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Semidefinite Programming Converse Bounds
for Quantum Communication

Xin Wang , Kun Fang , and Runyao Duan

Abstract— We derive several efficiently computable converse
bounds for quantum communication over quantum channels
in both the one-shot and asymptotic regime. First, we derive
one-shot semidefinite programming (SDP) converse bounds on
the amount of quantum information that can be transmitted
over a single use of a quantum channel, which improve the
previous bound from [Tomamichel/Berta/Renes, Nat. Commun.
7, 2016]. As applications, we study quantum communication
over depolarizing channels and amplitude damping channels
with finite resources. Second, we find an SDP-strong converse
bound for the quantum capacity of an arbitrary quantum
channel, which means the fidelity of any sequence of codes
with a rate exceeding this bound will vanish exponentially
fast as the number of channel uses increases. Furthermore,
we prove that the SDP-strong converse bound improves the
partial transposition bound introduced by Holevo and Werner.
Third, we prove that this SDP strong converse bound is equal
to the so-called max-Rains information, which is an analog to
the Rains information introduced in [Tomamichel/Wilde/Winter,
IEEE Trans. Inf. Theory 63:715, 2017]. Our SDP strong converse
bound is weaker than the Rains information, but it is efficiently
computable for general quantum channels.

Index Terms— Quantum capacity, quantum channel, semidef-
inite programming, strong converse, quantum coding.

I. INTRODUCTION

A. Background

The reliable transmission of quantum information via noisy
quantum channels is a fundamental problem in quantum
information theory. The quantum capacity of a noisy quan-
tum channel is the optimal rate at which it can convey
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quantum bits (qubits) reliably over asymptotically many uses
of the channel. The theorem by Lloyd, Shor, and Devetak
(LSD) [2]–[4] and the work in [5]–[7] show that the quantum
capacity is equal to the regularized coherent information.
In general, the regularization of coherent information is nec-
essary since the coherent information can be superadditive.
The quantum capacity is notoriously difficult to evaluate since
it is characterized by a multi-letter, regularized expression
and it is not even known to be computable [8], [9]. Even
for the qubit depolarizing channel, the quantum capacity is
still unsolved despite substantial effort in the past two decades
(see e.g., [10]–[16]). Our understanding of quantum capacity
is quite limited, and we even do not know the exact threshold
value of the depolarizing noise where the capacity goes to
zero.

The converse part of the LSD theorem states that if the
rate exceeds the quantum capacity, then the fidelity of any
coding scheme cannot approach one in the limit of many
channel uses. A strong converse property leaves no room for
the trade-off between rate and error, i.e., the error probability
vanishes in the limit of many channel uses whenever the rate
exceeds the capacity. For classical channels, Wolfowitz [17]
established the strong converse property for the classical
capacity. For quantum channels, the strong converse property
for the classical capacity was confirmed for several classes of
channels [18]–[23].

For quantum communication, the strong converse prop-
erty was studied in [24] and the strong converse of gen-
eralized dephasing channels was established [24]. Given
an arbitrary quantum channel, a previously known effi-
ciently computable strong converse bound on the quantum
capacity for general channels is the partial transposition
bound [25], [26]. Recently, the Rains information [24] was
established to be a strong converse bound for quantum
communication. There are other known upper bounds for
quantum capacity [13]–[15], [27]–[31] and most of them
require specific settings to be computable and relatively
tight.

Moreover, in a practical setting, the number of quantum
channel uses is finite, and one has to make a trade-off between
the transmission rate and error tolerance. For both practical and
theoretical interest, it is important to optimize the trade-off
for the rate and infidelity of quantum communication with
finite resources. The study of this finite blocklength setting
has recently attracted great interest in classical information
theory (e.g., [32], [33]) as well as in quantum information
theory (e.g., [34]–[40]).
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B. Summary of Results

In this paper, we focus on quantum communication via
noisy quantum channels in both the one-shot and asymptotic
settings. We study the quantum capacity assisted with positive
partial transpose preserving (PPT) and no-signalling (NS)
codes [36]. The PPT codes include all the operations that
can be implemented by local operations and classical com-
munication while the NS codes are potentially stronger than
entanglement-assisted codes.

In section III, we consider the non-asymptotic quantum
capacity. We first introduce the one-shot ε-infidelity quan-
tum capacity with PPT-assisted (and NS-assisted) codes and
characterize it as an optimization problem. Based on this
optimization, we provide semidefinite programming (SDP)
bounds to evaluate the one-shot capacity with a given infidelity
tolerance. Compared with the previous efficiently computable
converse bound given in [40], we show that our SDP converse
bounds are tighter in general and can be strictly tighter for
basic channels such as the qubit amplitude damping channel
and the qubit depolarizing channel.

In section IV, we investigate quantum communication via
quantum channels in the asymptotic setting. We first present an
SDP strong converse bound, denoted as Q� , on the quantum
capacity for a general quantum channel. This bound has
some nice properties, such as additivity with respect to tensor
products of quantum channels. In particular, Q� is a channel
analog of the SDP entanglement measure introduced in [41],
and we show here that it is equal to the so-called max-
Rains information. This result implies that Q� is no better,
in general, as an upper bound on quantum capacity than the
Rains information [24]. However, Q� is efficiently computable
for general quantum channels. Finally, we show that Q�

improves the partial transposition bound [25].

II. PRELIMINARIES

In the following, we will frequently use symbols such
as A (or A′) and B (or B ′) to denote (finite-dimensional)
Hilbert spaces associated with Alice and Bob, respectively.
We use dA to denote the dimension of system A. The set
of linear operators acting on A is denoted by L (A). The set
of positive operators acting on A is denoted by P (A). The
set of positive operators with unit trace is denoted by S (A),
while the set of positive operators with trace no greater than 1
is denoted by S≤ (A). We usually write an operator with a
subscript indicating the system that the operator acts on, such
as MAB , and write MA := TrB MAB . Note that for a linear
operator X ∈ L (A), we define |X | = √

X† X , where X† is
the adjoint operator of X , and the trace norm of X is given
by ‖X‖1 = Tr |X |. A quantum channel NA′→B is simply
a completely positive (CP) and trace-preserving (TP) linear
map from L (

A′) to L (B). The Choi-Jamiołkowski matrix
of N is given by JN = ∑

i j |i A〉〈 jA| ⊗ N (|i A′ 〉〈 jA′ |), where
{|i A〉} and {|i A′ 〉} are orthonormal bases on isomorphic Hilbert
spaces A and A′, respectively.

A positive semidefinite (PSD) operator E ∈ L (A ⊗ B)
is said to be a positive partial transpose operator (PPT) if

ETB ≥ 0, where TB means the partial transpose with respect
to the party B , i.e., (|i j〉〈kl|)TB = |i l〉〈k j |. A bipartite operation
�Ai Bi→Ao Bo is PPT if and only if its Choi-Jamiołkowski
matrix is PPT [42]. The set of PPT operations include all
operations that can be implemented by local operations and
classical communication.

Semidefinite programming [43] is a useful tool in the
study of quantum information and computation with many
applications. In this work, we use the CVX software [44] and
QETLAB (A Matlab Toolbox for Quantum Entanglement) [45]
to solve SDPs.

III. CONVERSE BOUNDS FOR NON-ASYMPTOTIC

QUANTUM COMMUNICATION

A. One-Shot ε-Error Capacity and Finite
Resource Trade-Off

In this section, we are interested in quantum communication
via noisy channels with finite resources. Suppose Alice shares
a maximally entangled state �Ai R with a reference system R
to which she has no access. The goal is to design a quantum
coding protocol such that Alice can transfer her share of this
maximally entangled state to Bob with very high fidelity.
To this end, Alice first performs an encoding operation EAi →Ao

on system Ai and then transmits the prepared state through the
channel NAo→Bi . The resulting state turns out to be NAo→Bi ◦
EAi →Ao

(
�Ai R

)
. After Bob receives the state, he performs a

decoding operation DBi→Bo on system Bi , where Bo is some
system of the same dimension as Ai . The final resulting state
will be ρ f inal = DBi→Bo ◦ NAo→Bi ◦ EAi →Ao

(
�Ai R

)
. The

target of quantum coding is to optimize the fidelity between
ρ f inal and the maximally entangled state �Ai R .

One could further imagine the coding protocol as a general
super-operator �Ai Bi→Ao Bo . Chiribella et al. [46] showed that
a two-input and two-output CPTP map �Ai Bi→Ao Bo sends any
CPTP map NAo→Bi to another CPTP map MAi →Bo if and
only if �Ai Bi→Ao Bo is B to A no-signalling (see also [47]).
Such bipartite operation � is called deterministic super-
operator or semi-causal quantum operation. Let MAi →Bo

denote the resulting composition channel of a deterministic
super-operator �Ai Bi→Ao Bo and a channel NAo→Bi . We write
M = � ◦ N for simplicity. Then there exist CPTP maps
EAi →AoC and DBi C→Bo , where C is a quantum register, such
that [46]–[48]

MAi →Bo = DBi C→B0 ◦ NAo→Bi ◦ EAi →AoC . (1)

The no-signalling (NS) codes [36], [47], [49] correspond
to the bipartite quantum operations which are no-signalling
from B to A and vice-versa. The PPT codes [36] correspond
to the deterministic super-operators which are also PPT. The
non-signalling and PPT-preserving (NS∩PPT) codes corre-
spond to the quantum no-signalling operations which are also
PPT. Moreover, a bipartite quantum operation �Ai Bi→Ao Bo

is called unassisted code (UA) if it can be represented as
�Ai Bi→Ao Bo = EAi →Ao ◦DBi→Bo . In the following, � denotes
specific classes of codes, i.e., � ∈ {UA, NS ∩ PPT, PPT}.
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Fig. 1. A deterministic super-operator �Ai Bi →Ao Bo is equivalently the
coding scheme (E ,D) with free extra resources such as entanglement. The
whole operation aims to simulate a noiseless quantum channel IAi →Bo using
a given noisy quantum channel NAo→Bi and the bipartite code �.

Definition 1: The maximum channel fidelity of N assisted
by the � code is defined by

F� (N , k) := sup
�

Tr
(
�Bo R ·�Ai Bi→Ao Bo ◦ NAo→Bi

(
�Ai R

))
,

(2)

where �Ai R and �Bo R are maximally entangled states, k =
dim|Ai | = dim|Bo| is called code size and the supremum is
taken over the � codes (� ∈ {UA, NS ∩ PPT, PPT}).

Definition 2: For a given quantum channel N and error
tolerance ε, the one-shot ε-error quantum capacity assisted
by � codes is defined by

Q(1)
� (N , ε) := log max {k ∈ N : F� (N , k) ≥ 1 − ε} , (3)

where � ∈ {UA, NS ∩ PPT, PPT}. In the following, we write
Q(1)

UA (N , ε) = Q(1) (N , ε) for simplicity.
The corresponding asymptotic quantum capacity is then

given by

Q� (N ) = lim
ε→0

lim
n→∞

1

n
Q(1)

�

(N⊗n , ε
)
. (4)

The authors of [36] showed that the maximum channel
fidelity assisted with NS ∩ PPT codes is given by the following
SDP:

FNS∩PPT (N , k) = max Tr JN WAB

s.t. 0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,

− k−1ρA ⊗ 1B ≤ W TB
AB ,

W TB
AB ≤ k−1ρA ⊗ 1B,

TrA WAB = k−21B (NS) . (5)

To obtain FPPT (N , k), one only needs to remove the NS
constraint.

Combining Eqs. (3) and (5), one can derive the following
proposition. It is worth noting that Eq. (6) is not an SDP in
general, due to the non-linear term mρA and the condition
TrA WAB = m21B . But in next subsection, we will derive
several semidefinite relaxations of this optimization problem.

Proposition 3: For any quantum channel NA′→B with
Choi-Jamiołkowski matrix JN ∈ L (A ⊗ B) and given error
tolerance ε, its one-shot ε-error quantum capacity assisted with
PPT codes can be simplified as the following optimization
problem:

Q(1)
PPT (N , ε) = − log min m

s.t. Tr JN WAB ≥ 1 − ε,

0 ≤ WAB ≤ ρA ⊗ 1B,

Tr ρA = 1,

− mρA ⊗ 1B ≤ W TB
AB ,

W TB
AB ≤ mρA ⊗ 1B . (6)

If the codes are also non-signalling, we can have the same opti-
mization for Q(1)

N S∩P PT (N , ε) with the additional constraint
TrA WAB = m21B .

B. Improved SDP Converse Bounds for
Quantum Communication

To better evaluate the quantum communication rate with
finite resources, we introduce several SDP converse bounds for
quantum communication with the assistance of PPT (and NS)
codes. In Theorem 4, we further prove that our SDP bounds
are tighter than the one introduced in [40].

Specifically, Tomamichel et al. [40] established that
− log f (N , ε) is a converse bound on one-shot ε-error quan-
tum capacity, i.e., Q(1) (N , ε) ≤ − log f (N , ε) where

f (N , ε) = min Tr SA

s.t. Tr WAB JN ≥ 1 − ε,

SA,�AB ≥ 0, Tr ρA = 1,

0 ≤ WAB ≤ ρA ⊗ 1B,

SA ⊗ 1B ≥ WAB + �
TB
AB . (7)

Here, we introduce a hierarchy of SDP converse bounds
on the one-shot ε-error capacity based on the optimization
problem in Eq. (6). If we relax the term mρA to a single
variable SA , we will obtain g (N , ε), where

g (N , ε) := min Tr SA

s.t. Tr JN WAB ≥ 1 − ε,

0 ≤ WAB ≤ ρA ⊗ 1B ,

Tr ρA = 1,

− SA ⊗ 1B ≤ W TB
AB ≤ SA ⊗ 1B . (8)

In particular, for the NS condition TrA WAB = m21B , there
are two different ways to get relaxations. The first one is to
substitute it with TrA WAB = t1B and obtain SDP g̃ (N , ε)).
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The second one is to introduce a prior constant m̂ satisfying
the inequality

Q(1)
NS∩PPT (N , ε) ≤ − log m̂ (9)

and then obtain SDP ĝ (N , ε). Note that the second method
can provide a tighter bound, but it requires one more step
of calculation since we need to get the prior constant m̂.
Successively refining the value of m̂ will result in a tighter
bound.

g̃ (N , ε) := min Tr SA

s.t. Tr JN WAB ≥ 1 − ε,

0 ≤ WAB ≤ ρA ⊗ 1B , Tr ρA = 1,

− SA ⊗ 1B ≤ W TB
AB ≤ SA ⊗ 1B,

TrA WAB = t1B . (10)

ĝ (N , ε) := min Tr SA

s.t. Tr JN WAB ≥ 1 − ε,

0 ≤ WAB ≤ ρA ⊗ 1B , Tr ρA = 1,

− SA ⊗ 1B ≤ W TB
AB ≤ SA ⊗ 1B,

TrA WAB = t1B , t ≥ m̂2. (11)

Theorem 4: For any quantum channel N and error toler-
ance ε, the inequality chain holds

Q(1) (N , ε) ≤ Q(1)
NS∩PPT (N , ε) (12)

≤ − log ĝ (N , ε) ≤ − log g̃ (N , ε) (13)

≤ − log g (N , ε) ≤ − log f (N , ε) . (14)

Proof: The first inequality is trivial. The third and fourth
inequalities are easy to obtain since the minimization over a
smaller feasible set gives a larger optimal value here.

For the second inequality, suppose the optimal solution
of (6) for Q(1)

NS∩PPT (N , ε), is taken at {WAB , ρA, m}. Let SA =
mρA, t = m2. Then we can verify that {WAB , ρA, SA, t} is a
feasible solution to the SDP (11) of ĝ (N , ε). So ĝ (N , ε) ≤
Tr SA = m, which implies that Q(1)

NS∩PPT (N , ε) = − log m ≤
− log ĝ (N , ε).

For the last inequality, we only need to show that
f (N , ε) ≤ g (N , ε). Suppose the optimal solution of g (N , ε)
is taken at {ρA, SA, WAB }. Let us choose �AB = SA ⊗ 1B −
W TB

AB . Since SA ⊗ 1B ≥ W TB
AB , it is clear that �AB ≥ 0 and

SA ⊗ 1B = WAB + �TB
AB . Thus, {SA, ρA, WAB ,�AB } is a

feasible solution to the SDP (7) of f (N , ε) which implies
f (N , ε) ≤ Tr SA = g (N , ε).

C. Examples: Amplitude Damping Channel and
Depolarizing Channel

In this subsection, we focus on quantum coding with ampli-
tude damping channels and depolarizing channels. In Fig. 2,
we show that for the amplitude damping channel NAD , our
converse bound − log g̃ (N , ε) and − log g (N , ε) are both
tighter than − log f (N , ε). For the depolarizing channel ND ,
exploiting its symmetry, we further simplify our SDP converse
bounds to linear programs.

Example 1: For the amplitude damping channel NAD =∑1
i=0 Ei · E†

i with E0 = |0〉〈0|+√
1 − r |1〉〈1|, E1 = √

r |0〉〈1|

Fig. 2. This figure demonstrates the differences among the SDP converse
bounds (i) − log f

(
N⊗2

AD , 0.01
)

(blue solid), (ii) − log g
(
N⊗2

AD , 0.01
)

(red

dashed), (iii) − log g̃
(
N⊗2

AD , 0.01
)

(yellow dotted), where the channel para-
meter r ranges from 0.05 to 0.1.

(0 ≤ r ≤ 1), the differences among − log f
(
N⊗2

AD , 0.01
)

,

− log g
(
N⊗2

AD, 0.01
)

and − log g̃
(
N⊗2

AD, 0.01
)

, are presented

in Fig. 2. When r ∈ (0.082, 0.094), − log g̃
(
N⊗2

AD, 0.01
)

≤
− log g

(
N⊗2

AD, 0.01
)

< 1 < − log f
(
N⊗2

AD, 0.01
)

. It shows
that we cannot transmit a single qubit within error tolerance
ε = 0.01 via 2 copies of amplitude damping channel where
parameter r ∈ (0.082, 0.094). However, this result cannot be
obtained via the converse bound − log f

(
N⊗2

AD , 0.01
)

.
Example 2: For the qubit depolarizing channel

ND (ρ) = (1 − p) ρ + p
3 (XρX + YρY + ZρZ), where

X, Y, Z are Pauli matrices, the Choi matrix of ND

is JN = d
(
(1 − p) � + p

d2−1
�⊥

)
, where d = 2,

� = 1
d

∑d−1
i, j=0 |i i〉〈 j j | and �⊥ = 1AB − �. For

the n-fold tensor product depolarizing channel, its
Choi matrix is J⊗n

N = dn ∑n
i=0 fi Pn

i

(
�,�⊥)

, where

fi = (1 − p)i
(

p
d2−1

)n−i
and Pn

i

(
�,�⊥)

represent the sum
of those n-fold tensor product terms with exactly i copies of
�. For example,

P3
1

(
�,�⊥)

= �⊥ ⊗ �⊥ ⊗ � + �⊥ ⊗ � ⊗ �⊥

+ � ⊗ �⊥ ⊗ �⊥. (15)

Suppose {WAB , ρA, SA} is the optimal solution to the
SDP (8) for the channel N⊗n

D , then for any local unitary

U = ⊗n
i=1 Ui

A ⊗ U
i
B , UA = ⊗n

i=1 Ui
A, we know that

{U WU†, UAρAU†
A, UA SAU†

A} is also optimal. Convex com-
binations of optimal solutions remain optimal. Without loss
of generality, we can take the optimal solution to be invariant
under any local unitary U and UA, respectively. Again, since
J⊗n
N is invariant under the symmetric group, acting by permut-

ing the tensor factors, we can finally take the optimal solution
as W = ∑n

i=0 wi Pn
i

(
�,�⊥)

, ρA = 1A/dn , SA = s1A .
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Note that Pn
i

(
�,�⊥)

are orthogonal projections. Thus
without considering degeneracy, operator W has eigenvalues
{wi }n

i=0. Next, we need to know the eigenvalues of W TB .

Decomposing operators �TB and �⊥TB into orthogonal pro-
jections, i.e.,

�TB = 1

d
(P+ − P−) , (16)

�⊥TB =
(

1 − 1

d

)
P+ +

(
1 + 1

d

)
P− (17)

where P+ and P− are symmetric and anti-symmetric pro-
jections respectively and collecting the terms with respect to
Pn

k (P+, P−), we have

W TB =
n∑

i=0

wi Pn
i

(
�TB ,�⊥TB

)
(18)

=
n∑

k=0

(
n∑

i=0

xi,kwi

)

Pn
k (P+, P−) . (19)

In the above equation (19), we note that xi,k =
1

dn

∑min{i,k}
m=max{0,i+k−n}

( k
m

)(n−k
i−m

)
(−1)i−m (d − 1)k−m (d + 1)t

and t = n − k + m − i .
Since Pn

k (P+, P−) are also orthogonal projections, W TB has
eigenvalues {tk}n

k=0 (without considering degeneracy), where
tk = ∑n

i=0 xi,kwi . As for the constraint Tr J⊗n
N WAB ≥ 1 − ε,

we have

Tr J⊗n
N W = dn Tr

n∑

i=0

fiwi Pn
i

(
�,�⊥)

(20)

= dn
n∑

i=0

(
n

i

)
(1 − p)i pn−iwi ≥ 1 − ε. (21)

Finally, substitute η = sdn and mi = wi dn . We obtain the
linear program

g
(N⊗n

D , ε
) = min η

s.t.
n∑

i=0

(
n

i

)
(1 − p)i pn−i mi ≥ 1 − ε,

0 ≤ mi ≤ 1, i = 0, 1, · · · , n,

− η ≤
n∑

i=0

xi,kmi ≤ η, k = 0, 1, · · · , n.

(22)

Following a similar procedure, we have

f
(N⊗n

D , ε
) = min η

s.t.
n∑

i=0

(
n

i

)
(1 − p)i pn−i mi ≥ 1 − ε,

mi + si ≤ η, i = 0, 1, · · · , n,

η ≥ 0, 0 ≤ mi ≤ 1, i = 0, 1, · · · , n
n∑

i=0

xi,ksi ≥ 0, k = 0, 1, · · · , n.

ĝ
(N⊗n

D , ε
) = min η

s.t.
n∑

i=0

(
n

i

)
(1 − p)i pn−i mi ≥ 1 − ε,

Fig. 3. This figure demonstrates the differences between the SDP converse
bounds − log f

(
N⊗n

D , 0.004
)

(blue dots) and − log ĝ5

(
N⊗n

D , 0.004
)

(red
dots), where the channel parameter p = 0.2 and the number of channel uses
ranges from 1 to 30.

0 ≤ mi ≤ 1, i = 0, 1, · · · , n,

− η ≤
n∑

i=0

xi,kmi ≤ η, k = 0, 1, · · · , n,

1

d2n

n∑

i=0

(
n

i

) (
d2 − 1

)n−i
mi ≥ m̂2.

Since − log ĝ
(N⊗n

D , ε
)

is a converse bound for any m̂ ≤
2−Q(1)

PPT∩NS

(N⊗n
D ,ε

)
, we can successively refine the value of m̂

and obtain a tighter result. Let us denote m̂i and ĝi
(N⊗n

D , ε
)

as the values of m̂ and ĝ
(N⊗n

D , ε
)

in the i -th iteration,
respectively. First, we take the initial value of m̂1 =
g

(N⊗n
D , ε

)
and get the result ĝ1

(N⊗n
D , ε

)
. Then we can

set m̂i+1 = ĝi
(N⊗n

D , ε
)

and get the result ĝi+1
(N⊗n

D , ε
)
.

In Fig. 3, we show that after five iterations, we can
get a converse bound − log ĝ5

(N⊗n
D , ε

)
which is strictly

tighter than − log f
(N⊗n

D , ε
)
. Especially, when n = 17,

− log ĝ5
(N⊗n

D , ε
)

< 1 < − log f
(N⊗n

D , ε
)
. It shows that we

cannot transmit a single qubit within error tolerance ε = 0.004
via 17 copies of depolarizing channel where parameter p =
0.2. However, this result cannot be obtained via the converse
bound − log f

(N⊗n
D , ε

)
.

IV. STRONG CONVERSE BOUND FOR

QUANTUM COMMUNICATION

In this section, we establish an SDP strong converse bound
Q� (or Rmax) to evaluate the quantum capacity of a general
quantum channel. We summarize our strong converse bound
with other well-known bounds in Table I.

A. An SDP Strong Converse Bound on Quantum Capacity

Proposition 5: For any quantum channel N and error tol-
erance ε,

Q(1)
PPT (N , ε) ≤ Q� (N ) − log (1 − ε) , (23)
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TABLE I

COMPARISON OF CONVERSE BOUNDS ON QUANTUM CAPACITY.

where Q� (N ) := log � (N ) and

(Primal) � (N ) = max Tr JN RAB

s.t. RAB , ρA ≥ 0, Tr ρA = 1,

− ρA ⊗ 1B ≤ RTB
AB

RTB
AB ≤ ρA ⊗ 1B, (24)

(Dual) � (N ) = min μ

s.t. YAB , VAB ≥ 0,

(VAB − YAB )TB ≥ JN ,

TrB (VAB + YAB) ≤ μ1A. (25)

Proof: Suppose the optimal solution in the optimiza-

tion (6) of Q(1)
P PT (N , ε) is taken at {WAB , ρA, m}, then

Q(1)
P PT (N , ε) = − log m. Denote RAB = 1

m WAB and we can
verify that {RAB , ρA} is a feasible solution to the SDP (24).
Thus

Q� (N ) ≥ log Tr JN RAB (26)

= log
1

m
Tr JN WAB ≥ log

1

m
(1 − ε) (27)

= Q(1)
P PT (N , ε) + log (1 − ε) . (28)

This concludes the proof.
The dual SDP can be derived via the Lagrange multiplier

method. The main step is to associate a positive-semidefinite
Lagrange multiplier for each inequality constraint. To be
specific, we introduce VAB , YAB ≥ 0 and a real multiplier μ,
and obtain the following Lagrangian:

Tr JN RAB

+ Tr
(
ρA ⊗ 1B − RTB

AB

)
VAB

+ Tr
(
ρA ⊗ 1B + RTB

AB

)
YAB

+ μ (1 − Tr ρA)

= μ + Tr RAB

(
JN − V TB

AB + Y TB
AB

)

+ Tr ρA (TrB VAB + TrB YAB − μ1A) . (29)

Hence, the dual SDP is to minimize μ subject to

VAB , YAB ≥ 0, (30)

JN ≤ V TB
AB − Y TB

AB , (31)

TrB (VAB + YAB) ≤ μ1A. (32)

Proposition 6: For any quantum channel N1 and N2,
we have

Q� (N1 ⊗ N2) = Q� (N1) + Q� (N2) . (33)

Proof: We only need to show that � (N1 ⊗ N2) =
� (N1) � (N2). For the primal problem (24), suppose the
optimal solutions of the SDP (24) for N1 and N2 are {R1, ρ1}
and {R2, ρ2}, respectively. Then we can verify that {R1 ⊗
R2, ρ1 ⊗ ρ2} is a feasible solution of � (N1 ⊗ N2). Thus,

� (N1 ⊗ N2) ≥ Tr
(
JN1 ⊗ JN2

)
(R1 ⊗ R2) (34)

= � (N1) � (N2) . (35)

For the dual problem (25), suppose the optimal solutions of
the SDP (25) for N1 and N2 are {V1, Y1, μ1} and {V2, Y2, μ2}.
Denote V = V1 ⊗ V2 + Y1 ⊗ Y2 and Y = V1 ⊗ Y2 + Y1 ⊗ V2.
It can be easily verified that {V , Y, μ1μ2} is a feasible solution
of � (N1 ⊗ N2). Thus,

� (N1 ⊗ N2) ≤ � (N1) � (N2) . (36)

Theorem 7: For any quantum channel N , we have

Q (N ) ≤ QPPT (N ) ≤ Q� (N ) . (37)

Moreover, Q� (N ) is a strong converse bound. That is, if the
rate exceeds Q� (N ), the error probability will approach to
one exponentially fast as the number of channel uses increase.

Proof: We first show that Q� (N ) is a converse bound
and then prove that it is a strong converse. From Eq. (23), take
regularization on both sides, we have

QPPT (N ) = lim
ε→0

lim
n→∞

1

n
Q(1)

PPT

(N⊗n, ε
)

≤ lim
ε→0

lim
n→∞

1

n

[
Q�

(N⊗n) − log (1 − ε)
]

= Q� (N ) . (38)

In the last line, we use the additivity of Q� in Proposition 6.
For the quantum channel N⊗n , suppose its achievable rate

is r . From Eq. (23), we know that nr ≤ nQ� (N )−log (1 − ε),
which implies

ε ≥ 1 − 2n(Q�(N )−r). (39)

If r > Q� (N ), the error will exponentially converge to one
as n increases.

Remark For d-dimensional noiseless quantum channel Id ,
we can show Q (Id ) = Q� (Id ) = log d .

B. Comparison With Other Converse Bounds

There are several well-known converse bounds on quantum
capacity. In this subsection, we compare them with our SDP
strong converse bound Q� .

Tomamichel et al. [24] established that the Rains infor-
mation of any quantum channel is a strong converse rate for
quantum communication. To be specific, the Rains information
of a quantum channel is defined as [24]:

R (N ) := max
ρA∈S(A)

min
σAB∈PPT’

D
(NA′→B (φAA′ )

∥
∥σAB

)
, (40)
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where φAA′ is a purification of ρA and the set PPT’ =
{σ ∈ P (A ⊗ B) : ∥

∥σ TB
∥
∥

1 ≤ 1}. We note that our bound
Q� is weaker than the Rains information (cf. Corollary 10).
However, R (N ) is not known to be efficiently computable for
general quantum channels since it is a max-min optimization
problem.

An efficiently computable converse bound (abbreviated as
ε-DEG) is given by the concept of approximate degradable
channel [14]. This bound usually works very well for approx-
imate degradable quantum channels such as low-noise qubit
depolarizing channel. See [50] and [51] for some recent works
based on this approach. Otherwise, it will degenerate to a
trivial upper bound. We can easily show an example that Q�

can be smaller than ε-DEG bound, e.g., the channel Nr in
Eq. (62) with 0 < r < 0.38. Also, it is unknown whether
ε-DEG bound is a strong converse.

Another previously known efficiently computable strong
converse bound for general channels is given by the partial
transposition bound [25], [26],

Q� (N ) := log ‖N ◦ T‖♦ , (41)

where T is the transpose map and ‖ · ‖♦ is the completely
bounded trace norm. Note that which ‖ · ‖♦ is known to be
efficiently computable via semidefinite programming in [52].

The entanglement cost of a quantum channel [53], denoted
as EC , is proved to be a strong converse bound. But it is not
known to be efficiently computable for general channels, due
to its regularization. The entanglement-assisted quantum QE is
also a strong converse for the quantum capacity [54], [55] and
there is a recently developed approach to efficiently compute
it [56]. Quantum capacity with symmetric side channels [13],
denoted as Qss , is also an important converse bound for
general channels. But it is not known to be computable due
to the potentially unbounded dimension of the side channel.
It is also not known to be a strong converse.

Theorem 8: For any quantum channel N , we have

Q (N ) ≤ R (N ) ≤ Q� (N ) ≤ Q� (N ) . (42)

The first inequality has been proved in [24]. We prove
the second inequality in Corollary 10 and the third inequality
in Proposition 11.

In the following proof, we need to introduce an entangle-
ment measure EW which is defined in [41]. We will see
that the strong converse bound Q� is a channel analogue of
entanglement measure EW and can be further reformulated
into a similar form as the Rains information. Specifically, for
any bipartite quantum state ρAB , the entanglement measure
EW is defined by EW (ρ) := log W (ρ), where

(Primal) W (ρ) = max
{

Tr ρRAB :
∣
∣∣RTB

AB

∣
∣∣ ≤ 1, RAB ≥ 0

}
,

(43)

(Dual) W (ρ) = min
{∥
∥∥X TB

AB

∥
∥∥

1
: X AB ≥ ρAB

}
. (44)

The max-relative entropy of two operators ρ ∈ S≤ (A), σ ∈
P (A) is defined by [57]

Dmax (ρ‖σ) := log min{μ : ρ ≤ μσ }. (45)

Proposition 9: For any quantum channel N , it holds that

Q� (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′ )) (46)

= max
ρ∈S(A)

min
σ∈PPT′ Dmax

(NA′→B (φAA′ )
∥
∥σAB

)
, (47)

where φAA′ is a purification of ρA and the set PPT’ ={
σ ∈ P (A ⊗ B) : ∥

∥σ TB
∥
∥

1 ≤ 1
}
.

Proof: Consider purification φAA′ =
ρ

1/2
A �AA′ρ1/2

A

(
= ρ

1/2
A′ �AA′ρ1/2

A′
)

, then

NA′→B (φAA′ ) = NA′→B

(
ρ

1/2
A �AA′ρ1/2

A

)
(48)

= ρ
1/2
A NA′→B (�AA′ ) ρ

1/2
A (49)

= ρ
1/2
A JN ρ

1/2
A . (50)

Take JN = ρ
−1/2
A NA′→B (φAA′ ) ρ

−1/2
A into the definition of

Q� (N ) (24) and substitute FAB = ρ
−1/2
A RABρ

−1/2
A , we have

Q� (N ) = log max Tr NA′→B (φAA′ ) FAB

s.t. FAB , ρA ≥ 0, Tr ρA = 1,

− 1AB ≤ FTB
AB ≤ 1AB (51)

Note that here we only consider invertible state ρA. The reason
is that the set of invertible positive operators is dense in the
set of all positive semidefinite operators, and then it suffices
to optimize with respect to them.

Due to the definition of EW (43), we have

Q� (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′ )) . (52)

On the other hand, the following equality chain holds

EW (ρ) = log min
{∥
∥X TB

∥
∥

1 : ρ ≤ X
}

= log min
{
μ : ρ ≤ X,

∥
∥X TB

∥
∥

1 ≤ μ
}

= log min
{
μ : ρ ≤ μσ,

∥
∥μσ TB

∥
∥

1 ≤ μ
}

= log min
{
μ : ρ ≤ μσ,

∥∥σ TB
∥∥

1 ≤ 1
}

= min
σ∈PPT’

Dmax (ρ‖σ) . (53)

The first line follows from Eq. (44). In the second line,
we introduce a new variable μ. In the third line, we substitute
X with μσ . The last line follows from the definition of Dmax.
This directly implies that EW (ρ) ≥ R (ρ) (note, also).1

Therefore, we have that

Q� (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′ )) (54)

= max
ρ∈S(A)

min
σ∈PPT′ Dmax

(NA′→B (φA′ A)
∥
∥σAB

)
. (55)

We note that the max-relative entropy of entanglement of
a quantum channel [58] and our bound Q� are in the same
spirit, but for evaluating quantum communication, the bound
in [58] is weaker than the bound Q� as well as the Rains
information [24].

1We note that Andreas Winter told us the fact that EW can be proved to
be an upper bound of the Rains bound by some optimization techniques in
the past.
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Fig. 4. This plot demonstrates the difference between converse bounds
Q� (Nr ) and Q� (Nr ). The dashed line depicts Q� (Nr ) while the solid
line depicts Q� (Nr ). The parameter r ranges from 0 to 0.5.

Corollary 10: For any quantum channel N , it holds that

R (N ) ≤ Q� (N ) . (56)

Proof: Note that D (ρ‖σ) ≤ Dmax (ρ‖σ) [57], we have

Q� (N ) = max
ρ∈S(A)

min
σ∈PPT′ Dmax

(NA′→B (φA′ A)
∥
∥σAB

)

≥ max
ρA∈S(A)

min
σ∈PPT’

D
(NA′→B (φAA′ )

∥
∥σAB

)

= R (N ) . (57)

Proposition 11: For any quantum channel N , it holds that
Q� (N ) ≤ Q� (N ).

Proof: Suppose the optimal solution of SDP (24) is taken
at {RAB , ρA}, then � (N ) = Tr JN RAB = Tr J TB

N RTB
AB . The

completely bounded trace norm can be written as SDP [52],

‖N ◦ T‖♦ = max
1

2
Tr J TB

N
(

X + X†
)

s.t.

(
ρ0 ⊗ 1 X

X† ρ1 ⊗ 1

)
≥ 0,

ρ0, ρ1 ∈ S (A) . (58)

Since −ρA ⊗ 1B ≤ RTB
AB ≤ ρA ⊗ 1B , we have

(
ρA ⊗ 1B RTB

AB
RTB

AB ρA ⊗ 1B

)

= 1

2

(
1 1
1 1

) ⊗ (
ρA ⊗ 1 + RTB

AB

)

+ 1

2

(
1 −1

−1 1

)⊗ (
ρA ⊗ 1 − RTB

AB

)

≥ 0. (59)

So
{

RTB
AB , ρA, ρA

}
is a feasible solution of SDP (58), which

means that

Q� (N ) = log ‖N ◦ T ‖♦ ≥ log Tr
(

J TB
N RTB

AB

)
(60)

= log � (N ) = Q� (N ) . (61)

In Fig. 4, we compare the converse bound Q� with Q� in
the case of quantum channel

Nr =
1∑

i=0

Ei · E†
i , (62)

where E0 = |0〉〈0| + √
r |1〉〈1| and E1 = √

1 − r |0〉〈1| + |1〉〈2|
(0 ≤ r ≤ 0.5). In the following Fig. 4, it is clear that Q� (N )
can be strictly tighter than Q� (N ).

V. DISCUSSIONS

In summary, we have derived efficiently computable con-
verse bounds to evaluate the capabilities of quantum commu-
nication over quantum channels in both the non-asymptotic
and asymptotic settings by utilizing the techniques of convex
optimization.

We have provided one-shot converse bounds in the con-
text of quantum communication with finite resources, which
improves the previous general SDP converse bound in [40].
Furthermore, in the asymptotic regime, we have derived an
SDP strong converse bound Q� for quantum communica-
tion, which is better than the partial transpose bound [25].
Furthermore, we have refined the Q� as the so-called max-
Rains information via connecting it to the SDP entanglement
measure in [41]. It is worth noting that our bound is no better
than the Rains information [24] in general, but it is the best
SDP-computable strong converse bound. It is also worth noting
that our bound Q� was recently proved to be a strong converse
bound for the LOCC-assisted quantum capacity in [59].

However, for the qubit depolarizing channel, the bound Q�

does not work very well. The best to date converse bound of
this particular channel is still given by [14], [15], and [31]. It
is of great interest to use the one-shot SDP converse bound
in Eq. (11) to provide a potentially better upper bound on the
quantum capacity of depolarizing channel.
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