max

k∈[SR(ψAB)]

˚
‖p‖(k) − ‖q‖(k)

	
. (102)

Proof: We notice that the (by convention ordered) Schmidt
coefficients of

ψAB ⊗ |11〉〈11|A
′B′ (103)

are given by
e(|A′ |)

1 ⊗ p, (104)

where e(|A′ |)
1 = (1, 0, . . . , 0) ∈ Prob↓(|A′|). The Schmidt coeffi-

cients of
|11〉〈11|AB ⊗ φA′B′ (105)

on the other hand, are given by

e(|A|)
1 ⊗ q. (106)

The claim then follows from Eq. (5) and [15, Thm. 4].
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Theorem 2: Let ε ∈ [0, 1), ψ ∈ Pure(AB), d := SR(ψAB),
and p ∈ Prob↓(|A|) be the Schmidt coefficients of ψAB. The
ε-single-shot distillable entanglement of ψAB is then given by

Distillε
�
ψAB� = min

k∈{`,...,d}
log

�
k

‖p‖(k) − ε

�
, (107)

where ` ∈ [d] is the integer satisfying ‖p‖(`−1) ≤ ε < ‖p‖(`).
Proof: From Thm. 1, we find that for any m ∈ N

T?
�
ψAB → Φm

�
= max

k∈[d]

˚
‖p‖(k) − ‖Φm‖(k)

	
. (108)

For m ≥ d, this implies that

T?
�
ψAB → Φm

�
= max

k∈[d]

�
‖p‖(k) −

k
m

�
. (109)

Next, consider the case m < d, i.e.,

T?
�
ψAB → Φm

�
= max

k∈[d]

�
‖p‖(k) −

min{k,m}
m

�
. (110)

Now assume that there exists an optimizer k? in the above
expression that satisfies k? ≥ m. In this case, it must be equal
to d, since ‖p‖(k) is strictly increasing for k ∈ {m, . . . , d}, whilst
min{k,m}

m = 1 is constant. This implies that T?
�
ψAB → Φm

�
= 0.

Assume on the contrary that there only exist optimizers k? <
m, and thus T?

�
ψAB → Φm

�
> 0 (otherwise k? = d would be

an optimizer too). In this case, we have that

T?
�
ψAB → Φm

�
= max

k∈[d]

�
‖p‖(k) −

min{k,m}
m

�
= max

k∈[d]

�
‖p‖(k) −

k
m

�
, (111)

since the maximum in the first line is reached for some k < m,
and

min{k,m}
m

≤
k
m

(112)

with equality for k ≤ m.
In summary, we thus find that for all m ∈ N, either

T?
�
ψAB → Φm

�
= 0, or

T?
�
ψAB → Φm

�
= max

k∈[d]

�
‖p‖(k) −

k
m

�
. (113)

Now let m̃ be the largest m such that T?
�
ψAB → Φm

�
= 0 (and

note that m̃ ≤ d, since LOCC cannot increase the Schmidt rank
of any state). Remembering that by definition

Distillε
�
ψAB� := max

m∈N

n
log m : T?

�
ψAB → Φm

�
≤ ε

o
,

this implies that

Distillε
�
ψAB� ≥ log m̃, (114)

with equality iff T?
�
ψAB → Φm̃+1

�
> ε. Assuming that this is

not the case, i.e., that ε ≥ T?
�
ψAB → Φm̃+1

�
> 0, it follows

from Eq. (113) that

Distillε
�
ψAB�

= max
m∈N

�
log m : ‖p‖(k) −

k
m
≤ ε ∀ k ∈ [d]

�
= max

m∈N

�
log m : ‖p‖(k) −

k
m
≤ ε ∀ k ∈ {`, . . . , d}

�

= max
m∈N

�
log m : m ≤

k
‖p‖(k) − ε

∀ k ∈ {`, . . . , d}
�

= max
m∈N

�
log m : m ≤ min

k∈{`,...,d}

k
‖p‖(k) − ε

�
= min

k∈{`,...,d}
log

�
k

‖p‖(k) − ε

�
. (115)

Moreover, by definition,

m̃ = max
�

m ∈ [d] : ‖p‖(k) −
min{k,m}

m
≤ 0 ∀k ∈ [d]

�
.

Since ‖p‖(k) ≤ 1, for k > m, ‖p‖(k) −
min{k,m}

m = ‖p‖(k) − 1 ≤ 0
and thus

m̃ = max
�

m ∈ [d] : ‖p‖(k) −
k
m
≤ 0 ∀k ∈ [m]

�
= max

�
m ∈ [d] : ‖p‖(k) −

k
m
≤ 0 ∀k ∈ [d]

�
, (116)

from which follows that

max
k∈[d]

�
‖p‖(k) −

k
m̃

�
≤ 0 ≤ ε. (117)

To conclude the proof, assume that Distillε
�
ψAB

�
= log m̃.

According to Eq. (114), this implies that

T?
�
ψAB → Φm̃+1

�
= max

k∈[d]

�
‖p‖(k) −

k
m̃ + 1

�
> ε ,

and consequently

m̃ = max
�

m ∈ N : max
k∈[d]

�
‖p‖(k) −

k
m

�
≤ ε

�
. (118)

From this follows again that

Distillε
�
ψAB� = log m̃

= max
m∈N

�
log m : ‖p‖(k) −

k
m
≤ ε ∀ k ∈ [d]

�
(119)

Continuing with the same steps as in Eq. (115) finishes the
proof.

Theorem 3: Let ε ∈ [0, 1), ψ ∈ Pure(AB), d := SR(ψAB),
and p ∈ Prob↓(|A|) be the Schmidt coefficients of ψAB. The
ε-single-shot entanglement cost of ψAB is then given by

Costε
�
ψAB� = log m, (120)

where m ∈ [d] is the integer satisfying ‖p‖(m−1) < 1−ε ≤ ‖p‖(m).
Proof: Let

bk :=
k

‖p‖(k) + ε
∀ k ∈ [m] . (121)

Since for all k ∈ [m − 1], it holds that

‖p‖(k) + ε ≥ ‖p‖(k) ≥ kpk ≥ kpk+1, (122)

we find that
bk+1

bk
=

k + 1
k

‖p‖(k) + ε

‖p‖(k) + pk+1 + ε

=
k(‖p‖(k) + ε) + ‖p‖(k) + ε

k(‖p‖(k) + ε) + kpk+1
≥ 1 (123)

and thus
b1 ≤ b2 ≤ · · · ≤ bm . (124)
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From Thm. 1, it follows that for any m ∈ N

T?
�
Φm → ψAB� = max

k∈[m]

�
k
m
− ‖p‖(k)

�
. (125)

In combination, it, therefore, holds that

Costε
�
ψAB� (126)

= min
m∈N

�
log m :

k
m
− ‖p‖(k) ≤ ε ∀ k ∈ [m]

�
(127)

= min
m∈N

�
log m : m ≥

k
‖p‖(k) + ε

∀ k ∈ [m]
�

(128)

= min
m∈N

�
log m : m ≥

m
‖p‖(m) + ε

�
(129)

= min
m∈N

˚
log m : ‖p‖(m) ≥ 1 − ε

	
. (130)

Noticing that ‖p‖(d) = 1 completes the proof.
The proof of Thm. 4 can be found in App. C.
Lemma 9: For any distribution p such that V(p) > 0, any

natural number n, and ε ∈ [0, 1), let

fn,ε(p) := min
˚
k : ‖p⊗n‖(k) > ε

	
,

f ′n,ε(p) := min
˚
k : ‖p⊗n‖(k) ≥ ε

	
. (131)

Then we have that

lim
n→∞

log f ′n,ε(p)−nH(p)
√

nV(p)

= lim
n→∞

log fn,ε(p)−nH(p)
√

nV(p)
= Φ−1(ε). (132)

Proof: According to [16, Lem. 15] (see also [50, Lem. 16]),
it holds that for any distribution p such that V(p) > 0,

lim
n→∞
‖p⊗n‖(kn(x)) = lim

n→∞

kn(x)X
i=1

(p⊗n)↓i = Φ(x), (133)

where
kn(x) :=

j
exp

�
H(p⊗n) + x

p
V(p⊗n)

�k
. (134)

In the following, we will use this to prove the Lemma.
For any δ > 0, let x = Φ−1(ε+ 2δ). By Eq. (133), we have

for sufficiently large n that

‖p⊗n‖(kn(x)) ≥ Φ(x) − δ = ε+ δ > ε. (135)

By the definition of fn,ε(p) and kn(x), this implies that

log fn,ε(p) ≤ log kn(x) ≤ H(p⊗n) + x
p

V(p⊗n). (136)

Taking n→ ∞, we get

lim sup
n→∞

log fn,ε(p)−nH(p)
√

nV(p)
≤ x = Φ−1(ε+ 2δ). (137)

Since the above inequality holds for any δ > 0, we have

lim sup
n→∞

log fn,ε(p)−nH(p)
√

nV(p)
≤ Φ−1(ε). (138)

Next, we prove the other direction by contradiction. Suppose

lim inf
n→∞

log fn,ε(p)−nH(p)
√

nV(p)
< Φ−1(ε), (139)

i.e., there exists a value r such that

lim inf
n→∞

log fn,ε(p)−nH(p)
√

nV(p)
≤ r < Φ−1(ε). (140)

For any
0 < δ < Φ−1(ε) − r, (141)

there thus exists a subsequence of n (denoted as n as well)
such that

log fn,ε(p)−nH(p)
√

nV(p)
≤ r + δ (142)

for sufficiently large n. This is equivalent to

fn,ε(p) ≤ exp
�

nH(p) + (r + δ)
p

nV(p)
�

≤

j
exp

�
nH(p) + (r + δ)

p
nV(p)

�k
+ 1. (143)

Since ‖p⊗n‖(k) is non-decreasing in k, we have by the definition
of kn in Eq. (134) that

‖p⊗n‖( fn,ε(p)) ≤‖p
⊗n‖(kn(r+δ)+1)

= ‖p⊗n‖(kn(r+δ)) + (p⊗n)↓(kn(r+δ)+1). (144)

Taking n → ∞ on both sides and using Eq. (133) as well as
Eq. (141), we have

lim inf
n→∞

‖p⊗n‖( fn,ε(p)) ≤ Φ(r + δ) < ε. (145)

However, by the definition of fn,ε(p), we always have
‖p⊗n‖( fn,ε(p)) > ε, which forms a contradiction to Eq. (145).
Since we are working in the asymptotic regime, the proof for
f ′n,ε(p) works exactly analogously.

Proposition 3: For any pure state ψ ∈ Pure(AB) with
Schmidt vector p, V(p) > 0, and ε ∈ [0, 1), it holds that

Costε(ψ⊗n) = nH(p) − Φ−1(ε)
p

nV(p) + o(
√

n). (146)

Proof: By Thm. 3, we have that

Costε(ψ⊗n) = log f ′n,1−ε(p). (147)

The Proposition is thus simply a rewriting of Lem. 1 where
we used that Φ−1(1 − ε) = −Φ−1(ε).

Proposition 4: For any pure state ψ ∈ Pure(AB) with
Schmidt vector p, V(p) > 0, and ε ∈ [0, 1), it holds that

Distillε(ψ⊗n) = nH(p) + Φ−1(ε)
p

nV(p) + o(
√

n). (148)

Proof: For any δ > 0, let x = Φ−1(ε+ 2δ). Using Eq. (133),
for any sufficiently large n, we have ‖p⊗n‖(kn(x)) ≥ Φ(x) − δ =

ε+ δ > ε where kn(x) is defined in Eq. (134). Due to Thm. 2,
we find that

Distillε(ψ⊗n) ≤ log
�

kn(x)
‖p⊗n‖(kn(x)) − ε

�
≤ log

kn(x)
‖p⊗n‖(kn(x)) − ε

= log kn(x) − log(‖p⊗n‖(kn(x)) − ε)

≤ nH(p) + x
p

nV(p) − log (Φ(x) − δ − ε)

= nH(p) + x
p

nV(p) − log (δ) . (149)
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Note that Φ−1(·) is continuously differentiable and thus x =

Φ−1(ε+ 2δ) = Φ−1(ε) + O(δ). Considering δ = 1/n, we have

Distillε(ψ⊗n) ≤ nH(p) + Φ−1(ε)
p

nV(p) + o(
√

n). (150)

Next, we prove the converse direction. For n large enough,
we have

Distillε(ψ⊗n) = min
k∈{`,...,d}

log
�

k
‖p⊗n‖(k) − ε

�
≥ min

k∈{`,...,d}

�
log

�
k

‖p⊗n‖(k) − ε

��
− 1

≥ min
k∈{`,...,d}

�
log

�
k

1 − ε

��
− 1

= log fn,ε(p) − log(1 − ε) − 1

≥ nH(p) + Φ−1(ε)
p

nV(p) + o(
√

n), (151)

where the first inequality follows from logbxc ≥ (log x) − 1,
the second from ‖p‖(k) ≤ 1, and the last from Lem. 1. This
completes the proof.

Lemma 10: Let ψ, φ ∈ Pure(AB) with Schmidt coefficients
p and q, respecitvely. Then

T?

�
ψAB CLOCC
−−−−−→ φAB

�
=

(
0if H(q) ≤ H(p),
ε : H(q̄(ε)) = H(p)else.

Proof: The first case is obvious from Eq. (19). If H(q) >
H(p), let r? be a minimizer in Eq. (20) and let

ε = T?

�
ψAB CLOCC
−−−−−→ φAB

�
. (152)

This implies that r? ∈ Bε (q), and thus q̄(ε) � r? and
H(q̄(ε)) ≤ H(r?) (because the Shannon entropy is Schur-
concave). It follows that q̄(ε) is a minimizer too (by definition,
1
2

q̄(ε) − q


1 ≤ ε), and we can thus restrict the optimization
without loss of generality to steepest ε-approximations, i.e.,

T?

�
ψAB CLOCC
−−−−−→ φAB

�
= min

˚
ε ∈ [0, 1] : H(q̄(ε)) ≤ H(p)

	
. (153)

However, for ε̃ ≥ ε, it follows that q̄(ε) ∈ Bε̃(q) and thus
q̄(ε̃) ≥ q̄(ε) and H(q̄(ε̃)) ≤ H(q̄(ε)). H(q̄(ε)) is thus monotonically
decreasing in ε, and by the construction of q̄(ε), also continuous
in ε. Noting that H(q̄(1)) = 0 ≤ H(p) finishes the proof.

Theorem 5: Denote by p the vector containing the Schmidt
coefficients of ψ ∈ Pure(AB). Then

Costεc
�
ψAB� = log

˙
2Hε(p)� , (154)

where
Hε(p) = min

r∈Bε(p)
H(r) = H

�
p̄(ε)� (155)

is the ε-smoothed Shannon entropy and p̄(ε) denotes the
steepest ε-approximation of p [46].

Proof: We first note that log
l

2H(p̄(ε))
m

is an upper bound on

the cost, since for m =
l

2H(p̄(ε))
m

, T?

�
Φm

CLOCC
−−−−−→ ψAB

�
= 0 if

log m ≥ H(p) (see Lem. 2), and if not, T?

�
Φm

CLOCC
−−−−−→ ψAB

�
=

δ, where δ is such that

H
�
p̄(δ)� = log

l
2H(p̄(ε))

m
≥ H

�
p̄(ε)� (156)

and thus δ ≤ ε (see the proof of Lem. 2).
To show that this is not only an upper bound, we first note

that H
�
p̄(δ)

�
< H

�
p̄(ε)

�
implies δ > ε. In the proof of Lem. 2,

we argued that H
�
p̄(δ)

�
< H

�
p̄(ε)

�
implies δ ≥ ε. However, we

cannot have δ = ε, because then we find H
�
p̄(δ)

�
= H

�
p̄(ε)

�
.

Now assume that we have an integer m with m <
l

2H(p̄(ε))
m

and consider two cases.
i) Case 2H(p̄(ε)) ∈ N. This implies that

log m < H
�
p̄(ε)� ≤ H(p) (157)

and according to Lem. 2, T?

�
Φm

CLOCC
−−−−−→ ψAB

�
is given

by δ such that

H
�
p̄(δ)� = log m < H

�
p̄(ε)� (158)

and thus δ > ε.
ii) Case 2H(p̄(ε)) < N. The assumption m <

l
2H(p̄(ε))

m
then

implies that m ≤
j

2H(p̄(ε))
k

and therefore

log m ≤ log
j

2H(p̄(ε))
k
< log

�
2H(p̄(ε))

�
≤ H(p) (159)

and according to Lem. 2, T?

�
Φm

CLOCC
−−−−−→ ψAB

�
is again

given by δ such that

H
�
p̄(δ)� = log m < H

�
p̄(ε)� (160)

and thus δ > ε.
In summary, we showed that for m <

l
2H(p̄(ε))

m
, it follows

that T?

�
Φm

CLOCC
−−−−−→ ψAB

�
> ε, which finishes the first part of

the proof. To conclude, we note that

H
�
p̄(ε)� = Hε (p) (161)

because of Schur-convexity (see [46, Prop. 3]).
Theorem 6: Denote by p the vector containing the Schmidt

coefficients of ψ ∈ Pure(AB). For ε ∈ [0, 1),

Distillεc
�
ψAB� = max

m∈N

n
log m : Hε (um) ≤ H (p)

o
,

and the optimization over m can be restricted to�
2H(p)˘ ≤ m ≤

j
2

H(p)+h(ε)
1−ε

k
, (162)

where h(x) = −x log(x)−(1−x) log(1−x) is the binary entropy.
Proof: Using Lem. 2, we find that

T?

�
ψAB CLOCC
−−−−−→ ΦAB

m

�
=

(
0if log m ≤ H(p),

δ : H
�

ū(δ)
m

�
= H(p)else.

Let m ∈ N be such that H
�

ū(ε)
m

�
≤ H (p). If log m ≤ H(p),

T?

�
ψAB CLOCC
−−−−−→ ΦAB

m

�
= 0, if not, T?

�
ψAB CLOCC
−−−−−→ ΦAB

m

�
= δ

with δ such that

H
�
ū(δ)

m

�
= H (p) ≥ H

�
ū(ε)

m

�
(163)
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and thus δ ≤ ε. In either case, T?

�
ψAB CLOCC
−−−−−→ ΦAB

m

�
≤ ε and

such m can thus be achieved. If m ∈ N is however such that
H
�

ū(ε)
m

�
> H (p), we have

log m = H(um) ≥ H
�
ū(ε)

m

�
> H (p) (164)

and thus T?

�
ψAB CLOCC
−−−−−→ ΦAB

m

�
= δ with δ such that

H
�
ū(δ)

m

�
= H (p) < H

�
ū(ε)

m

�
(165)

and therefore δ > ε, which shows that such m cannot be
achieved.

For ε = 0, we therefore get that Distill0c
�
ψAB

�
= log

�
2H(p)

˘
.

Since Distill0c
�
ψAB

�
≤ Distillεc

�
ψAB

�
,
�

2H(p)
˘

is a lower bound
on the m over which we need to optimize. If m is an integer
such that m >

j
2

H(p)+h(ε)
1−ε

k
, this implies that m > 2

H(p)+h(ε)
1−ε and

in combination with (see Refs. [81], [82])

log m − H
�
ū(ε)

m

�
=
ˇ̌
H(um) − H

�
ū(ε)

m

�ˇ̌
≤h(ε) + ε log m (166)

we find

Hε(um) = H
�
ū(ε)

m

�
≥ (1 − ε) log m − h(ε) > H(p). (167)

Lemma 11: Let ρ ∈ D(XA) be a classical-quantum-state as
in Eq. (47), and for any m ∈ [|A|], let ρ(m) be as defined in Eq.
(48). Then, for any ε ∈ [0, 1],

Hε
max(A|X)ρ

= min
m∈[|A|]

�
log m :

1
2

ρ(m) − ρXA


1 ≤ ε

�
= min

m∈[|A|]

8<:log m :
X
x∈[k]

px
ρA

x


(m) ≥ 1 − ε

9=; . (168)

Proof: If ρ(m) , ρXA, there exists an x ∈ [|A|] such that
px , 0 and the rank of ρ(m)

x equals m, from which follows that
(see Eq. (43))

Hmax(A|X)ρ(m) = log m. (169)

Using the definition of Hε
max(A|X)ρ (see Eq. (40)), we thus

obtain

Hε
max(A|X)ρ

= min
ω∈D(XA)

�
Hmax(A|X)ω :

1
2

ωXA − ρXA


1 ≤ ε

�
≤ min

m∈[|A|]

�
Hmax(A|X)ρ(m) :

1
2

ρ(m) − ρXA


1 ≤ ε

�
= min

m∈[|A|]

�
log m :

1
2

ρ(m) − ρXA


1 ≤ ε

�
. (170)

To show that indeed we have an equality in the above
equation, we notice that by definition, ρ(m)

x and ρA
x commute.

Denoting the eigenvalues of ρA
x by {λy|x} we get that the only

potentially non-zero eigenvalues of ρ(m)
x aren

λ↓y|x/
ρA

x


(m)

o
y∈[m]

. (171)

From this follows that

1
2

ρA
x − ρ

(m)
x


1

=
1
2

24 mX
y=1

ˇ̌̌
λ↓y|x − λ

↓

y|x/
ρA

x


(m)

ˇ̌̌
+

|A|X
y=m+1

λ↓y|x

35
=

1
2

hρA
x


(m)

�
1/
ρA

x


(m) − 1

�
+ 1 −

ρA
x


(m)

i
= 1 −

ρA
x


(m) (172)

and thus

1
2

ρ(m) − ρXA


1 = 1 −
X
x∈[k]

px
ρA

x


(m) . (173)

This proves that the two optimization problems in the Lemma
have the same solution, i.e.,

min
m∈[|A|]

�
log m :

1
2

ρ(m) − ρXA


1 ≤ ε

�
= min

m∈[|A|]

8<:log m :
X
x∈[k]

px
ρA

x


(m) ≥ 1 − ε

9=; . (174)

Now suppose by contradiction that

Hε
max(A|X)ρ < min

m∈[|A|]

8<:log m :
X
x∈[k]

px
ρA

x


(m) ≥ 1 − ε

9=; (175)

and let m be the smallest natural number such thatP
x px

ρA
x


(m) ≥ 1 − ε. Further, let

ωXA =
X

x

qx|x〉〈x|X ⊗ ωA
x ∈ Bε

�
ρXA� (176)

be such that Hε
max(A|X)ρ = Hmax(A|X)ω. Then, according to the

assumption,

log m > Hmax(A|X)ω = log max
x∈[k]:qx,0

Tr
�
ΠA
ωx

�
(177)

so that Tr
�
ΠA
ωx

�
< m for all x ∈ [k] : qx , 0. In particular, this

means that for any x ∈ [k] : qx , 0,
ρA

x


(m−1) ≥ Tr

�
ρA

x ΠA
ωx

�
since ΠA

ωx
has a rank strictly smaller than m. Therefore, with

ΠXA
ω :=

X
x∈[k]:qx,0

|x〉〈x|X ⊗ ΠA
ωx
, (178)

we have X
x

px
ρA

x


(m−1)

≥ Tr
�
ρXAΠXA

ω

�
= Tr

�
ωXAΠXA

ω

�
+ Tr

��
ρXA − ωXA�ΠXA

ω

�
≥ 1 − Tr

��
ρXA − ωXA�

−
ΠXA
ω

�
≥ 1 − ε , (179)

where we used the fact that ΠXA
ω ≤ IXA and Tr

�
ρXA − ωXA

�
−

=
1
2 ‖ω

XA−ρXA‖1 ≤ ε. This is in contradiction to the definition of
m as the smallest natural number such that

P
x px

ρA
x


(m) ≥

1 − ε, which completes the proof.
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Theorem 7: For ρ ∈ D(AB), the ε-single-shot entanglement
cost is given by

Costε
�
ρAB� = inf

ρXAB
Hε

max(A|X)ρ , (180)

where the infimum is over all classical systems X and all
classical extensions ρXAB of ρAB. Moreover, the infimum is
attained for a classical extension with |X| = |AB|2 and can also
be taken over all regular extensions of ρAB.

Proof: We begin by showing a useful mathematical identity.
For ε ∈ [0, 1], let

I : = min
m∈[|A|]

(
log m : max

ρXAB

X
x

px
ρA

x


(m) ≥ 1 − ε

)
,

J : = min
ρXAB

min
m∈[|A|]

(
log m :

X
x

px
ρA

x


(m) ≥ 1 − ε

)
, (181)

where the optimizations over ρXAB run over all regular exten-
sions ρXAB of ρAB with |X| = |AB|2. Using the same convention,
let

Y : =

(
log m : m ∈ [|A|],max

ρXAB

X
x

px
ρA

x


(m) ≥ 1 − ε

)
,

Yρ : =

(
log m : m ∈ [|A|],

X
x

px
ρA

x


(m) ≥ 1 − ε

)
. (182)

Since maxρXAB
P

x px
ρA

x


(m) ≥

P
x px

ρA
x


(m) ≥ 1 − ε, it

follows that Yρ ⊂ Y and thus minY ≤ minYρ for all regular
extensions ρXAB. We therefore find that

I = minY ≤ min
ρXAB

minYρ = J. (183)

From the definition of I =: log m?, it further follows that there
exists a regular extension ρ̃XAB of ρAB such thatX

x

p̃x
ρ̃A

x


(m?) ≥ 1 − ε. (184)

Now assume that I < J, i.e.,

log m? <min
ρXAB

min
m∈[|A|]

(
log m :

X
x

px
ρA

x


(m) ≥ 1 − ε

)
≤ min

m∈[|A|]

(
log m :

X
x

p̃x
ρ̃A

x


(m) ≥ 1 − ε

)
≤ log m?, (185)

which is a contradiction. We thus showed that I = J.
Next, we remember that according to Eq. (37)

P2
�

Φm
LOCC
−−−−→ ρAB

�
= E(m)

�
ρAB� . (186)

Now recall that Φm
LOCC
−−−−→ ρAB if and only if ρAB can be

decomposed into an ensemble of pure states with Schmidt rank
no larger than m (sufficiency follows from Eq. (36), necessity
from the fact that the Schmidt number cannot increase [49],
[56], [83]). Moreover, according to Carathéodory’s theorem,
one can restrict consideration to ensembles consisting of at
most |AB|2 pure states. Following along the proof of Eq. (37)
in [57, Sec. B4], it then becomes clear that the infimums

in the definition of E(m) (see Eq. (35)) are achieved for a
decomposition into at most |AB|2 pure states and we thus find
that

P2
�

Φm
LOCC
−−−−→ ρAB

�
= E(m)

�
ρAB� = min

ρXAB

 
1 −

X
x

px
ρA

x


(m)

!
= 1 −max

ρXAB

X
x

px
ρA

x


(m) , (187)

where the optimizations are over all classical systems X and
all regular extensions ρXAB of ρAB, with the optimal values
attained for |X| = |AB|2. The ε-single-shot entanglement cost
as defined in Eq. (33) can thus be expressed as

Costε
�
ρAB�

= min
m∈[|A|]

(
log m : max

ρXAB

X
x

px
ρA

x


(m) ≥ 1 − ε

)
= min

ρXAB
min

m∈[|A|]

(
log m :

X
x

px
ρA

x


(m) ≥ 1 − ε

)
= min

ρXAB
Hε

max(A|X)ρ, (188)

where we used Lem. 3 in the last line.
To conclude the proof, we show that the infimum can also

be taken over all classical extensions. Since the set of regular
extensions ρXAB is a subset of the set of classical extensions
ρ̃XAB,

inf
ρXAB

Hε
max(A|X)ρ ≥ inf

ρ̃XAB
Hε

max(A|X)ρ̃. (189)

The proof of the converse is very similar to the proof of
Lem. 3: Let ρXAB be a regular extension of ρAB satisfying
Hε

max(A|X)ρ = infρXAB Hε
max(A|X)ρ (which exists according to

the previous parts of the proof) and let m be the smallest
integer such that

P
x∈[|A|] px

ρA
x


(m) ≥ 1 − ε. Now assume by

contradiction that there exists a classical extension ρ̃XAB of
ρAB such that Hε

max(A|X)ρ̃ < Hε
max(A|X)ρ = log m (see Lem. 3).

Denoting by

ωXA =
X

x

qx|x〉〈x|X ⊗ ωA
x ∈ Bε

�
ρ̃XA� (190)

a state satisfying Hε
max(A|X)ρ̃ = Hmax(A|X)ω, we find that

log m > Hmax(A|X)ω = log max
x∈[|A|]:qx,0

Tr
�
ΠA
ωx

�
(191)

and thus m > Tr
�
ΠA
ωx

�
∀x ∈ [|A|] : qx , 0. With ΠXA

ω defined
as in Eq. (178), this implies again thatX

x

px
ρA

x


(m−1)

≥ Tr
�
ρXAΠXA

ω

�
= Tr

�
ωXAΠXA

ω

�
+ Tr

��
ρXA − ωXA�ΠXA

ω

�
≥ 1 − Tr

��
ρXA − ωXA�

−
ΠXA
ω

�
≥ 1 − ε , (192)

which is a contradiction to the assumption.
The proofs of Cor. 1, Cor. 2, and Cor. 3 were provided in

the main text.
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Lemma 12: Let ρ ∈ D(A) with |A| = d and let p ∈ Prob(d)
contain the eigenvalues of ρ. Let further u(d) be the flat
distribution of dimension d. If 1

2

p − u(d)


1 ≤ ε, then

Hε
min(ρA) = log d, (193)

otherwise

Hε
min(ρA) = log min

`∈[d]

�
`

‖p‖(`) − ε

�
. (194)

Proof: Let ω ∈ Bε(ρA) be optimal in the sense that
Hmin(ωA) = Hε

min(ρA). We first show that without loss of
generality, we can assume that ω and ρ commute. To this end,
let ∆ ∈ CPTP(A → A) be the completely dephasing channel
in the eigenbasis of ρ. This implies that ∆(ρ) = ρ and thus

1
2
‖∆(ω) − ρ‖1 =

1
2
‖∆(ω) − ∆(ρ)‖1 ≤

1
2
‖ω − ρ‖1 ≤ ε, (195)

where we made use of the data-processing inequality and the
choice of ω. Hence, ∆(ω) is also in Bε(ρA). Moreover, since
∆ is unital and the min-entropy is non-decreasing under such
channels [18],

Hmin(∆(ω)) ≥ Hmin(ω). (196)

This implies that also ∆(ω) is optimal. Moreover, by construc-
tion, ρ and ∆(ω) commute, which proofs our claim.

Next, we notice that this allows us to reduce our analysis
to probability vectors: First, we extend our definitions in the
usual manner, i.e., for p,q ∈ Prob(d), let

Hmin(p) = − log ‖p‖∞, (197)

where ‖p‖∞ denotes the largest entry of p. Denoting by p the
probability vector containing the eigenvalues of ρ, we can thus
express Hε

min(ρA) as

Hε
min(ρA) = max

q∈Bε(p)
Hmin(q). (198)

This allows us to use a result from approximate majorization
presented in [46] concerning the existence of the so-called
flattest ε-approximation: There exists a vector p(ε) ∈ Bε(p)
that is minimal with respect to the majorization relation in the
sense that q � p(ε) for all q ∈ Bε(p). Since r � s implies that

Hmin(r) ≤ Hmin(s), (199)

we obtain that

Hε
min(ρ) = Hmin(p(ε)) = − log ‖p(ε)‖∞. (200)

From now on, we assume without loss of generality that p =

p↓.
First, we notice that for ε = 0, the Lemma is trivially true,

since
H0

min(ρ) = − log ‖ρ‖∞ = − log p1 (201)

and
‖ρ‖(y)

y
=

Py
x=1 px

y
≤

yp1

y
= p1 =

‖ρ‖(1)

1
. (202)

We will thus assume from now on that ε > 0.
If

ε ≥
1
2
‖p − u(d)‖1, (203)

p(ε) is given by u(d), since the flat distribution is majorized by
all other distributions of equal dimension. This implies that

Hε
min(ρ) = log d. (204)

If
ε <

1
2
‖p − u(d)‖1, (205)

there exist unique a, b ∈ [0, 1] and k, l ∈ [d] such that [46, Eq.
(9)]

p(ε)
x

=

8̂<̂
:

a if x ∈ [k],
px if k < x < l,
b if x ∈ {l, . . . , d}

(206)

and
p(ε)

x
=
�

p(ε)
x

�↓
. (207)

Using in addition that p(ε)
x

corresponds to a flattening of p (see
[46, Fig. 1]), we conclude that

pk+1 < a ≤ pk. (208)

Moreover, according to [46, Eq. (7) and comment below]) and
taking into account the factor of 2 in the definition of the error,

ε = ‖p‖(k) − ka. (209)

In combination with Eq. (208), this implies that

‖p‖(k) − kpk ≤ ε < ‖p‖(k) − kpk+1. (210)

Now for y ∈ [d], let

ty :=
‖p‖(y) − ε

y
(211)

and define l as the largest integer in [d] such that

tl = max
y∈[d]

ty. (212)

We will now consider three different cases:
(i) Case 1 < l < d: In this case, by definition of l, we have

0 < tl − tl+1 =
‖p‖(l) − lpl+1 − ε

l(l + 1)

0 ≤ tl − tl−1 =
lpl − ‖p‖(l) + ε

l(l − 1)
(213)

and thus

‖p‖(l) − lpl ≤ ε < ‖p‖(l) − lpl+1. (214)

Comparing with Eq. (210), we thus find that l = k.
(ii) Case l = 1: This implies that

‖p‖(1) − ε = t1 > t2 =
‖p‖(2) − ε

2
, (215)

which is equivalent to

ε < p1 − p2. (216)

Comparing with Eq. (210), we find again that l = k.
(iii) Case l = d: Here, we find that

1 − ε
d

= td ≥ td−1 =
1 − pd − ε

d − 1
(217)

and thus
ε ≥ ‖p‖(d) − dpd. (218)
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Comparing with Eq. (210), the only possibility is again
l = k.

Due to Eq. (209), we finally conclude that

a = tk = max
y∈[d]

‖p‖(y) − ε

y
(219)

and thus (see Eq. (200)),

Hε
min(ρ) = − log max

y∈[d]

�
‖p‖(y) − ε

y

�
= log min

y∈[d]

(
y

‖p‖(y) − ε

)
. (220)

Lemma 13: Let q ∈ Prob(n) and q , u(n). Thenq − u(n)


1 = 2 max
k∈[n]

�
‖q‖(k) −

k
n

�
.

Proof: Assume without loss of generality that q = q↓ and
let z ∈ [n − 1] be such that qz >

1
n and qz+1 ≤

1
n . Observe that

0 =

nX
x=1

�
qx −

1
n

�
=

zX
x=1

�
qx −

1
n

�
+

nX
x=z+1

�
qx −

1
n

�
(221)

and thus
zX

x=1

�
qx −

1
n

�
=

nX
x=z+1

�
1
n
− qx

�
. (222)

Moreover,

max
k∈[n]

kX
x=1

�
qx −

1
n

�
=

zX
x=1

�
qx −

1
n

�
(223)

and thus q − u(n)


1 =

nX
x=1

ˇ̌̌̌
qx −

1
n

ˇ̌̌̌
=

zX
x=1

�
qx −

1
n

�
+

nX
x=z+1

�
1
n
− qx

�
= 2 max

k∈[n]

kX
x=1

�
qx −

1
n

�
= 2 max

k∈[n]

�
‖q‖(k) −

k
n

�
. (224)

Corollary 5: Let ρ ∈ D(A) with |A| = d, ε ∈ [0, 1), and let
p ∈ Prob(d) contain the eigenvalues of ρ. It then holds that

H̃ε
min(ρA) = log min

`∈[d]

�
`

‖p‖(`) − ε

�
. (225)

Proof: If ε = 0, the Lemma follows directly from the
definition. We thus assume from here on that ε > 0 and let
1C ∈ Prob↓(|C|) be the probability vector of which the first
entry is equal to one. The eigenvalues of ρA⊗ψC are given by
p ⊗ 1C and

lim
|C|→∞

1
2

p ⊗ 1C − u(d|C|)
1 = 1. (226)

According to Lem. 4, for a fixed system C that is large enough
(and remembering that ε < 1), this implies that

max
ω∈Bε(ρA⊗ψC )

Hmin
�
ωAC�

= log min
`∈[d|C|]

�
`

‖p ⊗ 1C‖(`) − ε

�
= log min

`∈[d]

�
`

‖p‖(`) − ε

�
, (227)

where we used that ‖p ⊗ 1C‖(`) = 1 for ` ≥ d. In case that |C|
is not large enough in the sense that

1
2

p ⊗ 1C − u(d|C|)
1 < ε (228)

(if this happens for any C), the discussion above the Lemma
(see Eq. (65)) shows that the supremum will be reached for
larger C. This finishes the proof.

Theorem 16: Let ψ ∈ Pure(AB) and ε ∈ [0, 1). The ε-single-
shot distillable entanglement of ψAB is then given by

Distillε(ψAB) = log
j

2H̃ε
min(ρA)

k
,

where ρA = TrB(ψAB) is the reduced density matrix of ψAB.
Proof: According to the first line of Eq. (115),

Distillε
�
ψAB�

= max
m∈N

�
log m : ‖p‖(k) −

k
m
≤ ε ∀ k ∈ [d]

�
= max

m∈N

�
log m : m ≤

k
‖p‖(k) − ε

∀ k ∈ [d]
�

= max
m∈N

�
log m : m ≤ min

k∈[d]

k
‖p‖(k) − ε

�
= log

�
min
k∈[d]

k
‖p‖(k) − ε

�
, (229)

which finishes the proof by invoking Cor. 4

Lemma 14: Let F
�

Φm
LOCC
−−−−→ N A→B

�
be defined as in Eq.

(73). It holds that

F
�

Φm
LOCC
−−−−→ N A→B

�
= min

ψ∈Pure(AÃ)
sup

Θ

F
�
Θ[Φm](ψAÃ),N Ã→B(ψAÃ)

�
(230)

where the supremum is again over all LOCC superchannels Θ

that map the state Φm to a channel in CPTP(Ã→ B).
Proof: We begin by noting that

D̃1/2(ρ‖σ) = −2 log F(ρ, σ), (231)

where D̃1/2 denotes the sandwiched Rényi relative entropy of
order 1/2 [84], [85]. The data-processing inequality of D̃1/2
follows directly from the analogous property of the fidelity
and that D̃1/2 obeys the direct-sum property, i.e.,

D̃1/2

 X
i

pi|i〉〈i| ⊗ ρi

X
i

pi|i〉〈i| ⊗ σi

!
=
X

i

piD̃1/2(ρi‖σi) (232)

too. According to (the proofs of) [63, Prop. 8] and [64, Lem.
II.3], it therefore holds that

D̃1/2(N A′→B(φAA′
ρ )‖MA′→B(φAA′

ρ ))
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is concave in ρA′ , where φAA′
ρ is a purification of ρA′ and

MA′→B, N A′→B are quantum channels. In short, their argument
is the following: For any convex combination ρA′ =

P
i piρ

A′
i ,

suppose ρA′
i has a purification |φAA′

i 〉. Then

|ψPAA′〉 =
X

i

√
pi|iP〉 ⊗ |φAA′

i 〉 (233)

is a purification of the average state ρA′ . Since all purifications
are related by an isometry, there exists an isometric channel
WA→PA such that WA→PA(φAA′

ρ ) = ψPAA′ . Then we have

D̃1/2

�
N A′→B(φAA′

ρ )
MA′→B(φAA′

ρ )
�

= D̃1/2

�
WA→PAN A′→B(φAA′

ρ )
WA→PAMA′→B(φAA′

ρ )
�

= D̃1/2

�
N A′→BWA→PA(φAA′

ρ )
MA′→BWA→PA(φAA′

ρ )
�

= D̃1/2

�
N A′→B(ψPAA′ )

MA′→B(ψPAA′ )
�

≥ D̃1/2

 X
i

pi|i〉〈i|P ⊗N A′→B(φAA′
i )


X

i

pi|i〉〈i|P ⊗MA′→B(φAA′
i )

!
=
X

i

piD̃1/2
�
N A′→B(φAA′

i )‖MA′→B(φAA′
i )

�
, (234)

where the first equality follows from the isometric invariance
of the divergence, the second equality follows as WA→PA com-
mutes with N A′→B and MA′→B, the inequality follows from
the data-processing inequality of D̃1/2 under the dephasing
channel

P
i |i〉〈i|

P · |i〉〈i|P, and the last equality follows from
the direct-sum property of D̃1/2.

We thus find that

inf
Θ∈LOCC

max
ψ∈Pure(AÃ)

D̃1/2

�
Θ[Φm](ψAÃ)

N Ã→B(ψAÃ)
�

= inf
Θ∈LOCC

max
ρA∈D(A)

D̃1/2

�
Θ[Φm](φAÃ

ρ )
N Ã→B(φAÃ

ρ )
�

= max
ρA∈D(A)

inf
Θ∈LOCC

D̃1/2

�
Θ[Φm](φAÃ

ρ )
N Ã→B(φAÃ

ρ )
�

= max
ψ∈Pure(AÃ)

inf
Θ∈LOCC

D̃1/2

�
Θ[Φm](ψAÃ)

N Ã→B(ψAÃ)
�
, (235)

where the first and last equalities follow because the objective
function is invariant with respect to the purification. The
second equality follows from the above argument showing
that the objective function is concave in ρA, the fact that the
objective function is convex in Θ, and that we are thus allowed
to apply Sion’s minimax theorem (clearly D(A) is compact and
both sets over which we optimize are convex) [86, Cor. 3.3].
Remembering that D̃1/2(ρ‖σ) = −2 log F(ρ, σ) and thus, e.g.,

inf
Θ∈LOCC

max
ψ∈Pure(AÃ)

D̃1/2

�
Θ[Φm](ψAÃ)

N Ã→B(ψAÃ)
�

= inf
Θ∈LOCC

max
ψ∈Pure(AÃ)

−2 log F
�
Θ[Φm](ψAÃ),N Ã→B(ψAÃ)

�
= inf

Θ∈LOCC
max

ψ∈Pure(AÃ)
−2 log F

�
Θ[Φm](ψAÃ),N Ã→B(ψAÃ)

�
=−2 log sup

Θ∈LOCC
min

ψ∈Pure(AÃ)
F
�
Θ[Φm](ψAÃ),N Ã→B(ψAÃ)

�

=−2 log F(Φm → N A→B) (236)

completes the proof.
Lemma 15: Let N ∈ CPTP(A→ B) be a quantum channel.

It then holds that

1 − E(m)
�
N A→B�

≤ F
�

Φm
LOCC
−−−−→ N A→B

�
≤

q
1 − E(m)

�
N A→B

�
. (237)

Proof: We begin by showing the upper bound. To this end,
let T be the set of all LOCC superchannels Θ for which
Θ[Φm] is a channel from Ã to B and consider an arbitrary
ψ ∈ Pure(AÃ). Since ψAÃ can be prepared locally, for any
Θ ∈ T, there exists an M ∈ LOCC(A′B′ → AB) such that

Θ[Φm]
�
ψAÃ

�
= M

�
ΦA′B′

m

�
, (238)

see Fig. 4. This implies that

sup
M∈LOCC(A′B′→AB)

F
�
M
�
ΦA′B′

m

�
,N Ã→B

�
ψAÃ

��
≥ sup

Θ∈T

F
�
Θ[Φm]

�
ψAÃ

�
,N Ã→B

�
ψAÃ

��
≥ min

ψ∈Pure(AÃ)
sup
Θ∈T

F
�
Θ[Φm]

�
ψAÃ

�
,N Ã→B

�
ψAÃ

��
= F

�
Φm

LOCC
−−−−→ N A→B

�
, (239)

where we used Lem. 6 in the last line. Moreover, recalling
first that the purified conversion distance can be expressed in
terms of E(m) (see Eq. (37)) and then its definition provided
in Eq. (8), we note that

E(m)

�
N Ã→B

�
ψAÃ

��
= P2

�
ΦA′B′

m
LOCC
−−−−→ N Ã→B

�
ψAÃ

��
= min

τ∈D(AB)

�
P2
�
τ,N Ã→B

�
ψAÃ

��
: ΦA′B′

m
LOCC
−−−−→ τ

�
= 1− sup

M∈LOCC(A′B′→AB)
F2
�
M
�
ΦA′B′

m

�
,N Ã→B

�
ψAÃ

��
≤ 1 − F2

�
Φm

LOCC
−−−−→ N A→B

�
. (240)

Since this is true for any ψ ∈ Pure(AÃ), it also holds that

E(m)

�
N Ã→B

�
= max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤1 − F2

�
Φm

LOCC
−−−−→ N A→B

�
, (241)

which concludes the first part of the proof.
To complete the proof, we must show that

F
�

Φm
LOCC
−−−−→ N A→B

�
≥ 1 − E(m)

�
N A→B

�
. To this end,

let
N Ã→B(·) =

X
x∈[n+1]

Nx(·)N∗x (242)

be an operator sum representation of N Ã→B, where we assume
for x = n + 1 that N A→B

n+1 = 0. Consider a superchannel Θ

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 27,2025 at 14:59:08 UTC from IEEE Xplore.  Restrictions apply. 



5350 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 7, JULY 2025

Fig. 4. Figure for the proof of Lem. 7. For fixed ψAÃ, every state τAB that can be obtained with a circuit as shown on the left can also be obtained with a
circuit as shown on the right by including the local preparation of ψAÃ into the LOCC protocol.

of the form given in Eq. (77) where we choose k = n + 1,
FB′→B

(x) (·) = Vx(·)V∗x to be isometries, and E Ã→B′
x (·) = Mx(·)M∗x

with

Mx :=

(
V∗x Nx for x ∈ [n],q

IB −
P

x∈[n] N∗x PxNx for x = n + 1,
(243)

where Px := VxV∗x ∈ Pos(B) is a projection to an m-
dimensional subspace. SinceX

x∈[n]

N∗x PxNx ≤
X
x∈[n]

N∗x Nx = IB , (244)

this ensures that {Mx}x∈[n+1] is a valid instrument. Moreover,
let ψ ∈ Pure(AÃ) be fixed but arbitrary and ρÃ = TrA

h
ψAÃ

i
.

Remembering that F(P0 + P1,Q0 + Q1) ≥ F(P0,Q0) +
F(P1,Q1) whenever P0, P1,Q0,Q1 ≥ 0, see, e.g., [87, Thm.
3.25], we get that

F

0@ X
x∈[n+1]

FB′→B
(x) ◦ E Ã→B′

x (ψAÃ),N Ã→B(ψAÃ)

1A
≥
X
x∈[n]

F
�
FB′→B

(x) ◦ E Ã→B′
x (ψAÃ),N Ã→B

x (ψAÃ)
�

=
X
x∈[n]

r
Tr
h
N Ã→B

x (ψAÃ)FB′→B
(x) ◦ E Ã→B′

x (ψAÃ)
i

=
X
x∈[n]

ˇ̌̌
Tr
h
ρÃN∗xVxMx

iˇ̌̌
=
X
x∈[n]

Tr
h
ρÃN∗x PxNx

i
, (245)

where we used in the third line that N Ã→B
x (ψAÃ) is pure.

Next, we recall that for a positive semidefinite operator A,
‖A‖(m) denotes the sum of its m largest eigenvalues. Taking
in Eq. (245) Px to be the projection to the m-dimensional
eigen-subspace corresponding to the m largest eigenvalues of
Nxρ

AN∗x and utilizing Lem. 6 thus gives

F
�

Φm
LOCC
−−−−→ N A→B

�
≥ min

ρ∈D(Ã)
sup
{Nx}

X
x∈[k]

Nxρ
ÃN∗x


(m)

= 1 − max
ρ∈D(Ã)

inf
{Nx}

0@1 −
X
x∈[k]

Nxρ
ÃN∗x


(m)

1A , (246)

where the optimizations involving {Nx} are over all operator-
sum representations of N .

Next, we will show that the right-hand side of the above
equation can be expressed in terms of E(m). To this end, for a
fixed ψAÃ ∈ Pure(AÃ), let

ρAB = N Ã→B
�
ψAÃ

�
.

Now every unnormalized pure state decomposition of ρAB =P
x ξ

AB
x corresponds to an operator-sum representation Nx

of N in the sense that ξAB
x = N Ã→B

x

�
ψAÃ

�
:= Nxψ

AÃN∗x :
That every operator-sum representation defines a pure state
decomposition in this way is obvious. Now let {ξAB

x } be
a pure state decomposition corresponding to any operator-
sum representation {Nx} and let {χAB

y } be an arbitrary pure
state decomposition. According to [88], this implies that
there exists a unitary U such that |χAB

y 〉 =
P

x Uyx|ξ
AB
x 〉.

Due to the unitary freedom in operator-sum representations,˚
My =

P
x UyxNx

	
is an operator-sum representation of N too,

and χAB
y = MÃ→B

y

�
ψAÃ

�
. This implies that

inf
{Nx}

0@1 −
X
x∈[k]

TrA

h
N Ã→B

x

�
ψAÃ

�i
(m)

1A
= inf

0@1 −
X
x∈[k]

px
TrA

�
ξAB

x

�
(m)

1A , (247)

where the second infimum is over all normalized pure state
decompositions {px, ξ

AB
x } of ρAB = N Ã→B

�
ψAÃ

�
=
P

x piξ
AB
x .

Moreover, remember that according to Eq. (35),

E(m)
�
ρAB� = inf

 
1 −

X
x

px
TrA

�
ψAB

x

�
(m)

!
, (248)

where the infimum is over all pure-state decompositions ρAB =P
x pxψ

AB
x . In combination, this shows that

E(m)
�
N A→B�

= max
ψ∈Pure(AÃ)

E(m)

�
N Ã→B

�
ψAÃ

��
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= max
ψ∈Pure(AÃ)

inf
{Nx}

0@1 −
X
x∈[k]

TrA

h
N Ã→B

x

�
ψAÃ

�i
(m)

1A
= max

ρ∈D(Ã)
inf
{Nx}

0@1 −
X
x∈[k]

N Ã→B
x

�
ρÃ
�

(m)

1A . (249)

Inserting this into Eq. (246), we find that

F
�

Φm
LOCC
−−−−→ N A→B

�
≥ 1 − E(m)

�
N A→B� , (250)

which finishes the proof.
Theorem 17: Let N ∈ CPTP(A→ B) be a quantum channel

and ε ∈ [0, 1). Then

max
ψ∈Pure(AÃ)

inf
σXAB

Hε
max(A|X)σ

≤ Costε(N A→B)

≤ max
ψ∈Pure(AÃ)

inf
σXAB

Hε/2
max(A|X)σ, (251)

where the infimums are over all classical systems X and all
classical extensions σXAB of σAB = N Ã→B(ψAÃ). Again, the
infimums are attained for a regular/classical extension with
|X| = |AB|2.

Proof: Notice that for every ψ ∈ Pure(AÃ), it holds that

inf
m∈N

n
log m : E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
≤ inf

m∈N

n
log m : max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
, (252)

which implies that

max
ψ∈Pure(AÃ)

inf
m∈N

n
log m : E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
≤ inf

m∈N

n
log m : max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
. (253)

On the contrary, assuming that

max
ψ∈Pure(AÃ)

inf
m∈N

n
log m : E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
< inf

m∈N

n
log m : max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
(254)

leads to a contradiction: Let m? ∈ N be such that

log m?

= inf
m∈N

n
log m : max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
. (255)

This implies that there exists an χ ∈ Pure(AÃ) such that
E(m?)

�
N Ã→B

�
χAÃ

��
≤ ε and E(m)

�
N Ã→B

�
χAÃ

��
> ε for

m = m? − 1 (and thus all m < m?, since E(k) ≥ E(k+1)).
Consequently,

log m?

> max
ψ∈Pure(AÃ)

inf
m∈N

n
log m : E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
≥ inf

m∈N

n
log m : E(m)

�
N Ã→B

�
χAÃ

��
≤ ε

o
= log m?, (256)

resulting in the promised contradiction. We thus showed that

max
ψ∈Pure(AÃ)

inf
m∈N

n
log m : E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
= inf

m∈N

n
log m : max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
. (257)

We now turn to the main part of the proof.
According to Lem. 7, we have

P2
�

Φm
LOCC
−−−−→ N A→B

�
≥ E(m)

�
N A→B� . (258)

Combining this with the definition of the entanglement cost
in Eq. (74) gives

Costε(N )

≥ inf
m∈N

n
log m : E(m)

�
N A→B� ≤ εo

= inf
m∈N

n
log m : max

ψ∈Pure(AÃ)
E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
=
(i)

max
ψ∈Pure(AÃ)

inf
m∈N

n
log m : E(m)

�
N Ã→B

�
ψAÃ

��
≤ ε

o
=
(ii)

max
ψ∈Pure(AÃ)

inf
m∈N

n
log m :

P2
�

Φm
LOCC
−−−−→ N Ã→B(ψAÃ)

�
≤ ε

o
= max

ψ∈Pure(AÃ)
Costε

�
N Ã→B(ψAÃ)

�
=

(iii)
max

ψ∈Pure(AÃ)
inf
σXAB

Hε
max(A|X)σ , (259)

where (i) follows from Eq. (257), (ii) from Eq. (37), (iii) from
Thm. 7, and the infimum in the last line is over all classical
systems X and all regular extensions σXAB of N Ã→B(ψAÃ).

For the converse inequality, expressing the cost in terms of
the fidelity gives

Costε(N )

= inf
m∈N

n
log m : F

�
Φm

LOCC
−−−−→ N

�
≥
√

1 − ε
o

≤
(i)

inf
m∈N

n
log m : F

�
Φm

LOCC
−−−−→ N

�
≥ 1 − ε/2

o
≤
(ii)

inf
m∈N

n
log m : E(m) (N ) ≤ ε/2

o
= max

ψ∈Pure(AÃ)
Costε/2

�
N Ã→B(ψAÃ)

�
= max

ψ∈Pure(AÃ)
inf
σXAB

Hε/2
max(A|X)σ , (260)

where (i) follows from
√

1 − ε ≤ 1 − ε/2, (ii) from Lem.
7, the last two lines follow from the same steps as in Eq.
(259), and the infimum is again over all classical systems X
and all regular extensions σXAB of N Ã→B(ψAÃ). The fact that
the infimums are achieved and can be taken over all classical
extensions follows from the analogous statements in Thm. 7.

Theorem 24: Let ρ ∈ D(AB) with m = |A| = |B|,
σ ∈ D(A′B′), and N ∈ LOCC1(AB → A′B′). The coherent
information of entanglement E→ is

1) monotonic under one-way LOCC, i.e.,

E→
�
N AB→A′B′ �ρAB�� ≤ E→

�
ρAB� ,
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2) non-negative, i.e., E→(ρAB) ≥ 0, with equality if ρAB is
separable,

3) strongly monotonic under one-way LOCC, i.e., for any
ensemble {py, σ

A′B′
y } that can be obtained from ρAB using

one-way LOCC and subselection, it holds that

E→
�
ρAB� ≥X

y

pyE→
�
σA′B′

y

�
,

4) convex,
5) bounded by E→

�
ρAB

�
≤ E→ (Φm) = log(m),

6) superadditive, i.e.,

E→
�
ρAB ⊗ σA′B′� ≥ E→

�
ρAB�+ E→

�
σA′B′�.

Proof: 1. First observe that since N ∈ LOCC1(AB→ A′B′),
for any L ∈ CPTP(A′ → A′X) we have that L ◦ N ∈

LOCC1(AB→ A′B′X). Therefore,

E→
�
N AB→A′B′ �ρAB��

= sup
L∈CPTP(A′→A′X)

I
�
A′〉B′X

�
L◦N (ρ)

≤ sup
M∈LOCC1(AB→A′B′X)

I
�
A′〉B′X

�
M(ρ) . (261)

According to Eq. (82), every M ∈ LOCC1(AB→ A′B′X) can
be expressed as

MAB→A′B′X :=
X
y∈[n]

EA→A′X
y ⊗ FB→B′

(y) , (262)

with each EA→A′X
y being a CP map such that

P
y∈[n] Ey ∈

CPTP(A→ A′X), and each F(y) ∈ CPTP(B→ B′). Let further
be

qy := Tr
�
EA→A′X

y

�
ρAB�� (263)

and
σA′BX

y :=
1
qy
EA→A′X

y

�
ρAB� . (264)

With these notations, we have

MAB→A′B′X �ρAB� =
X
y∈[n]

qyFB→B′
(y)

�
σA′BX

y

�
. (265)

Remembering that

D
�
τCD

IC ⊗ τD
�

= Tr
�
τCD log

�
τCD�� − Tr

�
τCD log

�
IC ⊗ τD��

= Tr
�
τCD log

�
τCD�� − Tr

�
τCDIC ⊗ log

�
τD��

= Tr
�
τCD log

�
τCD�� − Tr

�
τD log

�
τD��

= −H
�
τCD�+ H

�
τD�

= −H(C|D)τ = I(C〉D)τ, (266)

it follows from the joint convexity of the relative entropy, the
data processing inequality, and the inequality in Eq. (261) that

E→
�
N AB→A′B′ �ρAB��

≤ sup
M∈LOCC1(AB→A′B′X)

I
�
A′〉B′X

�
M(ρ)

= sup D
�X

y∈[n]

qyFB→B′
(y)

�
σA′BX

y

� 
IA′ ⊗

X
y∈[n]

qyFB→B′
(y)

�
σBX

y

� �

≤ sup
X
y∈[n]

qyD
�
FB→B′

(y)

�
σA′BX

y

�IA′⊗FB→B′
(y)

�
σBX

y

��
≤ sup

X
y∈[n]

qyD
�
σA′BX

y

IA′⊗σBX
y

�
= sup

X
y∈[n]

qyI
�
A′〉BX

�
σy
, (267)

where the supremums are over all decompositions described
above corresponding to an M ∈ LOCC1(AB→ A′B′X′).

Let {τi} ⊂ D(C) be a set of states that are mutually
orthogonal and {ri} a probability distribution. It is well known
(and follows from a straightforward calculation) that this
implies that

H

 X
i

riτi

!
=
X

i

riH(τi) −
X

i

ri log(ri). (268)

If ρA′BX :=
P

x∈[n] pxρ
A′B
x ⊗ |x〉〈x|X , i.e., is a quantum-classical-

state in D(A′BX), this implies that

I(A′〉BX)ρ =
X
x∈[n]

pxI(A′〉B)ρx : (269)

Let ρA′BX
x = ρA′B

x ⊗ |x〉〈x|. From Eqs. (266) and (268), we thus
find that

I(A′〉BX)ρ = H
�
ρBX� − H

�
ρA′BX�

=
X
x∈[n]

pxH
�
ρBX

x

�
−
X
x∈[n]

px log(px)

−
X
x∈[n]

pxH
�
ρA′BX

x

�
+
X
x∈[n]

px log(px)

=
X
x∈[n]

pxI(A′〉B)ρx , (270)

which proves the claim.
From Eq. (267), and remembering the notation from Eqs.

(263) and (264), it then follows that

E→
�
N AB→A′B′ �ρAB��

≤ sup
X
y∈[n]

qyI
�
A′〉BX

�
σy

= sup I
�
A′〉BXY

�P
y∈[n] qyσA′BX

y ⊗|y〉〈y|Y

= sup I
�
A′〉BXY

�P
y∈[n] EA→A′X

y (ρAB)⊗|y〉〈y|Y , (271)

where in the last line, the supremum is over all classical
systems Y with arbitrary dimension n, all dimensions of X,
and all instruments {EA→A′X

y }y∈[n].
Now let Z := XY . Since EA→A′Z(ρA) :=

P
y∈[n] EA→A′X

y

�
ρA
�
⊗

|y〉〈y|Y ∈ CPTP(A→ A′Z) for any instrument {EA→A′X
y }y∈[n], we

find that

E→
�
N AB→A′B′ �ρAB��
≤ sup

E∈CPTP(A→A′Z)
I
�
A′〉BZ

�
E(ρ), (272)

where the supremum is also over all dimensions of the systems
A′ and Z. We will conclude the proof by showing that the
second line in the above equation equals E→

�
ρAB

�
, i.e., that

we can restrict the supremum without loss of generality to
the case A′ = A (compare to Def. 1): Observe first that the
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coherent information remains invariant under local isometries.
If |A′| ≤ |A|, this implies that the supremum over CPTP(A →
AZ) cannot be smaller than the supremum over CPTP(A →
A′Z) (since we can always use an isometric embedding).

On the other hand, suppose that |A′| > |A|. In general,
we notice that in Eq. (272) (and similarly in Eq. (83)), the
supremum can be restricted to quantum channels of the form

EA→A′Z =
X
x∈[n]

EA→A′
x ⊗ |x〉〈x|Z , (273)

where each EA→A′
x is a CP map with a single Kraus operator.

This follows from Eq. (266) and the data processing inequality
of the relative entropy: An arbitrary EA→A′Z ∈ CPTP(A→ A′Z)
can be written as

EA→A′Z =
X

x∈[n],y∈[m]

EA→A′
x,y ⊗ |x〉〈x|Z , (274)

where each EA→A′
x,y is a CP map with a single Kraus operator

Mx,y : A → A′. Introducing another classical system Z̃ of
dimension m,

ẼA→A′ZZ̃ :=
X

x∈[n],y∈[m]

EA→A′
x,y ⊗ |x〉〈x|Z ⊗ |y〉〈y|Z̃ , (275)

is an element of CPTP(A→ A′ZZ̃) and

EA→A′Z = TrZ′ ◦ẼA→A′ZZ̃ . (276)

It thus follows that

I
�
A′〉BZZ̃

�
Ẽ(ρ)

= D
�
Ẽ(ρAB)

IA′ ⊗ TrA′ ◦Ẽ(ρAB)
�

≥D
�

TrZ′ ◦Ẽ(ρAB)
IA′ ⊗ TrZ′ ◦TrA′ ◦Ẽ(ρAB)

�
= D

�
E(ρAB)

IA′ ⊗ TrA′ ◦E(ρAB)
�

= I
�
A′〉BZ

�
E(ρ). (277)

Since the supremums include a supremum over the classical
system anyway, this proves our claim.

Now consider a channel as in Eq. (273), i.e., each EA→A′
x (·) =

Mx(·)M∗x is a CP map with a single Kraus operator Mx : A→
A′. According to the polar decomposition, each Mx can be
expressed as Mx = VxNx, where each Nx : A → A is an
element of a generalized measurement, and each Vx : A→ A′

is an isometry. Defining an isometry

VAZ→A′Z :=
X

x

VA→A′
x ⊗ |x〉〈x|Z , (278)

and a channel

N A→AZ(·) :=
X
x∈[n]

Nx(·)N∗x ⊗ |x〉〈x|
Z , (279)

it holds that EA→A′Z = VAZ→A′Z ◦N AZ→AZ , where VA→A′Z(·) =

V(·)V∗. Using again that the coherent information is invariant
under local isometries, we find that

I
�
A′〉BZ

�
E(ρ) = I

�
A〉BZ

�
N (ρ), (280)

which completes the proof of 1.

2. Let

ẼA→AX(ρA) = Tr
�
ρA� |0〉〈0|A ⊗ |0〉〈0|X . (281)

It then follows that

E→
�
ρAB�

= sup
E∈CPTP(A→AX)

I
�
A〉BX

�
E(ρ)

≥I
�
A〉B

�
Ẽ(ρ)

= H
�
ρB ⊗ |0〉〈0|X

�
− H

�
|0〉〈0|A ⊗ ρB ⊗ |0〉〈0|X

�
= 0. (282)

According to [89, Thm. 1] (see also the announcement in
[90] and [91] for a review),

I
�
A〉B

�
ρ

= H(ρB) − H(ρAB) (283)

is convex in ρAB. This immediately implies that if ρAB is
separable, i.e.,

ρAB =
X

i

piφ
A
i ⊗ ψ

B
i , (284)

then [92]

I
�
A〉B

�
ρ
≤
X

i

pi
�
H(ψB

i ) − H(φA
i ⊗ ψ

B
i )
�

= 0. (285)

For any E ∈ CPTP(A → AX), E(ρAB) is separable if ρAB was
and thus

E→
�
ρAB� = sup

E∈CPTP(A→AX)
I
�
A〉BX

�
E(ρ) ≤ 0 (286)

on separable states. Together with Eq. (282), this finishes the
proof of 2. It also follows immediately from the operational
interpretation of the coherent information detailed in [93].

3. Let ρAB ∈ D(AB) be a state. Any ensemble {py, σ
A′B′
y }

that can be obtained from it by means of one-way LOCC and
subselection is of the form

py = Tr
�
MA→A′

y ⊗ FB→B′
(y)

�
ρAB�� ,

σA′B′
y =

1
py
MA→A′

y ⊗ FB→B′
(y)

�
ρAB� , (287)

i.e., Alice applies an instrument {My}y∈[n], with My ∈ CP(A→
A′) and

Pn
y=1 My ∈ CPTP(A → A′), sends the outcome y to

Bob, who then, conditioned on y, applies a channel F(y) ∈

CPTP(B→ B′) [67].
Now define a channel N ∈ CPTP(AB→ A′AsB′Bs) as

N =
X

y

MA→A′
y ⊗ |y〉〈y|As ⊗ FB→B′

(y) ⊗ |y〉〈y|Bs , (288)

where As is a classical system in Alice’s possession and Bs a
classical system in Bob’s possession that are used to store the
outcome of our instrument.

Let C(A′ → A′X|As) be the set of channels that can be
written as

EA′As→A′AsX(τA′As )

=
X

y

EA′→A′X
(y) TrAs

�
|y〉〈y|AsτA′As

�
⊗ |1〉〈1|As (289)
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where each E(y) ∈ CPTP(A→ A′X). Clearly, N ∈ LOCC1, and
C(A′ → A′X|As) ⊂ CPTP(A′As → A′AsX). Observing that

N (ρAB) =
X

y

pyσ
A′B′
y ⊗ |y〉〈y|As ⊗ |y〉〈y|Bs , (290)

it thus follows from monotonicity and Eq. (269) that

E→
�
ρAB�

≥E→
�
N
�
ρAB��

= sup
E∈CPTP(A′As→A′AsX)

I
�
A′As〉B′BsX

�
E◦N (ρ)

≥ sup
E∈C(A′→A′X|As)

I
�
A′As〉B′BsX

�
E◦N (ρ)

= sup
{E(y)∈CPTP(A′→A′X)}

I
�
A′As〉B′BsX

�P
y pyE(y)(σA′B′

y )⊗|1〉〈1|As⊗|y〉〈y|Bs

= sup
{E(y)∈CPTP(A′→A′X)}X

y

pyI
�
A′As〉B′X

�
E(y)(σA′B′

y )⊗|1〉〈1|As

=
X

y

py sup
E∈CPTP(A′→A′X)}

I
�
A′〉B′X

�
E(σA′B′

y )

=
X

y

pyE→
�
σA′B′� , (291)

which finishes the proof.
4. Convexity is inherited from the convexity of I

�
A〉B

�
[89,

Thm. 1]: For ρAB = tσAB + (1 − t)τAB and t ∈ [0, 1],

E→
�
ρAB�

= sup
E∈CPTP(A→AX)

I
�
A〉BX

�
E(ρ)

= sup
E∈CPTP(A→AX)

I
�
A〉BX

�
tE(σ)+(1−t)E(τ)

≤ sup
E∈CPTP(A→AX)

�
tI
�
A〉BX

�
E(σ)+ (1 − t)I

�
A〉BX

�
E(τ)

�
≤ t sup

E∈CPTP(A→AX)
I
�
A〉BX

�
E(σ)

+ (1 − t) sup
E∈CPTP(A→AX)

I
�
A〉BX

�
E(τ)

= tE→
�
σAB�+ (1 − t)E→

�
τAB� . (292)

5. Let Φm ∈ D(AB) be the maximally entangled state with
m := |A| = |B|. This implies that

E→
�
ΦAB�
≥ I
�
A〉BX

�
Φm

= H
�
ΦB

m

�
− H

�
ΦAB

m

�
= log(m). (293)

Moreover, for any state ρ ∈ D(AB) and any channel E ∈
CPTP(A → AX) with m = |A| = |B|, we have that E(ρ) is
quantum-classical and we can thus apply Eq. (269) to find
that

E→
�
ρAB�

= sup
E∈CPTP(A→AX)

I
�
A〉BX

�
E(ρAB)

≤ sup
{px,σAB

x }

X
x

pxI
�
A〉B

�
σAB

x

= sup
{px,σAB

x }

X
x

px
�
H
�
σB

x

�
− H

�
σAB

x

��
≤ sup
{px,σAB

x }

X
x

px log(m)

= log(m). (294)

In combination, this proves that

E→
�
ΦAB

m

�
= log(m). (295)

6. From the additivity of the von Neumann entropy and Eq.
(266), it follows that

I
�
AA′〉BB′

�
ρAB⊗σA′B′ = I

�
A〉B

�
ρAB + I

�
A′〉B′

�
σA′B′ . (296)

This implies that

E→
�
ρAB ⊗ σA′B′�

= sup
E∈CPTP(AA′→AA′X)

I
�
AA′〉BB′X

�
E(ρAB⊗σA′B′ )

= sup
E∈CPTP(AA′→AA′XX′)

I
�
AA′〉BB′XX′

�
E(ρAB⊗σA′B′ )

≥ sup
E∈CPTP(A→AX)

E ′∈CPTP(A′→A′X′)

I
�
AA′〉BB′XX′

�
E(ρAB)⊗E ′(σA′B′ )

= sup
E∈CPTP(A→AX)

E ′∈CPTP(A′→A′X′)

h
I
�
A〉BX

�
E(ρAB)

+I
�
A′〉B′X′

�
E ′(σA′B′ )

i
= E→

�
ρAB�+ E→

�
σA′B′� . (297)

Theorem 25: Let ρ ∈ D(AB) and ε ∈ (0, 1/2). Then, the
one-way ε-single-shot distillable entanglement is bounded by

Distillε→
�
ρAB� ≤ 1

1 − 2ε
E→

�
ρAB�+ 1 + ε

1 − 2ε
h
�

ε

1 + ε

�
,

(298)

where h(x) := −x log x−(1−x) log(1−x) is the binary Shannon
entropy.

Proof: Let m ∈ N be such that Distillε→
�
ρAB

�
= log m, and

thus
T
�
ρAB LOCC1
−−−−−→ ΦA′B′

m

�
≤ ε. (299)

This means that ρAB LOCC1
−−−−−→ σA′B′ for some state σ ∈ D(A′B′)

that is ε-close to ΦA′B′
m . Therefore, from the monotonicity of

E→ under one-way LOCC we get that

E→
�
ρAB� ≥ E→

�
σA′B′� . (300)

Next, we use the fact that σA′B′ is ε-close to Φm to show
that the right-hand side of the equation above cannot be
much smaller than log(m). Indeed, combining the continuity
of I(A′〉B′)ρ := −H(A′|B′)ρ (see [94, Lem. 2]), with the fact
that I(A′〉B′)Φm = log m (this follows directly from Eq. (266)),
gives

E→
�
σA′B′�
≥ I(A′〉B′)σ

≥ I(A′〉B′)Φm − 2ε log m − (1 + ε)h
�

ε

1 + ε

�
= (1 − 2ε) log(m) − (1 + ε)h

�
ε

1 + ε

�
. (301)
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The proof is concluded by combining this inequality with Eq.
(300).

Lemma 16: Let ρ ∈ D(AB), and Φm ∈ D(A′B′) be the
maximally entangled state with m := |A′| = |B′|. Then,

T
�
ρ

LOCC1
−−−−−→ Φm

�
= P2

�
ρ

LOCC1
−−−−−→ Φm

�
= 1 − sup

N∈LOCC1

Tr
�
ΦmN (ρ)

�
, (302)

where the supremum is over all N ∈ LOCC1(AB → A′B′),
and P is the purified distance as given in Eq. (7).

Proof: Let G ∈ LOCC1(A′B′ → A′B′) be the twirling map
introduced in [95] acting on any ω ∈ D(A′B′) as

G (ω) :=
Z

U(m)
dU (U ⊗ U)ω(U ⊗ U)∗ (303)

where dU denotes the uniform probability distribution on the
unitary group proportional to the Haar measure. It was also
shown in [95] that

G (ω) = (1 − Tr [Φmω]) τ+ Tr [Φmω] Φm , (304)

where τ ∈ D(A′B′) is given by τ = (I − Φm)/(m2 − 1). From
this follows that for all ω ∈ D(A′B′)

1
2
‖G (ω) − Φm‖1 =

�
1 − Tr [Φmω]

�1
2
‖τ − Φm‖1

= 1 − Tr [Φmω] , (305)

where the last equality follows from the fact

‖τ − Φm‖1 =

 I
m2 − 1

−
m2

m2 − 1
Φm


1

= 2. (306)

From the data processing inequality and the fact that Φm is
invariant under the twirling map G, it follows that for all N ∈
LOCC1(AB→ A′B′) and all ρ ∈ D(AB)

1
2
‖N (ρ) − Φm‖1 ≥

1
2
‖G ◦N (ρ) − Φm‖1 . (307)

Since G◦N is also an LOCC1 channel (G can be implemented
with shared randomness) it follows from the inequality above
that the conversion distance can be expressed as

T
�
ρ

LOCC1
−−−−−→ Φm

�
= inf

N∈LOCC1

1
2
‖G ◦N (ρ) − Φm‖1

Eq. (305)→ = 1 − sup
N∈LOCC1

Tr
�
ΦmN (ρ)

�
. (308)

This completes the proof.
Theorem 28: Let N ∈ CPTP(A→ B) be a quantum channel.

It then holds that

E→
�
N A→B� = I(A〉B)N . (309)

Proof: From its definition (see Def. 1) we know that for all
ρ ∈ D(AB), it holds that E→(ρAB) ≥ I(A〉B)ρ. Combining this
with the definition in Eq. (88) gives

E→
�
N A→B� ≥ max

ψ∈Pure(AÃ)
I(A〉B)N Ã→B(ψAÃ)

= I(A〉B)N . (310)

To obtain the reverse inequality, observe that

max
ψ∈Pure(AÃ)

E→
�
N Ã→B

�
ψAÃ

��

= sup
E∈CPTP(A→AX)
ψ∈Pure(AÃ)

I
�
A〉BX

�
EA→AX⊗N Ã→B(ψAÃ)

≤
(i)

sup
σ∈D(AÃX)

I
�
A〉BX

�
N Ã→B(σAÃX)

=
(ii)

sup
σ∈D(AÃX)

X
x∈[n]

pxI(A〉B)N Ã→B(σAÃ
x )

= max
σ∈D(AÃ)

I(A〉B)N Ã→B(σAÃ)

=
(iii)

I(A〉B)N , (311)

where (i) follows by replacing EA→AX(ψAÃ) with arbitrary
σ ∈ D(AÃX), (ii) follows from expanding σAÃX as σAÃX =P

x∈[n] pxσ
AÃ
x ⊗ |x〉〈x|

X , and in (iii), we used that in Eq. (89),
we can replace the maximum over all pure states in Pure(AÃ)
with a maximum over all mixed states in D(AÃ) because the
coherent information is convex.

Thm. 13 was proven in the main text.

APPENDIX C
COMPUTABILITY

In the following, we will provide the proof of Thm. 4 pre-
sented in the main text as well as additional related results. To
this end, we begin by showing that

p⊗n


(k) can be computed
efficiently. Due to Thms. 2 and 3 which express Distillε

�
ψAB

�
and Costε

�
ψAB

�
in terms of the Ky-Fan norm, this will then

allow us to derive the promised results. Moreover, we will
provide explicit algorithms that can be used to compute all
relevant quantities.

Lemma 17: Let n, k, d ≥ 1 be integers and p ∈ Prob↓(d).
Algorithm 1 can be used to efficiently compute

p⊗n


(k).
Proof: Note that the n-fold tensor product p⊗n has r :=�n+d−1
d−1

�
different terms pn1

1 pn2
2 · · · p

nd
d , where the ni are non-

negative integers such that n1 + n2 + · · · + nd = n (see
multinomial coefficient), which is a polynomial in n for fixed
d. Each term pn1

1 pn2
2 · · · p

nd
d repeats

� n
n1,n2,··· ,nd

�
= n!

n1!n2!···nd! times.
First, we sort these r terms in non-increasing order to obtain
the ordered vector (s1, s2, · · · , sr). Let vi be the number of
times that si repeats. From this, we get that

(p⊗n)↓ = ( s1„ƒ‚…
v1 times

, · · · , si„ƒ‚…
vi times

, · · · , sr„ƒ‚…
vr times

). (312)

Let N0 := 0, Nk :=
Pk

i=1 vi, and Pk :=
Pk

i=1 visi. Then we have
that ‖p⊗n‖(Nk) = Pk and for any m ∈ [Nk,Nk+1],

‖p⊗n‖(m) = sk+1(m − Nk) + Pk

= sk+1(m − Nk+1) + Pk+1. (313)

Therefore, a complete algorithm is given in Algorithm 1.
At this point, let us mention that in Algorithm 1, essentially,

we first create an ordered vector and then search it. The search
part, i.e., determining which interval m belongs to, can be
accomplished with (one of the variations of) binary search,
see Algorithm 2. This reduces the required search time, but as
a trade-off, one needs to compute and store all values of Nk

and Pk.
In summary, we showed how

p⊗n


(k) can be computed
efficiently. To compute Distillε

�
ψ⊗n

�
, we must determine the
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integer m satisfying ‖p⊗n‖(m−1) ≤ ε < ‖p⊗n‖(m) (see Thm. 2, also
for notation). That this can be done efficiently is the content
of the following Proposition.

Proposition 5: For any p ∈ Prob↓(d), integer n ≥ 1, and
ε ∈ [0, 1), the integer `(p⊗n, ε) := min{m : ‖p⊗n‖(m) > ε} can
be computed efficiently by Algorithms 3 and 4.

Algorithm 3 Efficient Evaluation of the Threshold

Algorithm 4 Efficient Evaluation of the Threshold via Binary
Search

Proof: The Proposition/Algorithm 3/Algorithm 4 are essen-
tially variations of Lem. 17/Algorithm 1/Algorithm 2 and we
will thus employ the notation used there. The principal idea
is again that the elements of p⊗n repeat many times. After
calculating again the ordered vector (s1, s2, · · · , sr) and the
number of times vi that si repeats, we do a “rough” search

and determine the integer j such that P j ≤ ε < P j+1, that is,
determine which interval ` := `(p⊗n, ε) falls into (remember
that ‖p⊗n‖(Nk) = Pk). This can be done efficiently and implies
that N j < ` ≤ N j+1. Moreover, according to Eq. (313), we
know that for any m in this interval,

‖p⊗n‖(m) = s j+1(m − N j) + P j

= s j+1(m − N j+1) + P j+1, (314)

and thus

` =

�
ε − P j+1

s j+1
+ N j+1

�
+ 1. (315)

This is exactly what Algorithm 3 returns. Algorithm 4 is again
the variant employing binary search.

After we showed how to determine ` = `(p⊗n, ε), accord-
ing to Thm. 2, what remains to do in order to compute
Distillε

�
ψ⊗n

�
is to solve the optimization problem

min
k∈{`,...,dn}

log
�

k
‖p⊗n‖(k) − ε

�
. (316)

That this can be done efficiently is a consequence of the
following Proposition.

Proposition 6: For any p ∈ Prob↓(d), integer n ≥ 1, and
ε ∈ [0, 1), let ` = `(p⊗n, ε). Then

fmin := min
k∈{`,··· ,dn}

f (k) with f (k) :=
k

‖p⊗n‖(k) − ε
(317)

can be efficiently computed by Algorithm 5.

Proof: If ` = dn, the minimum is taken at `. Otherwise, for
any k ∈ {`, · · · , dn − 1},

f (k + 1) − f (k) =
k + 1

‖p⊗n‖(k+1) − ε
−

k
‖p⊗n‖(k) − ε

=
‖p⊗n‖(k)−k(p⊗n)↓k+1 − ε

(‖p⊗n‖(k+1) − ε)(‖p⊗n‖(k) − ε)
. (318)

Let g(k) := ‖p⊗n‖(k)−k(p⊗n)↓k+1 − ε and thus

g(k + 1) − g(k) = (k + 1)((p⊗n)↓k+1 − (p⊗n)↓k+2) ≥ 0. (319)

This means that g(k) is non-decreasing in k. Now consider
three cases: If g(`) ≥ 0, then g(k) ≥ 0 for all k ∈ {`, · · · , dn−1}.
This implies that f (k) is non-decreasing in k ∈ {`, · · · , dn −

1} (remember that by definition of `, ‖p⊗n‖(k) − ε > 0). The
minimum of f (k) is taken at `. If g(dn−1) ≤ 0, then f (k) is non-
increasing and the minimum of f (k) is taken at dn. It remains
to consider the case that there is a k∗ ∈ {`+1, · · · , dn−2} such
that g(k∗ − 1) < 0 ≤ g(k∗). In this case, it holds that for any
k ≤ k∗ − 1, g(k) < 0, and thus f (k + 1) < f (k). Moreover, for
any k ≥ k∗, g(k) ≥ 0 and thus f (k + 1) ≥ f (k). That is, f (k)
is decreasing in k for k ∈ {`, · · · , k∗} and non-decreasing in k
for k ∈ {k∗, · · · , dn}. So the minimum of f (k) is taken at k∗,
which can be located via the bisection method. This takes at
most log(dn) = n log d steps.

Theorem 4: Let n ∈ N, ε ∈ [0, 1), and ψ ∈ Pure(AB).
This implies that both Distillε

�
ψ⊗n

�
and Costε

�
ψ⊗n

�
can be

computed efficiently.
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Algorithm 5 Efficient Evaluation of the Distillable Entangle-
ment

Proof: That Distillε
�
ψ⊗n

�
can be computed efficiently fol-

lows from Thm. 2, Prop. 6, and the observation that

min
k∈{`,...,dn}

log
�

k
‖p⊗n‖(k) − ε

�
= log

�
min

k∈{`,...,dn}

k
‖p⊗n‖(k) − ε

�
. (320)

Determining Costε
�
ψ⊗n

�
is even easier: According to Thm.

3, we only need to determine the integer m ∈ [d] satisfying
‖p‖(m−1) < 1 − ε ≤ ‖p‖(m). It is straightforward to see that this
can be achieved by running a slight variation of Algorithm
3 which is presented in Algorithm 6. Of course, a similar
adaptation is possible for Algorithm 4.

APPENDIX D
CLOSED-FORM FORMULA FOR REF. [14]

In this Appendix, we provide an efficient method to eval-
uate the fidelity of distillation defined in Eq. (71) as well
as E(1),ε

D (ψ⊗n). For an arbitrary pure state |ψ〉 ∈ Pure(AB),
let p = (p1, · · · , p|A|) be its Schmidt vector (ordered non-
increasingly according to our convention). Moreover, let

√p =

(
√

p1, · · · ,
√p|A|). The fidelity of distillation is then given by

[14]

F(ψ⊗n,m) =
1
m

pp⊗n
2

[m]
, (321)

where the distillation norm can be expressed as [62]

‖
p

p⊗n‖[m]

Algorithm 6 Efficient Evaluation of the Entanglement Cost

:= ‖(
√

p)⊗n‖(m−k∗) +
p

k∗(1 − ‖p⊗n‖(m−k∗)) (322)

with
k∗ = arg min

1≤k≤m

1 − ‖p⊗n‖(m−k)

k
(323)

and ‖p⊗n‖(0) := 0. To determine the fidelity of distillation, we
thus need to find k∗ first.

Let
h(k) =

1 − ‖p⊗n‖(m−k)

k
. (324)

Then for any k ∈ [m − 1],

h(k + 1) − h(k) =
‖p⊗n‖(m−k) + k(p⊗n)↓m−k − 1

k(k + 1)
. (325)

Defining

t(k) = ‖p⊗n‖(m−k) + k(p⊗n)↓m−k − 1
= (k + 1)‖p⊗n‖(m−k)−k‖p⊗n‖(m−k−1) − 1, (326)

we have

t(k + 1) − t(k) = (k + 1)((p⊗n)↓m−k−1 − (p⊗n)↓m−k) ≥ 0. (327)

So t(k) is non-decreasing in k ∈ [m − 1]. Analogously to the
proof of Prop. 6, we can now consider three cases: If t(1) ≥
0, this implies that h(k) is non-decreasing in {1, · · · ,m} and
k∗ = 1. If t(m − 1) ≤ 0, h(k) is non-increasing and we get
k∗ = m. Otherwise, there exists a k′ ∈ {2, · · · ,m− 2} such that
t(k′ − 1) < 0 ≤ t(k′) and h(k) is again decreasing in k for k ∈
{1, · · · , k′} and non-increasing for k ∈ {k′, · · · ,m}. This implies
that k∗ = k′ which can be located via the bisection method.
This takes at most log(dn) = n log d steps. The corresponding
Algorithm is provided as Algorithm 7. Once k∗ is determined,
we can use Algorithm 1 to compute

F(ψ⊗n,m)

=
1
m

pp⊗n
2

[m]

=
1
m

�
‖(
√

p)⊗n‖(m−k∗) +
q

k∗
�
1 − ‖p⊗n‖(m−k∗)

��2

. (328)
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Algorithm 7 Efficient Determination of k∗

Algorithm 8 Efficient Evaluation of the Distillable Entangle-
ment of [14]

According to [61, Lem. 1], the maximal achievable fidelity
between a state obtained by applying LOCC to any initial state
ρ ∈ D(AB) with a maximally entangled state of dimension
m > |A| is given by

√
|A|/m. This implies that

r
|A|n

m
≥ F(ψ⊗n,m), (329)

and thus E(1),ε
D (ψ⊗n) ≤ log

j
|A|n

(1−ε)2

k
. From this follows that

Algorithm 8 efficiently computes E(1),ε
D (ψ⊗n).
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