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Broadcasting quantum and classical information is a basic task in quantum information processing, and is also
a useful model in the study of quantum correlations including quantum discord. We establish a full operational
characterization of two-sided quantum discord in terms of bilocal broadcasting of quantum correlations. Moreover,
we show that both the optimal fidelity of unilocal broadcasting of the correlations in an arbitrary bipartite quantum
state and that of broadcasting an arbitrary set of quantum states can be formulized as semidefinite programs
(SDPs), which are efficiently computable. We also analyze some properties of these SDPs and evaluate the
broadcasting fidelities for some cases of interest.
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I. INTRODUCTION

Copying information is a rather simple task in the classical
realm, but unfortunately not in the quantum realm. One is not
allowed to create an identical copy of an arbitrary unknown
pure quantum state due to the no-cloning theorem [1,2]. One
can clone a set of pure states if and only if they are orthogonal.
The no-broadcasting theorem [3] generalizes this result to
mixed states, saying that a set of quantum states can be
broadcast if and only if the states commute with each other.

These no-go theorems can be further extended to
the setting of local broadcast for composite quantum
systems. Given a bipartite quantum state ρAB shared
by Alice and Bob, their objective is to perform lo-
cal operations only (without communication) to produce
a state ρ̂A1A2B1B2 = (�A→A1A2 ⊗ �B→B1B2 )ρAB such that
TrA1B1 ρ̂A1A2B1B2 = TrA2B2 ρ̂A1A2B1B2 = ρAB (see Sec. II for
notational convention). It is shown in [4] that this task can
only be performed if ρAB is classically correlated. Even if the
task is relaxed to obtain two bipartite states with the same
correlation as ρAB (measured by the mutual information), it
is feasible to do the task if and only if the given state ρAB is
classically correlated. This is called the no-local-broadcasting
theorem [4]. Furthermore, when the local operations are only
allowed for one party (e.g., Alice), the task can be done if and
only if ρAB is classical on A [5–7].

When the task of perfect broadcasting cannot be accom-
plished, it is natural to ask whether the broadcasting can
be performed in an approximate fashion, and how to design
the optimal broadcasting operation. We shall study the ap-
proximate broadcasting of states and correlations by utilizing
semidefinite programs (SDPs). In Ref. [8] the Bose-symmetric
channel is considered as a unilocal broadcasting operation and
an SDP is derived for this problem. Semidefinite programming
optimization techniques [9] have found many applications to
the theory of quantum information and computation (see, e.g.,
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[10–18]), and also to the study of quantum correlations (see,
e.g., [8,19–21]).

Quantum discord (see Sec. III for definition), as an
indispensable measure of quantum correlation beyond en-
tanglement, is introduced in [22] and [23] independently. It
is argued [24] that quantum discord is responsible for the
quantum speed-up over classical algorithms. Quantum discord
is a quite useful concept in many fields of quantum information
processing, such as local broadcasting of correlations [4,25],
quantum computing [26], quantum data hiding [27], quantum
data locking [28], entanglement distribution [29,30], common
randomness distillation [31], quantum state merging [32–34],
entanglement distillation [34,35], superdense coding [34],
quantum teleportation [34], quantum metrology [36], and
quantum cryptography [37]. Quantum discord has become an
active research topic over the past few years [38,39].

The local broadcasting paradigm can provide a natural
operational interpretation to quantum discord. Remarkably,
the minimum average loss of mutual information resulting
from local operation �A→A1···An

on A for arbitrary quantum
state ρAB approaches the quantum discord DA(ρAB) of ρAB

as n goes to infinity. This result is established in Ref. [25]
and it generalizes the work in Ref. [40] which considers
pure states ρAB only. However, it remains open as to whether
there is an analogous connection for the two-sided setting of
redistributing correlations [39].

In this paper, we study the approximate broadcasting of
quantum correlations in both asymptotic and nonasymptotic
settings. In the asymptotic regime, we rigorously prove the
conjecture in Ref. [39] and show an operational meaning
of the two-sided discord in terms of bilocal broadcasting of
correlations; that is, the asymptotic minimum average loss
of correlation after optimal bilocal broadcasting is exactly
the two-sided quantum discord of the initial state. In the
nonasymptotic regime, we give an alternative derivation for
the SDP characterization of the optimal unilocal broadcasting
fidelity and show that the universal quantum clone machine
(UQCM) can also serve as the optimal universal unilocal
broadcasting operation. Moreover, the optimal state-dependent
unilocal broadcasting operation for pure two-qubit states is
analytically solved. Similarly, we establish the SDP for the
optimal broadcasting fidelity of a finite set of quantum states.
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II. PRELIMINARIES

A quantum system A is associated with a Hilbert space HA

of dimension |A| with some fixed orthonormal basis {|j 〉A}j .
In this work, we only deal with finite-dimensional spaces,
and the spaces of systems with the same letter are always
assumed to be isomorphic, for example, HA

∼= HÃ
∼= HA1

∼=
HA2 . The linear operators from HA to HB are always written
with subscripts identifying the systems involved, for example,
XA→B . We denote S(A) as the set of density operators [41] on
system A.

A quantum operation (or channel) EA→B with input system
A and output system B is a completely positive (CP), trace-
preserving (TP) linear map from the linear operators on HA

to the linear operators on B. A quantum-to-classical channel
F is a CPTP map such that F(·) =∑j Tr(Mj ·)|j 〉〈j |, where
{Mj }j is a positive operator-valued measure (POVM). The
set of all quantum-to-classical channels is denoted by QC.
Since the subscript of an operator or operation specifies
its input and output systems, we can write a product of
operators or operations without the ⊗ symbol, and omit
the identity operator or operation 1, which would make no
confusion; for example, XABYBC ≡ (XAB ⊗ 1C)(1A ⊗ YBC)
and EB→C(XAB) ≡ (1A ⊗ EB→C)XAB .

The Choi-Jamiołkowski matrix [42,43] of a quantum
operation EA→B is JE = (1Ã→Ã ⊗ EA→B)φÃA, where φÃA =∑

ij |ii〉〈jj | is the unnormalized maximally entangled state.
The output of the channel EA→B with input ρA can be recovered
from JE by EA→B(ρA) = TrA(J TA

E ρA), where TA denotes the
partial transpose on A.

We use H (·) to denote the von Neumann entropy of
quantum states, H (A|B) := H (AB) − H (B) the conditional
quantum entropy, and I (A : B) := H (A) + H (B) − H (AB)
the quantum mutual information. The fidelity F (ρ,σ ) =
Tr
√√

ρσ
√

ρ, as a measure of similarity between quantum
states, can be viewed as the optimal solution to an SDP
[44,45]. The diamond norm can be used to give the distance of
two quantum operations E,F , that is, ‖E − F‖
 = sup{‖[(E −
F) ⊗ 1]X‖1 : ‖X‖1 = 1}, where ‖ · ‖1 is the trace norm. In
addition, we denote [n] = {1, . . . ,n}, and denote by | · | the
cardinality of a set or the dimension of a linear space.

III. ASYMPTOTIC BILOCAL BROADCASTING AND
TWO-SIDED QUANTUM DISCORD

A. Previous results

The concept of quantum discord was introduced in [22,23],
where the one-sided and two-sided quantum discord of a
bipartite state ρAB are defined by

DA(ρAB) := min
EA∈QC

[
I (A : B)ρAB

− I (A : B)(EA⊗1B )ρAB

]
, (1)

DAB(ρAB) := min
EA,FB∈QC

[
I (A : B)ρAB

− I (A : B)(EA⊗FB )ρAB

]
,

(2)

respectively.
It is shown in [25] that the one-sided quantum discord

is equal to the asymptotic average loss of correlation after
the optimal broadcasting operation. Consider the following
scenario. Alice and Bob, away from each other, share a
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FIG. 1. Unilocal (left) and bilocal (right) broadcasting of quan-
tum correlations in initial state ρAB . The objective is for the quantum
channels �,� to make the states on AiB or AiBi as close to ρAB as
possible measured in some way.

bipartite quantum state ρAB . The information, or correlation,
shared by them is measured by quantum mutual information
in what follows. The goal of Alice is to broadcast the mutual
information between them to many, say n, recipients, using
local operation only. If the state is not classical on A, she
cannot perform the task perfectly [5–7], and the mutual
information between each recipient and Bob would decrease
in general. Now her task naturally becomes to design a
broadcasting operation in order to minimize the average loss
of mutual information. Remarkably, the minimal average loss
of correlation approaches quantum discord DA of ρAB as n

tends to infinity, as revealed in the following proposition.
Proposition 1 [25]. Let ρAB be a bipartite state and DA

is defined by Eq. (1). Let �A→A1...An
be a CPTP map and

�j := Tr\Aj
◦�. Then

DA(ρAB) = lim
n→∞ min

�A→A1 ...An

1

n

n∑
j=1

[
I (A : B)ρAB

− I (Aj : B)(�j ⊗1B )ρAB

]
.

B. Operational interpretation of two-sided quantum discord

We will give an operational interpretation of two-sided
quantum discord in terms of bilocal broadcasting, analogous
to the case of one-sided quantum discord (see Fig. 1).

Theorem 1. Let ρAB be a bipartite state, and the two-
sided quantum discord DAB(ρAB) is defined by Eq. (2).
Let �A→A1...An

and �B→B1...Bn
be CPTP maps, and denote

�j := Tr\Aj
◦� and �j := Tr\Bj

◦�. Then

DAB(ρAB) = lim
n→∞ min

�A→A1 ...An

�B→B1 ...Bn

1

n

n∑
j=1

[
I (A : B)ρAB

− I (Aj : Bj )(�j ⊗�j )ρAB

]
.

To prove this theorem, we need the following result.
Lemma 1 [25]. Let � : S(A) → S(A1 ⊗ · · · ⊗ An) be a

CPTP map. Denote �j := Tr\Aj
◦�, and fix a number 0 <

δ < 1. Then there exists a POVM {Ek}k and a set S ⊂ [n] with
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|S| � n(1 − δ) such that for all j ∈ S,

‖�j − Ej‖
 � 3

(
ln(2)|A|6 log2 |A|

nδ3

)1/3

, (3)

with Ej (·) :=∑k Tr(Ek·)σj,k for states σj,k ∈ S(Aj ). Here |A|
is the dimension of the space A.

We also need the continuity bound of mutual
information. Let ρAB,σAB be bipartite states on system
A, of dimension |A| � 2, and system B. Assume γ :=
1
2‖ρAB − σAB‖1 � 1

2 . Due to the Fannes-Audenaert
inequality [46,47] and the fact that quantum operation
cannot increase trace distance between two states, it holds
that |H (A)ρAB

− H (A)σAB
| � 1

2‖ρA − σA‖1 log2(|A| −
1) + h2( 1

2‖ρA − σA‖1) � γ log2(|A| − 1) + h2(γ ), where
h2(x) := −x log2 x − (1 − x) log2(1 − x) is the binary
entropy function. Due to the Alicki-Fannes inequality
[48] (see also [49] for a tighter continuity bound for
conditional entropy), it holds that |H (A|B)ρ − H (A|B)σ | �
8γ log2 |A| + 2h2(2γ ). Therefore,

|I (A : B)ρ − I (A : B)σ |
� |H (A)ρ − H (A)σ | + |H (A|B)ρ − H (A|B)σ |
� 8γ log2 |A| + γ log2(|A| − 1) + 2h2(2γ ) + h2(γ ). (4)

We are now in the position to prove Theorem 1.
Proof. The desired statement is equivalent to

max
EA,FB∈QC

I (A : B)(EA⊗FB )ρAB

= lim
n→∞ max

�,�

1

n

n∑
j=1

I (Aj : Bj )(�j ⊗�j )ρAB
.

Assume the POVMs that achieve Ic(A : B) :=
maxEA,FB∈ QC I (A : B)(EA⊗FB )ρAB

are {Mi}i on A and
{Ni}i on B, then one can take �(·) =∑i Tr(Mi ·)|i〉〈i|⊗n

and �(·) =∑i Tr(Ni ·)|i〉〈i|⊗n. It follows that Ic(A : B) �
max�,�

1
n

∑n
j=1 I (Aj : Bj )(�j ⊗�j )ρAB

, and it remains to

show that Ic(A : B) � limn→∞ max�,�
1
n

∑n
j=1 I (Aj :

Bj )(�j ⊗�j )ρAB
.

Similar to Lemma 1, let � : S(B) → S(B1 ⊗ · · · ⊗ Bn) be
an arbitrary CPTP map, then there exists a POVM {Fk}k and a
set S ′ ⊂ [n] with |S ′| � n(1 − δ) such that for all j ∈ S ′,

‖�j − Fj‖
 � 3

(
ln(2)|B|6 log2 |B|

nδ3

)1/3

, (5)

with Fj (·) :=∑k Tr(Fk·)σ ′
j,k for states σ ′

j,k ∈ S(Bj ). There-
fore for fixed 0 < δ < 1, there exists S ′′ ⊂ [n] with |S ′′| �
n(1 − 2δ) such that Eqs. (3) and (5) hold simultaneously for
all j ∈ S ′′. Thus

‖�j ⊗ �j − Ej ⊗ Fj‖
 � ‖�j − Ej‖
 + ‖�j − Fj‖


� 6

(
ln(2)d6 log2 d

nδ3

)1/3

=: ε,

where d := max{|A|,|B|}.
For any state ρAB , by definition of the diamond norm, we

have

‖(�j ⊗ �j )ρAB − (Ej ⊗ Fj )ρAB‖1

� ‖�j ⊗ �j − Ej ⊗ Fj‖
 � ε. (6)

We now have

I (Aj : Bj )(�j ⊗�j )ρAB

� I (Aj : Bj )(Ej ⊗Fj )ρAB
+ 4ε log2 |Aj | + ε

2
log2(|Aj | − 1)

+ 2h2(ε) + h2(ε/2) (7)

� I (Aj : Bj )(Ẽj ⊗F̃j )ρAB
+ 4ε log2 |Aj |

+ ε

2
log2(|Aj | − 1) + 2h2(ε) + h2(ε/2)

� Ic(A : B) + 4ε log2 |Aj | + ε

2
log2(|Aj | − 1)

+ 2h2(ε) + h2(ε/2) =: K, (8)

where Ẽj (·) :=∑k Tr(Ek·)|kj 〉〈kj | and F̃j (·) :=∑
k Tr(Fk·)|k′

j 〉〈k′
j |, and {|kj 〉}k and {|k′

j 〉}k′ are the orthonormal
basis of systems Aj and Bj respectively, the first inequality
follows from the continuity bound Eq. (4), and the last
inequality follows from the fact that local operations cannot
increase mutual information.

Set δ = n−1/6, then as n → ∞ one has δ,ε → 0 and K →
Ic(A : B). It follows that

1

n

n∑
j=1

I (Aj : Bj )(�j ⊗�j )ρAB

� 1

n
[(1 − 2δ)n · K + 2δn · 2 log2 d ′]

→ K → Ic(A : B) as n → ∞,

where d ′ := max{|Aj |,|Bj |}j . That is,

lim
n→∞ max

�,�

1

n

n∑
j=1

I (Aj : Bj )(�j ⊗�j )ρAB
� Ic(A : B),

and we are done. �

IV. OPTIMAL UNIVERSAL AND STATE-DEPENDENT
BROADCASTING OF CORRELATIONS

We now turn to the nonasymptotic regime of the local
broadcasting of quantum correlations. We first study the
optimal universal unilocal broadcasting and then the optimal
state-dependent unilocal broadcasting.

A. Optimal universal unilocal broadcasting

We first give a general definition for the unilocal n-
broadcasting fidelity of a bipartite state.

Definition 1. Given a bipartite state ρAB , the optimal
unilocal n-broadcasting fidelity of ρAB on system A (see Fig. 1)
is defined as the following optimal fidelity:

fn(ρAB) = sup

⎧⎨⎩1

n

n∑
j=1

F (ρAB, Tr\Aj B �A→A1...An
(ρAB)) :

�A→A1···An
is a quantum channel

⎫⎬⎭. (9)
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Since the set of quantum channels is compact and the
fidelity function is continuous [50], the supremum in Eq. (9)
is attained. Define a unitary operator Wπ on systems A1 · · · An

for each permutation π ∈ Sn, by the action

Wπ |j1,j2, . . . ,jn〉 = |jπ−1(1),jπ−1(2), . . . ,jπ−1(n)〉
for any choice of |j1〉,|j2〉, . . . ,|jn〉. A quantum channel
�A→A1···An

is called a symmetric broadcasting channel, if

�(ρ) = Wπ�(ρ)W †
π

for any ρ ∈ S(A) and π ∈ Sn.
We notice that for any channel �A→A1···An

and π ∈ Sn, �(·)
and Wπ�(·)W †

π give the same average fidelity in Eq. (9), since

Tr\Aj B �A→A1...An
(ρAB)

= Tr\Aπ−1(j )B
Wπ�A→A1...An

(ρAB)W †
π .

Thus 1
n!

∑
π∈Sn

Wπ�(·)W †
π , which is a symmetric broadcasting

channel, also gives the same value. So we only need to
consider the supremum over symmetric broadcasting channels.
In Eq. (9), when � is a symmetric broadcasting channel, the
summands are all the same.

Therefore, the optimal unilocal n-broadcasting fidelity of a
bipartite state ρAB on A can be rewritten as

fn(ρAB) = max
{
F

(
ρAB, Tr\A1B �A→A1...An

(ρAB)
)

:

�A→A1···An
is a symmetric broadcasting channel

}
.

(10)

It is verified that �A→A1···An
is a symmetric broadcasting

channel if and only if its Choi matrix J� satisfies J� =
WπJ�W †

π for any π , i.e., J� = 1
n!

∑
π∈Sn

WπJ�W †
π . Using

this symmetry, we give the SDP characterization for optimal
unilocal broadcasting fidelity as follows.

Theorem 2. The optimal unilocal n-broadcasting fidelity of
ρAB on A is given by the optimal solution of the following
SDP:

fn(ρAB) = max
1

2
Tr(XAB + X

†
AB)

s.t.

(
ρAB XAB

X
†
AB Tr\A1B(J TAρAB)

)
� 0,

JAA1···An
� 0, Tr\A JAA1···An

= 1A,

JAA1···An
= 1

n!

∑
π∈Sn

WπJAA1···An
W †

π , (11)

where Wπ acts on A1 · · · An.
Proof. It suffices to consider the symmetric broadcasting

channels only. Let JAA1···An
be the Choi matrix of �A→A1···An

,
then for any ρA,

�A→A1···An
(ρA) = TrA

(
J

TA

AA1···An
ρA

)
.

By linearity, for any ρAB ,

(�A→A1···An
⊗ 1B)ρAB = TrA

(
J

TA

AA1···An
ρAB

)
,

and

Tr\Aj B(� ⊗ 1B)ρAB = Tr\Aj B

(
J

TA

AA1···An
ρAB

)
.

Now we can rewrite the optimization problem in Eq. (10) in
terms of the Choi matrix of � as

fn(ρAB) = max F (ρAB,ρ̂AB)

s.t. ρ̂AB = Tr\A1B

(
J

TA

AA1···An
ρAB

)
,

JAA1···An
� 0, Tr\A JAA1···An

= 1A,

JAA1···An
= 1

n!

∑
π∈Sn

WπJAA1···An
W †

π . (12)

The fidelity function F (ρ,σ ) of two states ρ,σ is given by the
optimal solution of the following SDP [44,45]:

F (ρ,σ ) = max
1

2
Tr(X + X†)

s.t.

(
ρ X

X† σ

)
� 0. (13)

Combining Eqs. (12) and (13) gives the desired SDP (11). �
Remark. The only difference between the SDP (11) and that

in Ref. [8] lies in the symmetry of the broadcasting channel,
that is, J = WπJW †

π for any π ∈ Sn is required in our SDP. In
Ref. [8], it is required that J = Wπ1JW †

π2
for any π1,π2 ∈ Sn

which makes sure that the output state lies in the symmetric
subspace. These two SDPs are different generalizations of
perfect unilocal broadcasting. But the SDP (11) here has a
more direct derivation, and it is clear that the optimal solution
to SDP (11) is no less than that to the SDP in [8]. Numerical
experiments show that the two SDPs give the same optimal
solution for some cases of ρAB , but we do not know how to
give a rigorous proof or disproof for the general case up to
now.

In the SDP (11), if (JAA1···An
,XAB) is a feasible solu-

tion of f (ρAB), then (1A ⊗ U⊗n)JAA1···An
(1A ⊗ U⊗n)†,(UA ⊗

VB)XAB(UA ⊗ VB)† is a feasible solution of f ((UA ⊗
VB)ρAB(UA ⊗ VB)†) for any local local unitaries UA and VB .
In other words, the unilocal broadcasting fidelity fn is invariant
under local unitaries.

We now consider the unilocal broadcasting fidelity of a
pure state ψAB := |ψ〉〈ψ |AB , and especially the maximally
entangled state, under the action of the symmetric broadcasting
channel. The optimal unilocal broadcasting fidelity fn of a pure
state ψAB can be written as

fn(ψAB) = max
√

Tr(ρ̂ABψAB)

s.t. ρ̂AB = Tr\A1B

(
J

TA

AA1···An
ψAB

)
,

JAA1···An
� 0, Tr\A JAA1···An

= 1A,

JAA1···An
= 1

n!

∑
π∈Sn

WπJAA1···An
W †

π , (14)

where Wπ acts on A1 · · · An.
The corresponding dual SDP is

fn(ψAB) = min
√

Tr YA

s.t. YA,ZAA1···An
Hermitian,

TrB
(
ψ

TA

ABψA1B

)− YA

+Z − 1

n!

∑
π∈Sn

W †
πZWπ � 0, (15)

where again Wπ acts on A1 · · · An.
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It is verified that the strong duality holds by Slater’s theorem
since JAA1···An

= 1/|A|n is in the relative interior of the feasible
region of SDP (14). That means the optimal solutions to SDPs
(14) and (15) coincide.

Proposition 2. The optimal unilocal two-broadcasting
fidelity of the maximally entangled state �d := |�d〉〈�d | with
|�d〉 = 1√

d

∑d−1
j=0 |jj 〉 on systems AB is given by

f2(�d ) =
√

d + 1

2d
.

Proof. We prove this proposition by explicitly constructing
feasible solutions in primal and dual problems, both of which

can achieve the value of
√

d+1
2d

. In the primal problem, we take

JAA1A2 =
d−1∑
i=0

|vi〉〈vi |, (16)

where

|vi〉 = 1√
2(d + 1)

⎡⎣2|i〉 ⊗ |ii〉 +
∑
j �=i

|j 〉 ⊗ (|ij 〉 + |ji〉)
⎤⎦.

This operation is also known as the universal quantum copying
machine (UQCM) [51,52].

In the dual problem, we take

YA = d + 1

2d2
1d , ZAA1A2 = −d + 1

d3
(d�d − I0) ⊗ 1d ,

where I0 =∑d−1
i=0 |ii〉〈ii|. �

Remark. It is interesting that the optimal unilocal two-
broadcasting channel of the maximally entangled state is the
same as the UQCM which comes from the global broadcasting
setting. Much progress has been made on a quantum cloning
machine in the past years (see, e.g., [53,54]). For the d ⊗ d

bipartite maximally entangled state, its optimal unilocal 2-
broadcasting channel is denoted as ϒd

A→A1A2
with Choi matrix

(16) and

TrA2 ϒd
A→A1A2

(ρA) = d + 2

2d + 2
ρA + 1

2d + 2
1d

is a depolarizing channel.
Next, we will introduce a worst-case quantifier for the

performance of unilocal broadcasting of a symmetric channel.
Definition 2. For any symmetric broadcasting channel

�A→A1···An
, we define the unilocal broadcasting power P(�)

of � as

P(�) := inf
ρAB∈S(AB)

F
(
ρAB, Tr\A1B �(ρAB)

)
. (17)

The unilocal broadcasting power of a symmetric broad-
casting channel gives a measure of the universal unilocal
broadcasting ability for symmetric broadcasting channels. The
universality means it is independent of the input state. The
channel with a larger value of unilocal broadcasting power
is more capable of unilocal broadcasting quantum states in a
universal sense.

Based on the result of optimal unilocal two-broadcasting
fidelity of maximally entangled state, we will prove that the
optimal unilocal two-broadcasting channel ϒd

A→A1A2
for the

maximally entangled state has the greatest power for unilocal
two-broadcasting.

Lemma 2. For any d ⊗ d pure state |ψ〉,
f2(|ψ〉〈ψ |) � F

(|ψ〉〈ψ |, TrA2 ϒd
A→A1A2

(|ψ〉〈ψ |)) �
√

d + 1

2d
.

(18)

Proof. Consider the Schmidt decomposition |ψ〉 =∑
i λi |i〉A|i〉B , where {|i〉A}i and {|i〉B}i are some orthonormal

bases. Thus,
ρout = TrA2 ϒd

A→A1A2
(|ψ〉〈ψ |)

=
∑
ij

λiλj |i〉〈j | ⊗
(

d + 2

2d + 2
|i〉〈j | + 1

2d + 2
1d

)

= d + 2

2d + 2
|ψ〉〈ψ | +

∑
ij

λiλj

2d + 2
|i〉〈j | ⊗ 1d . (19)

Then the second inequality in Eq. (18) follows from
F 2(|ψ〉〈ψ |,ρout)

= F 2

⎛⎝|ψ〉〈ψ |, d + 2

2d + 2
|ψ〉〈ψ | +

∑
ij

λiλj

2d + 2
|i〉〈j | ⊗ 1d

⎞⎠
= d + 2

2d + 2
+
∑
ij

λiλj

2d + 2
〈ψ |(|i〉〈j | ⊗ 1d )|ψ〉

= d + 2

2d + 2
+

∑
i dλ4

i

(2d + 2)d
� d + 2

2d + 2
+
(∑

i λ
2
i

)2
(2d + 2)d

= d + 1

2d
.

(20)

�
Proposition 3. For any d ⊗ d mixed state ρ,

f2(ρ) � F
(
ρ, TrA2 ϒd

A→A1A2
(ρ)

)
�
√

d + 1

2d
.

Proof. Suppose ρ =∑j pj |ψj 〉〈ψj | is a pure state decom-
position of ρ and ρ̂j = TrA2 ϒd

A→A1A2
(|ψj 〉〈ψj |), then we have

TrA2 ϒd
A→A1A2

(ρ) = TrA2 ϒd
A→A1A2

⎛⎝∑
j

pj |ψj 〉〈ψj |
⎞⎠

=
∑

j

pj TrA2 ϒd
A→A1A2

(|ψj 〉〈ψj |)

=
∑

j

pj ρ̂j . (21)

Employing the joint concavity of fidelity, we have that

F
(
ρ, TrA2 ϒd

A→A1A2
(ρ)

) = F

⎛⎝∑
j

pj |ψj 〉〈ψj |,
∑

j

pj ρ̂j

⎞⎠
�
∑

j

pjF (|ψj 〉〈ψj |,ρ̂j )

�
∑

j

pj

√
d + 1

2d
=
√

d + 1

2d
, (22)

where the last inequality uses the result in Lemma 2. �
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Theorem 3. ϒd
A→A1A2

has the strongest power for unilocal
two-broadcasting in d ⊗ d system, i.e.,

max
�

P(�) = P
(
ϒd

A→A1A2

)
,

where the maximum is taken over all symmetric broadcasting
channels.

Proof. For any symmetric broadcasting channel �A→A1A2 ,
we have

P(�) = inf
ρAB∈S(AB)

F
(
ρAB, Tr\A1B �(ρAB)

)

� F
(
�d, Tr\A1B �(�d )

)

� F
(
�d, Tr\A1B ϒd

A→A1A2
(�d )

)

=
√

d + 1

2d
, (23)

where �d is the maximally entangled state. The second
inequality holds since ϒd

A→A1A2
is the optimal unilocal two-

broadcasting channel for �d .
For the unilocal two-broadcasting operation ϒd

A→A1A2
, from

Proposition IV A?, we have that

P
(
ϒd

A→A1A2

) =
√

d + 1

2d
. (24)

Combining Eqs. (23) and (24), it is clear that ϒd
A→A1A2

maxi-
mizes the unilocal broadcasting power P . Thus, it is optimal
under the setting of universal unilocal two-broadcasting. �

B. Optimal unilocal broadcasting for two-qubit pure state

In the following theorem, we give the analytical solution
of optimal unilocal two-broadcasting fidelity for the two-qubit
pure state. Since fn is invariant under local unitary, we only
need to consider a two-qubit pure state in the form of |ψθ 〉 =
cos θ |00〉 + sin θ |11〉, θ ∈ (0,π/4] without loss of generality.

Theorem 4. For the two-qubit pure state ψθ = |ψθ 〉〈ψθ |
with |ψθ 〉 = cos θ |00〉 + sin θ |11〉, θ ∈ (0,π/4], its optimal
unilocal 2-broadcasting fidelity is given by

f2(ψθ ) =
{

cos2 θ + (sin2 θ )/
√

2, θ ∈ (0, arctan(2−1/4)](
3
2 (cos4 θ + sin4 θ )

)1/2
, θ ∈ (arctan(2−1/4),π/4]

Proof. We prove this theorem by explicitly constructing
a feasible solution in both primal and dual problems which
achieves f2(ψθ ).

Case 1. If θ ∈ (0, arctan(2−1/4)], in the primal problem, we
construct the feasible solution

JAA1A2 = |v〉〈v|, (25)

where

|v〉 = |000〉 + 1√
2
|101〉 + 1√

2
|110〉.

In the dual problem, we construct the feasible solution

YA = p

(√
2 cos2 θ 0

0 sin2 θ

)
, where

p =
√

2 cos2 θ + sin2 θ

2
.

0 0.2 0.4 0.6

 from 0 to /4

0.85

0.9

0.95

1

1.05

F
id

el
ity

FIG. 2. The solid line depicts the optimal unilocal two-
broadcasting fidelity f2(ψθ ), the dashed line depicts the fidelity of
unilocal two-broadcasting via channel �, f2,�(ψθ ), which almost
coincides with f2(ψθ ) except when θ is close to π/4, and the dotted
line depicts the fidelity of unilocal two-broadcasting via channel ϒ ,
f2,ϒ (ψθ ).

ZAA1A2 = x(|000〉〈110| + |110〉〈000|
+ |001〉〈111| + |111〉〈001|),

where x = √
2p sin2 θ . It is easy to check that JAA1A2 and

{YA,ZAA1A2} are feasible solutions to SDPs (14) and (15).
Case 2. If θ ∈ ( arctan(2−1/4), π

4 ), in the primal problem, we
construct a feasible solution

JAA1A2 = |v1〉〈v1| + |v2〉〈v2|,

where

|v1〉 =
√

2 tan4 θ − 1

6
(|001〉 + |010〉) +

√
4 − 2 cot4 θ

3
|111〉,

|v2〉 =
√

2 cot4 θ − 1

6
(|101〉 + |110〉) +

√
4 − 2 tan4 θ

3
|000〉.

In the dual problem, let us choose

YA = 3

2

(
cos4 θ 0

0 sin4 θ

)
,

ZAA1A2 = x(|000〉〈110| + |110〉〈000|
+ |001〉〈111| + |111〉〈001|),

where x = − 3
2 sin2 θ cos2 θ . It is also easy to check that JAA1A2

and {YA,ZAA1A2} are feasible solutions to SDPs (14) and (15).
�

From the above proof, we can see that the optimal unilocal
two-broadcasting channel is independent of parameter θ in
the first piece, that is, θ ∈ (0, arctan(2−1/4)]. We denote this
channel as � with Choi matrix JAA1A2 (25).

We show the difference between the fidelity of unilocal
two-broadcasting via channel ϒ and �, denoted as f2,ϒ (ψθ )
and f2,�(ψθ ), respectively, and the optimal unilocal two-
broadcasting fidelity f2(ψθ ) in the Fig. 2.
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ρ1
A Λ

A1

A2

An

...

ρ2
A Λ

A1

A2

An

...

FIG. 3. Broadcasting states ρ1,ρ2 via the same channel �.

V. APPROXIMATE BROADCASTING
OF A SET OF QUANTUM STATES

A. Fidelity of broadcasting a set of quantum states

The no-go theorem for simultaneously broadcasting quan-
tum states [3] says that we cannot perfectly broadcast two
arbitrary noncommuting states (see Fig. 3). It is natural to ask
how well we can do the task approximately. Generally, given
m states ρi with respective prior probability pi , how large an
average fidelity can we achieve when broadcasting these states
via the same channel? Mathematically, assuming the given
states ρi are on the system A, we study how to optimize the
n-broadcasting fidelity gn(η) of an ensemble η := {pi,ρi}mi=1,
which is defined as

gn(η) := sup
m∑

i=1

n∑
j=1

1

n
piF (ρi,ρ̂ij )

s.t. ρ̂ij = Tr\Aj
�A→A1···An

(ρi),

� is a quantum channel. (26)

Using the idea in the derivation of Eq. (10), namely,
exploiting the symmetry in the broadcasting channel �, we
can simplify this definition. The n-broadcasting fidelity gn of
an ensemble η := {pi,ρi}mi=1 can be rewritten as

gn(η) = sup
m∑

i=1

piF (ρi,ρ̂i1)

s.t. ρ̂i1 = Tr\A1 �A→A1···An
(ρi),

� is a symmetric broadcasting channel. (27)

Theorem 5. The n-broadcasting fidelity gn(η) of an ensem-
ble η = {pi,ρi}mi=1 is given by the optimal solution of the SDP
in Eq. (29).

Proof. The output state on system A1 of broadcasting ρi is

ρ̂i1 = Tr\A1 �A→A1···An
(ρi) = Tr\A1

(
JAA1···An

ρT
i

)
, (28)

where JAA1···An
is the Choi matrix of �A→A1···An

. By using the
SDP characterization of fidelity function, we then have

gn(η) = max
m∑

i=1

1

2
pi Tr(Xi + X

†
i )

s.t.

(
ρi Xi

X
†
i Tr\A1 (JAA1···An

ρT
i )

)
� 0, ∀ i ∈ [m],

JAA1···An
� 0, Tr\A JAA1···An

= 1A,

JAA1···An
= 1

n!

∑
π∈Sn

WπJAA1···An
W †

π , (29)

where Wπ acts on A1 · · · An. �

VI. CONCLUSIONS AND DISCUSSION

In summary, we have studied the approximate broadcasting
of quantum correlations from several aspects. First, we
extend the operational characterization of one-sided quantum
discord to a two-sided one, that is, the asymptotic optimal
average mutual information loss after the action of two local
broadcasting channels is equal to the two-sided quantum
discord. Then we give an alternative derivation for the SDP
characterization of the unilocal broadcasting fidelity, based on
which we analyze some properties of unilocal broadcasting.
We show that the universal quantum clone machine (UQCM)
is also the optimal universal unilocal broadcasting operation.
Moreover, the optimal state-dependent unilocal broadcasting
operation for pure two-qubit states is analytically solved.
Finally, we also formulate the broadcasting of a finite set of
quantum states as an SDP.

It would be of interest to study other topics related to broad-
casting and correlations, such as the broadcasting of Gaussian
state and correlation, and the relation between Gaussian
quantum broadcasting and Gaussian quantum discord. One
can also study the asymptotic behavior of the n-broadcasting
fidelity of a finite set of quantum states in the large n limit.
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