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Abstract

Determining the ultimate limits of quantum communication, such as the quantum capacity
of a channel and the distillable entanglement of a shared state, remains a central challenge
in quantum information theory, primarily due to the phenomenon of superadditivity. This
work develops Riemannian optimization methods to establish significantly tighter, computable
two-sided bounds on these fundamental quantities. For upper bounds, our method systematically
searches for state and channel extensions that minimize known information-theoretic bounds. We
achieve this by parameterizing the space of all possible extensions as a Stiefel manifold, enabling
a universal search that overcomes the limitations of ad-hoc constructions. Combined with an
improved upper bound on the one-way distillable entanglement based on a refined continuity
bound on quantum conditional entropy, our approach yields new state-of-the-art upper bounds
on the quantum capacity of the qubit depolarizing channel for large values of the depolarizing
parameter, strictly improving the previously best-known bounds. For lower bounds, we introduce
Riemannian optimization methods to compute multi-shot coherent information. We establish
lower bounds on the one-way distillable entanglement by parameterizing quantum instruments
on the unitary manifold, and on the quantum capacity by parameterizing code states with a
product of unitary manifolds. Numerical results for noisy entangled states and different channels
demonstrate that our methods successfully unlock superadditive gains, improving previous results.
Together, these findings establish Riemannian optimization as a principled and powerful tool for
navigating the complex landscape of quantum communication limits. Furthermore, we prove
that amortization does not enhance the channel coherent information, thereby closing a potential
avenue for improving capacity lower bounds in general. This result can be of independent interest.

∗kunfang@cuhk.edu.cn
†felixxinwang@hkust-gz.edu.cn

1

ar
X

iv
:2

50
9.

15
10

6v
2 

 [
qu

an
t-

ph
] 

 1
4 

O
ct

 2
02

5

https://arxiv.org/abs/2509.15106v2


Contents

1 Introduction 2
1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6

3 Upper bounds on quantum communication 6
3.1 Extensions of quantum states and channels . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Upper bounds on the one-way distillable entanglement . . . . . . . . . . . . . . . . . 9
3.3 Upper bounds on the quantum capacity . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Improved upper bounds on isotropic states and depolarizing channels . . . . . . . . . 20
3.5 Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Lower bounds on quantum communication 24
4.1 Lower bounds on the one-way distillable entanglement . . . . . . . . . . . . . . . . . 25
4.2 Lower bounds on the quantum capacity . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Superadditivity in one-way entanglement distillation . . . . . . . . . . . . . . . . . . 34
4.4 Superadditivity in channel coherent information . . . . . . . . . . . . . . . . . . . . . 35
4.5 Amortization does not enhance channel coherent information . . . . . . . . . . . . . 39

5 Concluding remarks 42

1 Introduction

Since its inception, a central goal of quantum information theory has been to determine the ultimate
physical limits on processing and transmitting information encoded in quantum systems. This
pursuit extends Shannon’s classical theory to the quantum realm [Wil11,Wil13], where the principles
of superposition and entanglement introduce fundamentally new challenges and opportunities.
Entanglement, in particular, has been identified as the key resource in quantum information
processing protocols [HHHH09], e.g., quantum teleportation [BBC+93], superdense coding [BW92],
and quantum key distribution [Eke91,Ren05]; and it underpins the potential advantages of quantum
communication over classical methods [BSST02]. Consequently, two of the most vital problems
in the field are quantifying the usable entanglement in a bipartite state ρAB and determining the
ultimate capacity of a quantum channel NA→B to transmit it.

The operational measures for these tasks are the distillable entanglement D(ρAB) [BBP+96,
BBPS96], and the quantum capacity Q(NA→B) [Smi10], respectively. The former quantifies the
ultimate rate at which maximally entangled states can be extracted from independent and identically
distributed (i.i.d.) copies of ρAB through local operations and classical communication (LOCC).
When only one-way communication from Alice to Bob is allowed, we have the so-called one-
way distillable entanglement D→(·). The latter quantifies the ultimate rate for reliable quantum
communication through a channel NA→B. These quantities are inextricably linked, as the quantum
capacity could also be understood as the rate at which entanglement can be generated between a
sender and receiver by using the channel.
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Despite their fundamental importance, computing D→(·) and Q(·) for general states and channels
remains a notoriously difficult problem. Both quantities are proved to be given via a regularization
over many copies of the resource, i.e.,

D→(ρAB) = lim
n→∞

1

n
D(1)

→ (ρ⊗nAB), and Q(NA→B) = lim
n→∞

1

n
Q(1)(N⊗n

A→B), (1)

where D
(1)
→ (·) and Q(1)(·) are single-shot quantities based on the coherent information. The regular-

ization can be removed, making D→(·) and Q(·) solvable, for classes of degradable states [LDS18]

and degradable channels [DS05] whose D
(1)
→ (·) and Q(1)(·) are shown to be additive. However, it is

necessary in general because of the phenomenon of superadditivity, where the coherent information
of a joint state or channel can be strictly greater than the sum of its parts [LLS18,LL18,LTAL19,
NPJ20,SG21,LLS+23,WZM25]. This non-additivity makes the direct computation of the limits
intractable. The computation of D→(·) and Q(·), even for qubit isotropic states and depolarizing
channels, still remains a long-standing open problem in quantum information theory. Thereby,
research has bifurcated into two threads:

• deriving upper bounds that prove fundamental limits on performance;

• establishing lower bounds by constructing explicit coding schemes.

For upper bounds, a prominent one on the distillable entanglement is the Rains bound [Rai01],
which has inspired related information-theoretic upper bounds on the quantum capacity, including
the Rains information [TWW17], max-Rains information [WFD19], and geometric-Rains infor-
mation [FF21]. Another major line of research leverages the concept of degradability. Since the
quantum capacity of a degradable channel (and correspondingly, one-way distillable entanglement of
a degradable state) is known, which is a single-letter coherent information, continuity bounds based
on approximate degradability have been established for both one-way distillable entanglement and
quantum capacity [SSWR17,LDS18,JD24]. A related approach, which has also yielded competitive
upper bounds, is to decompose a state or channel into a convex combination of a degradable and an
antidegradable part [LDS18,ZZW24].

Moreover, another intuitive and powerful strategy for deriving upper bounds is based on the
construction of state or channel extensions. This approach relies on the principle that for any
extension ρ̂ABF of a state ρAB, or N̂A→BF of a channel NA→B, the monotonicity

D→(ρAB) ≤ D→(ρ̂ABF ), and Q(NA→B) ≤ Q(N̂A→BF ) (2)

must hold. This follows directly from the data processing inequality, as the receiver can freely discard
the auxiliary system F . The challenge thus shifts to finding an optimal extension that minimizes
D→(·) or Q(·) of the extended object. A leading technique for this purpose is the so-called flag
extension method [LDS18,Wan21,FKG20,KFG22], which has proven highly effective for structured
channels, e.g., Pauli channels [KFG22]. Notably, the state-of-the-art (SOTA) upper bounds on
the quantum capacity of depolarizing channels are given by the flag extension method in [KFG22].
However, the flag extension method faces a fundamental optimization bottleneck. The construction
is tied to a specific convex decomposition of the state or channel (e.g., a Kraus representation), and
the subsequent optimization is performed over a chosen ansatz for the ‘flag’ states. The efficacy
of the method is therefore highly dependent on these initial choices, for which no systematic a
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priori guidelines exist. It has been unclear how to unlock the full potential of the extension-based
approach in a general, systematic manner.

For lower bounds, on the other hand, the most well-known ones on D
(1)
→ (·) and Q(1)(·) are given

by the coherent information of a state [DW05] or a channel [BDSW96], known as the hashing
bounds. Particularly, a positive lower bound on the quantum capacity is a constructive proof that
quantum communication is possible, i.e., there exists a quantum error correction code for the noise
modeled by that channel. Due to the superadditivity, one needs to calculate the n-shot coherent
information to pursue the ultimate performance for a blocklength of n, where the optimization
is over all possible input code states. Historically, techniques in quantum error correction have
been used to design highly structured codes [SS96, DSS98, SS07, FW08]. For certain channels,
e.g., Pauli channels, exploiting the symmetries of these codes can make the coherent information
calculation tractable [BL21]. More recently, some permutation-invariant code states have been
proposed to achieve a large blocklength evaluation of the coherent information and an improved
capacity threshold [BL25]. However, these methods are often tailored to specific symmetries and code
families. Other approaches have also been explored using neural network states as an ansatz [BL20]
to find code states.

In this work, we directly tackle the challenges in computing D→(·) and Q(·) by introducing
a comprehensive framework based on Riemannian optimization. We develop distinct but philo-
sophically aligned geometric approaches to obtain computable upper and lower bounds on these
quantities. An overview of our results is illustrated in Figure 1 below.

Upper bounds

Lower bounds

Opt. state 
& channel 
extensions 

Opt. multi-
shot coherent 

information

V ∈ St(n, p) RGD with FD grad + 
improved bounds

D(1)→ (ρ⊗n)

Q(1)(𝒩⊗n)

U ∈ 𝒰(n)

U ∈ 𝒰(n)

RGD + improved 
bounds

RGD + improved 
bounds

SOTA upper bounds 
on depolarizing

Stronger 
superadditivity

Stronger 
superadditivity

Amortization collapse:  Ic(𝒩) = IA
c (𝒩)Bounding 

 and  Q(𝒩) D→(ρ) Riemannian Opt.

Figure 1: An overview of our geometric optimization methods for computing two-sided bounds on
the quantum capacity and the one-way distillable entanglement.

1.1 Main results

For upper bounds, we reframe the search for optimal state and channel extensions as a tractable
Riemannian optimization problem. By characterizing the space of all valid extensions as a complex
Stiefel manifold, our method systematically discovers the tightest possible bounds, moving beyond
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the limitations of previous ad-hoc flag constructions. We further enhance this framework by
incorporating a recently improved continuity bound for conditional entropy [ABD+24, BLT25]
to derive a tighter bound on one-way distillable entanglement in terms of a state’s approximate
degradability (cf. Theorem 1), a result analogous to the upper bound on quantum capacity in [BLT25,
Proposition 10]. We analyze the continuity property of the target objective function in our
optimization, and use a finite-difference scheme to implement the Riemannian gradient descent
(RGD) algorithm to optimize our bounds (cf. Section 3.2.1).

The synergy between our optimization framework and the continuity bounds yields a powerful
methodology for computing the tightest known upper bounds on D→(·) and Q(·). For the qubit
isotropic state, our method produces an upper bound on one-way distillable entanglement that is
strictly tighter than the best previously known result reported in [KFG22], thereby establishing an
SOTA upper bound for the quantum capacity of the qubit depolarizing channel (cf. Section 3.4).
We demonstrate the versatility of our approach on other noisy states and channels, consistently
achieving tighter estimates than existing methods.

For lower bounds on the one-way distillable entanglement, we formulate the computation of

D
(1)
→ (·) as an optimization problem over the complex unitary manifold (cf. Section 4.1). Then, we

develop an RGD algorithm to estimate D
(1)
→ (·) for a multi-copy of a target state to obtain tighter

lower bounds on D→(·) than the hashing bound. Our numerical results demonstrate the efficacy of

our algorithm, which clearly shows the superadditivity of D
(1)
→ (·) for various bipartite states.

For lower bounds on the quantum capacity, we propose a scalable parameterization of the input
code states using an interleaved local unitary ansatz. This transforms the optimization problem
from a search over an exponentially large sphere to a tractable optimization over a product of
low-dimensional unitary manifolds (cf. Section 4.2). We develop an RGD algorithm to optimize
the channel coherent information (cf. Corollary 13), which allows for the efficient exploration of
entangled input states. Numerical results show that our methods can reveal stronger superadditivity
of the channel coherent information compared to previous code state constructions. Finally, we prove
that amortization of the underlying channel coherent information does not enhance the original
channel coherent information (cf. Theorem 2), closing a potential pathway for improving single-letter
lower bounds.

All implementations of Riemannian algorithms in this work are based on a MATLAB toolbox
Manopt [Inc22,BMAS14], together with the software CVX [GB14] and QETLAB [Joh16]. The numerical
experiments are performed on a 2.4 GHz AMD EPYC 7532 32-core Processor with 256 GB RAM
under MATLAB R2024a. All MATLAB codes used to obtain numerical results, as well as all data,
are publicly available at [Zhu25].

1.2 Structure of the paper

The remainder of this paper is organized as follows. In Section 2, we introduce some notation we
used. We first develop the framework for upper bounds in Section 3, beginning with our unified
framework on state and channel extensions in Section 3.1. Section 3.2 presents upper bounds on
the one-way distillable entanglement by combining the improved continuity bound with the state
extension method. Section 3.3 presents upper bounds on the quantum capacity using the channel
extension method. Section 3.4 establishes our improved upper bound on the quantum capacity of
qubit depolarizing channels, and Section 3.5 includes further examples on states and channels.

Then, we tackle the lower bounds in Section 4. Section 4.1 introduces our Riemannian optimiza-
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tion method for computing lower bounds on the one-way distillable entanglement of bipartite states.
Section 4.2 introduces our Riemannian optimization method for computing lower bounds on the
quantum capacity. Section 4.3 and Section 4.4 present numerical results on demonstrating concrete
superadditivity for states and channels, respectively, via our proposed methods. Section 4.5 presents
the result on amortized channel coherent information. Finally, Section 5 provides concluding remarks
and outlooks.

2 Preliminaries

A quantum system, denoted by a capital letter such as A, is modeled by a finite-dimensional Hilbert
space HA. The dimension of this space is denoted by |A|. The sets of linear operators and positive
semidefinite operators on HA are denoted by L(A) and P(A), respectively. The set of quantum
states on system A is denoted as D(A) := {ρ ∈ P(A) : Tr ρ = 1}. A sub-normalized state is a
positive semidefinite operator with trace no greater than one. The identity operator on system A
is denoted by 1A. The trace norm of X is given by ∥X∥1 := Tr

√
X†X, and its Frobenius norm is

∥X∥F :=
√

TrX†X. The operator norm ∥X∥∞ is defined as the maximum eigenvalue of
√
X†X.

The support of a Hermitian operator X is denoted by supp(X).
The von Neumann entropy of a quantum state is defined as H(ρ) := −Tr(ρ log ρ) where all

logarithms in this work are taken in base two. The coherent information of a bipartite quantum
state ρAB is defined by I(A⟩B)ρ := H(ρB)−H(ρAB) and the conditional entropy by H(A|B)ρ :=
−I(A⟩B)ρ. For p ∈ [0, 1], the binary entropy is defined by h(p) := −p log p− (1− p) log(1− p) and
the bosonic entropy is defined by g(p) := (1 + p)h (p/(1 + p)).

A quantum channel NA→B is a completely positive and trace-preserving (CPTP) linear map
from L(A) to L(B). A subchannel MA→B is a completely positive and trace non-increasing linear
map from L(A) to L(B). We denote by CP(A : B) the set of completely positive (CP) maps from
A to B, and by CPTP(A : B) the set of all CPTP maps. The diamond norm of a linear map
is defined by ∥E∥⋄ := supρ∈D(RA) ∥EA→B(ρRA)∥1. We will drop the identity map I and identity
operator 1 if they are clear from the context. The Choi matrix of a linear map NA′→B is defined
as JN = (IA ⊗ NA′→B)(|Γ⟩⟨Γ|A′A), where |Γ⟩A′A =

∑
i |i⟩A′ |i⟩A is the unnormalized maximally

entangled state. For every quantum channel NA→B, there exists an isometry V : HA → HB ⊗HE
such that N (ρ) = TrE(V ρV †) where HE is an environment space and V is called a Stinespring
isometry. The complementary channel of N is denoted by N c ∈ CPTP(A : E) that acts as
N c(ρ) = TrB(V ρV †). The action of a quantum channel also has a Kraus representation, i.e.,

N (·) =
∑

iKi(·)K†
i with

∑
iK

†
iKi = 1.

3 Upper bounds on quantum communication

In this section, we develop Riemannian optimization methods for estimating upper bounds on the
one-way distillable entanglement and the quantum capacity. First, we introduce our methods for
constructing states and channel extensions.

3.1 Extensions of quantum states and channels

A common strategy for constructing extensions of states or channels is referred to as the flag extension
method, which relies on a convex decomposition of the state or channel [LDS18,Wan21,FKG20,
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KFG22]. For a given bipartite quantum state ρAB, one first decomposes it into ρAB =
∑

i piω
(i)
AB

where {ω(i)
AB}i are normalized states. An extension is then constructed by appending an auxiliary

flag state τ
(i)
F to each ω

(i)
AB, i.e.,

ρ̂ABF :=
∑
i

piω
(i)
AB ⊗ τ

(i)
F . (3)

By construction, tracing out the flag system F recovers the original state. A similar procedure
applies to a quantum channel NA→B. Using a Kraus representation NA→B(·) =

∑
i piKi(·)K†

i ,
one can define an extended channel where the action of each Kraus operator is correlated with a
corresponding flag state, i.e.,

N̂A→BF (·) :=
∑
i

piKi(·)K†
i ⊗ τ

(i)
F . (4)

It is clear that TrF N̂A→BF (ρA) = NA→B(ρA) for any input state ρA. The central challenge of this

method is that the subsequent optimization over the flag state ensemble {τ (i)F }i is fundamentally
tied to the initial choice of decomposition. To establish a more general framework that avoids this
dependency, we begin by formally defining state and channel extensions.

Definition 1 (State extension). For any given bipartite quantum state ρAB, a quantum state
ρ̂ABF ∈ D(ABF ) is called an extended state of ρAB if TrF ρ̂ABF = ρAB.

Definition 2 (Channel extension). For any given quantum channel N ∈ CPTP(A : B), a quantum
channel N̂ ∈ CPTP(A : BF ) is called an extended channel of N if

N (ρ) = TrF N̂ (ρ), ∀ρ ∈ D(A). (5)

After direct observation, we can gather the following facts about any state or channel extension.

Fact 1. For any bipartite quantum state ρAB, ρ̂ABF is an extended state of ρAB if and only if there
is an environment system R and an isometry V : HE → HR⊗HF such that ρ̂ABF = TrR(V |ϕ⟩⟨ϕ|V †)
where |ϕ⟩ABE is a purification of ρAB.

Proof. For the if-part, assume ρ̂ABF = TrR(V |ϕ⟩⟨ϕ|V †) where V : HE → HR ⊗HF . We can check
that

TrF ρ̂ABF = TrRF
[
(1AB ⊗ V )|ϕ⟩⟨ϕ|(1AB ⊗ V †)

]
= TrE

[
(1AB ⊗ V †V )|ϕ⟩⟨ϕ|

]
= TrE |ϕ⟩⟨ϕ| = ρAB.

(6)

For the only if-part, assume ρ̂ABF is an extension of ρAB, i.e., TrF ρ̂ABF = ρAB. Let |ϕ⟩ABE and
|ψ⟩ABFR be purifications of ρAB and ρ̂ABF , respectively. The fact that TrFR |ψ⟩⟨ψ|ABFR = ρAB
means that |ψ⟩ABFR is also a purification of ρAB. Then there must exist an isometry V : HE →
HF ⊗ HR such that |ψ⟩ABFR = (1AB ⊗ V )|ϕ⟩ABE . Hence, it is obvious to express ρ̂ABF as
ρ̂ABF = TrR(V |ϕ⟩⟨ϕ|V †) which completes the proof. ⊓⊔
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Fact 2. For any given quantum channel N ∈ CPTP(A : B), a quantum channel N̂ ∈ CPTP(A : BF )
is an extended channel of N if and only if there is an environment system R and an isometry
V : HE → HR ⊗HF such that W = (1B ⊗ V )U is a Stinespring isometry of N̂ where U : HA →
HB ⊗HE is a Stinespring isometry of N .

Proof. The if-part is again a direct calculation. Assume N̂A→BF has an Stinespring isometry
W = (1B ⊗ V )U . We have that

TrF N̂ (ρ) = TrFR
[
(1B ⊗ V )UρU †(1B ⊗ V †)

]
= TrE

[
(1B ⊗ V †V )UρU †] = TrE [UρU †] = N (ρ).

(7)

For the only if-part, assume N̂ ∈ CPTP(A : BF ) is an extended channel of N which has an isometry
UN : HA → HB ⊗ HE , and UN̂ : HA → HB ⊗ HR ⊗ HF is an isometry of N̂ . We have that

N (ρ) = TrFR[UN̂ρU
†
N̂

] which shows UN̂ is an isometry of N as well. Then there exists an isometry

V : HE → HR ⊗HF such that UN̂ = (1B ⊗ V )UN , which completes the proof. ⊓⊔

3.1.1 Riemannian optimization for extensions

Based on the two facts above, the key insight of our work is that the space of all valid extensions
for a given state or channel can be endowed with a Riemannian manifold structure. Consequently,
the problem of optimizing a chosen figure of merit over this space can be cast as a Riemannian
optimization problem, allowing for the direct application of its powerful numerical tools; see
Ref. [AMS08] for an overview.

Taking the state extension as an example, for a given bipartite quantum state ρAB, suppose the
figure of merit we are interested in is to minimize a function f(ρABF ) where ρABF is any extension
of ρAB. Then using Fact 1, for any fixed |F |, |R| ∈ N+, taking ρABF = TrR(V |ϕ⟩⟨ϕ|V †) into the
objective, the problem

min
V ∈St(|FR|,|E|)

f(V ) (8)

reduces to a constrained optimization problem over the isometries. The feasible region of these
isometries is the complex Stiefel manifold

St(|FR|, |E|) :=
{
V ∈ C|FR|×|E| : V †V = 1

}
, (9)

a well-studied Riemannian manifold [AT60]. This naturally leads us to the framework of Riemannian
optimization, which leverages the geometric structure of the manifold to generate iterates that remain
within the feasible set [AMS08]. Optimization problems on Riemannian manifolds have appeared in
various areas of quantum information sciences (see, e.g., Refs. [LRFO21,COT24,KBHM24,HKY+24,
ZZAZ25,LSM25,ZPGW25,LHZ+25] as a very incomplete list).

A central element of many Riemannian optimization methods, e.g., Riemannian gradient descent
(RGD) [Bon13], is the Riemannian gradient. This gradient provides the direction of steepest ascent
in the tangent space at a given point on the manifold, guiding the optimization process. However, a
key challenge in many problems we would encounter is that the objective function f(V ) is inherently
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non-smooth, meaning its gradient may not be defined at all points. This necessitates the use
of optimization techniques suited for non-smooth problems, such as subgradient or gradient-free
methods. We will further see details in Section 3.2.1.

3.2 Upper bounds on the one-way distillable entanglement

In this section, we first establish an improved continuity bound on the one-way distillable entan-
glement based on the recently improved continuity bound on the quantum conditional entropy as
shown in Lemma 2. Then, we apply the Riemannian optimization methods for searching extensions
of a given state to give tighter upper bounds on the one-way distillable entanglement, combining
with the continuity bound.

For the task of entanglement distillation from n i.i.d. copies of a bipartite state ρAB , the objective
is to transform the initial state ρ⊗nAB into m copies of a Bell state Φ via LOCC, such that the fidelity
with the target state Φ⊗m approaches one in the asymptotic limit (n → ∞). When the classical
communication is restricted from Alice to Bob, the protocol class is known as one-way LOCC. The
corresponding optimal rate of distillation is the one-way distillable entanglement, denoted D→(ρA|B),
where the notation A|B emphasizes that the restricted communication direction (only from A to B
is possible). A seminal work by Devetak and Winter [DW05] provides a characterization of this
quantity via a regularized formula

D→(ρA|B) = lim
n→∞

1

n
D(1)

→ (ρ⊗nA|B), (10)

where D
(1)
→ (ρA|B) can be expressed as

D(1)
→ (ρA|B) = max

T
I(A′⟩BM)T (ρAB). (11)

Here T is a quantum instrument, i.e.,

T : A→ A′M, T (ρA) :=
m∑
j=1

Tj(ρA)⊗ |j⟩⟨j|, (12)

where for each j, Tj ∈ CP(A : A′) and
∑

j Tj ∈ CPTP(A : A′), and M is a classical system to store
measurement results with |M | = m. Equivalently, Eq. (11) can be expressed as

D(1)
→ (ρA|B) = max

T

m∑
j=1

λjI(A′⟩B)ρj , (13)

where λj is equal to the probability of outcome j, i.e., λj = Tr[Tj(ρAB)], ρj = 1/λjTj(ρAB) is the
state after measurement with outcome j.

A bipartite state ρAB is termed degradable if there exists a quantum channel MB→E such that
MB→E(ρAB) = TrB |ϕ⟩⟨ϕ|ABE , where |ϕ⟩ABE is a purification of ρAB [LDS18]. The significance of
this property is that the coherent information is additive for any degradable state, which simplifies
the regularized expression for one-way distillable entanglement, i.e., D→(ρAB) = I(A⟩B)ρ [LDS18].
In the same work, the approximate degradability was introduced as follows.
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Definition 3 (Degradability parameter of bipartite states [LDS18]). Let ρ ∈ D(AB) be a bipartite
quantum state with purification |ρ⟩ABE, where E denotes the environment system. We say that ρ is
ε-degradable if there exists a quantum channelM∈ CPTP(B : E′) such that E ∼= E′ and

1

2

∥∥ρAE −MB→E′(ρAB)
∥∥
1
≤ ε. (14)

The channel M is referred to as an ε-degrading channel of ρAB. The degradability parameter of
ρAB is defined as

dg(ρ) := min
M∈CPTP(B:E′)

1

2

∥∥ρAE −MB→E′(ρAB)
∥∥
1
. (15)

Notably, the degradability parameter of a given state can be efficiently computed via semidefinite
programming (SDP) [LDS18, Lemma 2.10]. Based on the approximate degradability, an efficiently
computable upper bound on the one-way distillable entanglement was established in [LDS18, Theorem
2.12]. We remark that this upper bound is essentially also based on the continuity bound of the
conditional entropy, known as the Alicki-Fannes inequality [AF04], and was improved by Winter
later [Win16]. Recently, this continuity bound has been further improved with an additional marginal
restriction on the considered states in [ABD+24, Theorem 5] and [BLT25, Theorem 5].

Lemma 1 (Continuity of the conditional entropy [Win16]). For any two quantum states ρ, σ ∈
D(AB), if 1

2∥ρ− σ∥1 ≤ ε ≤ 1, it holds that

|H(A|B)ρ −H(A|B)σ| ≤ ε log(|A|2) + g(ε). (16)

Lemma 2 (Continuity of the conditional entropy [ABD+24, BLT25]). For two quantum states
ρ, σ ∈ D(AB) with equal marginals ρB = σB and 1

2∥ρ− σ∥1 = ε for some ε ∈ [0, 1], it holds that

|H(A|B)ρ −H(A|B)σ| ≤ ε log(|A|2 − 1) + h(ε). (17)

In Figure 2, we can observe the difference between the two continuity bounds through a numerical
experiment (|A| = 4).

Building upon the improved continuity bound on conditional entropy, we improve the upper
bound on the one-way distillable entanglement in Theorem 1. A parallel result for the upper bound
on quantum capacity has been shown in [BLT25, Proposition 10]. Before stating it, we introduce a
modified version of the coherent information, which mimics the similar definition for channels used
in [SSWR17, Proposition 3.2].

ρ

A

B

E

𝒱
E′￼

G ε

ℳ

Figure 3: Schematic illustration of an ε-degradable state ρAB and its ε-degrading channel M, along
with their respective Stinespring dilations V(·) = V (·)V †.
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Figure 2: Continuity bounds comparison, |A| = 4.

Definition 4. Let ρ ∈ D(AB) be an ε-degradable state with an ε-degrading channelM∈ CPTP(B :

E′). Let V : HB → HE′ ⊗HG be a Stinespring isometry ofM. Then we define

UM(ρA|B) := H(G|E′)σ where σAE′G = V ρABV
†. (18)

Theorem 1 (Improved upper bound on the one-way distillable entanglement). Let ρ ∈ D(AB) be an
ε-degradable quantum state with ε-degrading channelM∈ CPTP(B : E′). Let V : HB → HE′ ⊗HG
be a Stinespring isometry ofM with E′ ∼= E. It satisfies that

D→(ρA|B) ≤ UM(ρA|B) + ε log(|E|2 − 1) + h(ε). (19)

Proof. The argument here closely follows the proof of [LDS18, Theorem 2.12], leveraging Lemma 2.
Let |ρ⟩ABE be a purification of ρAB. Consider n copies of the state ρ⊗nAB and let Tn : An → A′M be
an instrument with isometric extension

Tn : An → A′MN, Tn =
∑
m

Kj ⊗ |m⟩M ⊗ |m⟩N , (20)

where {Kj} are Kraus operators. For t = 1, . . . , n, define the pure states

|ψt⟩AnBt+1...BnE′
1...E

′
tG1...GtE1...En

:= VB1→E′
1G1
⊗ · · · ⊗ VBt→E′

tGt
|ρ⟩⊗nABE , (21)

|θt⟩A′MNBt+1...BnE′
1...E

′
tG1...GtE1...En

:= Tn|ψt⟩, (22)

where VBi→E′
iGi

are Stinespring isometries for the ε-degrading channels.
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ρ⊗n

An

Bn

En

𝒱⊗n
E′￼

n

Gn

ℳ⊗n

𝒯n

A′￼

M
N

It was shown in [LDS18, Eq. (2.27)] that

I(A′⟩MBn)
Tnρ⊗nT †

n
= H(Gn|ME′n)θn +

n∑
t=1

[
H(E′

t|ME′
<tE>t)θt −H(Et|ME′

<tE>t)θt
]
, (23)

where X<t := X1 · · ·Xt−1 (with X<1 the trivial system) and X>t is defined analogously. In [LDS18],
it is shown that the trace distance between θtME′

1...E
′
t−1Et...En

and θtME′
1...E

′
tEt+1...En

is bounded as

1

2

∥∥∥θtME′
1...E

′
t−1Et...En

− θtME′
1...E

′
tEt+1...En

∥∥∥
1
≤ ε. (24)

Notice that TrE′
t
θtME′

1...E
′
tEt+1...En

= TrEt θ
t
ME′

1...E
′
t−1Et+1

, i.e., the marginals on ME′
<tE>t coincide.

Thus, by applying Lemma 2, the second term in Eq. (23) can be bounded as

n∑
t=1

[
H(E′

t|ME′
<tE>t)θt −H(Et|ME′

<tE>t)θt
]
≤ n

(
ε log(|E|2 − 1) + h(ε)

)
. (25)

It follows that

I(A′⟩MBn)
Tnρ⊗nT †

n
≤ H(Gn|ME′n)θn + n

(
ε log(|E|2 − 1) + h(ε)

)
(26)

≤ H(Gn|E′n)ψn + n
(
ε log(|E|2 − 1) + h(ε)

)
(27)

= nH(G|E′)ψ + n
(
ε log(|E|2 − 1) + h(ε)

)
, (28)

where the second inequality uses the data-processing inequality for conditional entropy under partial
trace, and the last equality uses the additivity of conditional entropy for tensor product states as in
Eq. (21). Since the above holds for any instrument Tn, optimizing over all such instruments and
dividing both sides by n, then taking the limit n→∞ completes the proof. ⊓⊔

Remark 1 Using the same idea to bound H(Gn|E′n)ψn through I(A⟩B)ρ⊗n as that in [LDS18,
Eq. (2.30)], we can also have

D→(ρA|B) ≤ I(A⟩B)ρ + 2ε log(|E|2 − 1) + 2h(ε). (29)

Based on Theorem 1 and the framework of Riemannian optimization for state extensions
(cf. Section 3.1.1), we further have the following upper bound on the one-way distillable entanglement.
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Corollary 3. For any bipartite state ρAB, let |ϕ⟩ABE =
∑

i

√
pi|ψi⟩AB ⊗ |ei⟩E be the canonical

purification of ρAB where ρAB =
∑

i pi|ψi⟩⟨ψi|AB is the spectral decomposition. It holds that

D→(ρA|B) ≤ inf UM(ρA|BF ) + dg(ρA|BF ) log(|Ê|2 − 1) + h(dg(ρA|BF ))

s.t. V ∈ St(|FR|, |E|), |F |, |R| ∈ N+,

ρABF = TrR(V |ϕ⟩⟨ϕ|V †),

(30)

where M is the dg(ρA|BF )-degrading channel for ρA|BF and Ê is the auxiliary system for the
purification of ρABF .

Proof. The bound directly follows from Fact 1 with Theorem 1 applying to ρA|BF . ⊓⊔

As mentioned in Section 3.1.1, for any fixed |F |, |R| ∈ N+, taking ρABF = TrR(V |ϕ⟩⟨ϕ|V †) into
the objective in Eq. (30), the problem reduces to

min
V ∈St(|FR|,|E|)

f(V ) := UM(V ) + dg(V ) log(η2 − 1) + h(dg(V )). (31)

Here in Eq. (31), St(|FR|, |E|) is the complex Stiefel manifold, UM(V ) and dg(V ) are shorthand for
UM(ρA|BF (V )) and dg(ρA|BF (V )), respectively, and η = |ABF |. This is because full-rank matrices
are dense in D(AB), i.e., the probability of an iterative point landing on a full-rank point is 1
under the Lebesgue measure. The primary obstacle to solving this problem is that deriving an
analytical expression for the Riemannian gradient of f(V ) is intractable. This difficulty arises
because the degradability parameter, dg(ρA|BF ), and ε-degrading channel M themselves are the
solution to an SDP [LDS18, Lemma 2.10], making Eq. (31) a bilevel optimization problem [CMS07].
To obtain an analytical gradient, in principle, one may try to use implicit differentiation of the
Karush-Kuhn-Tucker (KKT) conditions [VB96] of the inner SDP for dg(ρA|BF ), and analyze the
gradient of purification function since we also need ρAE for calculating dg(ρA|BF ). This approach is
exceptionally complex to implement and requires solving a large, potentially ill-conditioned linear
system at each iteration. For these practical reasons, we adopt a numerical finite difference scheme,
which we will explain in detail in Section 3.2.1.

3.2.1 Numerical gradient approximation on the manifold

Since our primary goal is to establish a method that can be practically implemented to compute
upper bounds for a wide range of quantum states and channels, we prioritize a pragmatic approach
to optimization. We utilize an RGD algorithm but replace the intractable analytical gradient with
a numerical approximation via a finite-difference scheme, a well-adopted approach in derivative-free
optimization [Miz73, CK00, Kel11, NS17, SXON21], and has been shown effective in some bilevel
problems [SJL22]. To apply gradient-based optimization to the objective function in Eq. (31) (or
Eq. (29)), we will show that the following objective function is actually locally Lipschitz continuous.

f(V ) = I(A⟩BF )ρ(V ) + 2 dg(V ) log(η2 − 1) + 2h(dg(V )). (32)
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For the first term I(A⟩B)ρ, we note that the von Neumann entropy H(ρ) is continuously differentiable
with respect to ρ at any point where ρ is full-rank, i.e., ∇H(ρ) = −(log ρ+ 1). Therefore, I(A⟩B)ρ
is also continuously differentiable on the full rank density matrices, which means that ρ 7→ I(A⟩B)ρ
is locally Lipschitz continuous. The binary entropy term h(·) is also locally Lipschitz. For the
second term, the degradability parameter, we have the following results.

Lemma 4. The degradability parameter dg(·) is a Hölder continuous function on the set of
bipartite quantum states D(AB) with respect to the trace distance. Specifically, for any two states
ρAB, σAB ∈ D(AB) such that 1

2∥ρAB − σAB∥1 ≤ ε ≤ 1, it holds that

| dg(ρAB)− dg(σAB)| ≤
√

2ε+ ε. (33)

Proof. Let ρAB and σAB be two bipartite states on HA ⊗HB. Choose |ϕρ⟩ABE and |ϕσ⟩ABE to be
purifications of ρAB and σAB on a common system HE with |E| ≥ dim(HA) dim(HB), such that
they saturate the fidelity bound in Uhlmann’s theorem, i.e.,

F (ρAB, σAB) = |⟨ϕρ|ϕσ⟩|2, (34)

where F (ρ, σ) := ∥√ρ√σ∥21 is the fidelity between ρ and σ. The complementary states are given by
ρAE = TrB |ϕρ⟩⟨ϕρ| and σAE = TrB |ϕσ⟩⟨ϕσ|. Let us define the function fM(ρAB) as

fM(ρAB) :=
1

2

∥∥ρAE − (IA ⊗MB→E)(ρAB)
∥∥
1
. (35)

Consider that∣∣fM(ρAB)− fM(σAB)
∣∣ =

1

2

∣∣∣∥∥ρAE − (IA ⊗M)(ρAB)
∥∥
1
−
∥∥σAE − (IA ⊗M)(σAB)

∥∥
1

∣∣∣
≤ 1

2

∥∥ρAE − (IA ⊗M)(ρAB)− σAE + (IA ⊗M)(σAB)
∥∥
1

(36)

≤ 1

2

(
∥ρAE − σAE∥1 +

∥∥(IA ⊗M)(ρAB − σAB)
∥∥
1

)
(37)

≤ 1

2

(
∥ρAE − σAE∥1 + ∥ρAB − σAB∥1

)
. (38)

Here, in Eq. (36), we used the reverse triangle inequality for the trace norm, i.e., ∥X∥1 − ∥Y ∥1 ≤
∥X−Y ∥1. We used ∥X−Y ∥1 ≤ ∥X∥1+∥Y ∥1 in Eq. (37) and used ∥(IA⊗MB→E)(ρAB−σAB)∥1 ≤
∥ρAB − σAB∥1 in Eq. (38). Recall the Fuchs–van de Graaf inequalities

1−
√
F (ρAB, σAB) ≤ 1

2
∥ρAB − σAB∥1 ≤

√
1− F (ρAB, σAB). (39)

We have that

∥ρAE − σAE∥1 ≤ ∥|ϕρ⟩⟨ϕρ| − |ϕσ⟩⟨ϕσ|∥1 = 2
√

1− F (ρAB, σAB), (40)
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where the first inequality is due to the monotonicity of the trace distance under partial trace, the
equality is thanks to Eq. (34) and the fact that any pair of pure states saturates the upper bound
in Eq. (39). Notice that√

1− F (ρAB, σAB) =

√
(1 +

√
F (ρAB, σAB))(1−

√
F (ρAB, σAB))

≤
√

2(1−
√
F (ρAB, σAB))

≤
√
∥ρAB − σAB∥1,

(41)

where the first inequality is because F (ρAB, σAB) ≤ 1 and the second inequality is followed from
Eq. (39). Plugging into Eq. (40), we get

∥ρAE − σAE∥1 ≤ 2
√
∥ρAB − σAB∥1. (42)

Now, let Mρ be a CPTP map that achieves the minimum for dg(ρAB), and let Mσ be one that
achieves the minimum for dg(σAB). By definition, we have

dg(ρAB) = fMρ(ρAB), dg(σAB) = fMσ(σAB).

Since Mρ is optimal for ρAB, we have dg(ρAB) ≤ fD(ρAB) for any map D, including Mσ. This
leads to

dg(ρAB)− dg(σAB) ≤ fMσ(ρAB)− fMσ(σAB) (43)

≤ |fMσ(ρAB)− fMσ(σAB)| (44)

≤ 1

2

(
2
√
∥ρAB − σAB∥1 + ∥ρAB − σAB∥1

)
, (45)

where we used Eq. (38) and Eq. (42) for the last inequality. By swapping the roles of ρAB and σAB ,
the same argument yields

dg(σAB)− dg(ρAB) ≤ 1

2

(
2
√
∥ρAB − σAB∥1 + ∥σAB − ρAB∥1

)
. (46)

Combining these two inequalities gives

| dg(ρAB)− dg(σAB)| ≤ 1

2

(
2
√
∥ρAB − σAB∥1 + ∥ρAB − σAB∥1

)
. (47)

⊓⊔

Lemma 5. For any bipartite state ρAB, let |ϕ⟩ABE be a purification of ρAB, V : HE → HR ⊗HF
be an isometry and denote ρABF (V ) = TrR(V |ϕ⟩⟨ϕ|V †). It holds that

∥ρABF (V )− ρABF (V ′)∥1 ≤ 2∥V − V ′∥F. (48)
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Proof. Let V, V ′ ∈ St(|FR|, |E|) be two isometries and ρ ≡ ρABF (V ), ρ′ ≡ ρABF (V ′). Consider that

∥ρ− ρ′∥1 =
∥∥TrR

(
V |ϕ⟩⟨ϕ|V † − V ′|ϕ⟩⟨ϕ|V ′†)∥∥

1

≤
∥∥V |ϕ⟩⟨ϕ|V † − V ′|ϕ⟩⟨ϕ|V ′†∥∥

1

=
∥∥(V − V ′)|ϕ⟩⟨ϕ|V † + V ′|ϕ⟩⟨ϕ|(V − V ′)†

∥∥
1

≤
∥∥(V − V ′)|ϕ⟩⟨ϕ|V †∥∥

1
+
∥∥V ′|ϕ⟩⟨ϕ|(V − V ′)†

∥∥
1

≤ ∥V − V ′∥∞ · ∥|ϕ⟩⟨ϕ|∥1 · ∥V †∥∞ + ∥V ′∥∞ · ∥|ϕ⟩⟨ϕ|∥1 · ∥V − V †∥∞
= 2∥V − V ′∥∞
≤ 2∥V − V ′∥F,

(49)

where we used the data processing inequality in the second line, the triangle inequality in the fourth
line, and the Hölder inequality twice in the fifth line, the fact that ∥V ∥∞ = ∥V †∥∞ = 1 for an
isometry in the second line from the bottom, and the fact that ∥X∥∞ ≤ ∥X∥F for any normal
matrix X in the last inequality. ⊓⊔

Corollary 6. For any bipartite state ρAB, let |ϕ⟩ABE be a purification of ρAB, V : HE → HR⊗HF
be an isometry and denote ρABF (V ) = TrR(V |ϕ⟩⟨ϕ|V †). It holds that∣∣dg(ρABF (V ))− dg(ρABF (V ′))

∣∣ ≤ 2∥V − V ′∥F. (50)

Proof. According to the argument in Lemma 4, we have that∣∣dg(ρA|BF (V ))− dg(ρA|BF (V ′))
∣∣ ≤ 1

2

(
∥ρAR(V )− ρAR(V ′)∥1 + ∥ρABF (V )− ρABF (V ′)∥1

)
,

where
ρAR(V ) = TrBF

[
(1AB ⊗ V )|ϕ⟩⟨ϕ|ABE(1AB ⊗ V †)

]
. (51)

Similar to Eq. (49), we have that

∥ρAR(V )− ρAR(V ′)∥1 ≤ 2∥V − V ′∥F, ∥ρABF (V )− ρABF (V ′)∥1 ≤ 2∥V − V ′∥F. (52)

Therefore, it follows that∣∣ dg(ρA|BF (V ))− dg(ρA|BF (V ′))
∣∣ ≤ 2∥V − V ′∥F. (53)

⊓⊔

Lemma 4 establishes the Hölder continuity of the degradability parameter dg(·) with respect to
states. More importantly, Lemma 5 and Corollary 6 demonstrate that the degradability parameter
dg(·) is Lipschitz continuous with respect to isometries V . Consequently, the overall objective
function f(V ) in Eq. (32) is locally Lipschitz continuous. This property is the theoretical cornerstone
of our optimization approach. Specifically, although f(V ) may be nondifferentiable, its local Lipschitz
nature justifies the use of concepts from nonsmooth optimization, namely the subgradient [LCD+21].
In this context, our finite-difference scheme (cf. Eqs. (60)-(62)) serves as a reliable method to
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approximate a subgradient, as the local Lipschitz condition guarantees its truncation error is
rigorously bounded linearly by O(Lh), where L is the local Lipschitz constant and h is the tunable
step size [JKL+25]. Therefore, our algorithm acts as a practical implementation of a (inexact)
Riemannian subgradient method, a principled approach known to converge to the set of Clarke
stationary points [BLO05,BKM14,HU17]. Based on the above, we explain the optimization algorithm
as follows.

Riemannian gradient descent. Our RGD algorithm, shown in Algorithm 1, leverages standard
tools from the field of Riemannian optimization. To ensure our presentation is self-contained, we
briefly recall the essential definitions for the complex Stiefel manifold, which are well-established
concepts. We refer the reader to [Bou23] for a comprehensive treatment. The Riemannian gradient,
denoted grad f(V ), is a tangent vector in the tangent space TV M at a point V on the manifold
M . It is defined by the relation〈

grad f(V ), V̇
〉
V

= Df(V )[V̇ ], ∀V̇ ∈ TV M , (54)

where V̇ is any tangent vector, ⟨·, ·⟩V is the Riemannian metric on the tangent space, and Df(V )[V̇ ]
is the directional derivative of f at V along V̇ .

Specifically, for the complex Stiefel manifold St(n, p) := {V ∈ Cn×p : V †V = 1}, its tangent
space is given by

TV St(n, p) =
{
V A : A ∈ Cn×n, A† +A = 0

}
. (55)

The Riemannian metric on TV St(n, p) we use is given by

⟨·, ·⟩V : TV St(n, p)× TV St(n, p)→ R, ⟨X,Y ⟩V = Tr(X†Y ). (56)

The projection onto the tangent space at any point V ∈ St(n, p) reads

ProjV (X) = (1− V V †)X + V
V †X −X†V

2
. (57)

The Riemannian gradient is then given by

grad f(V ) = ProjV
(
∇f̄(V )

)
, (58)

where ∇f̄(V ) is the gradient of an extension f̄ of f on Euclidean space. When doing an optimization
on a manifold, in order to move in the direction of a tangent vector while staying on the manifold,
we also need a retraction mapping [AMS08, Section 4]. There are different retractions for the Stiefel
manifold, a standard one, and the one we used in Section 4.2 is the retraction based on the QR
decomposition, i.e.,

RV (X) := qf(V +X), (59)

where qf(X) denotes the Q factor of the decomposition of X as X = QR where Q ∈ St(n, p) and R
is an p× p upper triangular with nonnegative diagonal entries.

To optimize Eq. (32), since we cannot compute the gradient analytically, we approximate the
directional derivative using a first-order finite difference. For a small step t, the directional derivative
is approximated as

Df(V )[V̇ ] ≈ f(RV (tV̇ ))− f(V )

t
. (60)

To compute the full gradient vector grad f(V ), we can compute the following steps:
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Algorithm 1 Riemannian Gradient Descent (RGD) for upper bounds on D→(·)
Input: A bipartite state ρAB and a purification |ϕ⟩ABE ; Initial guess V (0) ∈ St(n, p).
1: while the stopping criteria are not satisfied do
2: Approximate V̇ (t) = − grad f(Vk) using the finite-difference scheme as described in Eqs. (60)-

(62).
3: Compute a stepsize s(t).
4: Update V (t+1) = RV (t)

(
s(t)V̇ (t)

)
by Eq. (59); t = t+ 1.

5: end while
6: Compute the upper bound dupp in Eq. (30) using the optimal V ∗.

Output: V ∗, dupp.

i). Define an orthonormal basis {ζi}di=1 for the tangent space TV M , where d = dim(TV M ).

ii). For each basis vector ζi, compute the approximate directional derivative using the finite-
difference formula

ci = Df(V )[ζi] ≈
f(RV (tζi))− f(V )

t
. (61)

iii). The Riemannian gradient is then constructed by combining these components

grad f(V ) =

d∑
i=1

ciζi. (62)

This process requires d+1 function evaluations to compute a single gradient. While computationally
intensive, it bypasses the need for any analytical derivatives.

3.3 Upper bounds on the quantum capacity

In this section, we apply the Riemannian optimization methods for searching extensions of a target
channel to obtain upper bounds on the quantum capacity. The Lloyd–Shor–Devetak theorem
shows that the quantum capacity of a channel N is equal to the regularized channel coherent
information [SN96,Llo97,BKN00,Sho02,Dev05],

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n), (63)

where the channel coherent information is defined as Q(1)(N ) := maxρ∈D Ic(ρ,N ) (also denoted as
Ic(N )) with

Ic(ρ,N ) := H(N (ρ))−H(N c(ρ)). (64)

A quantum channel NA→B is said to be degradable if there exists a channel M∈ CPTP(B : E)
such that N c = M◦ N , where N c is the complementary channel of N . The primary utility of
this property is that the coherent information of a degradable channel is additive. Consequently,
the regularization in Eq. (63) becomes unnecessary, leading to Q(N ) = Q(1)(N ). However, non-
degradable channels generally exhibit non-additive coherent information [DSS98,LLS18], making
the regularization essential. This non-additivity can be so pronounced that an unbounded number
of channel uses may be required to detect capacity [CEM+15].
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This sharp dichotomy between degradable and non-degradable channels motivates a more
nuanced approach for channels that, while not strictly degradable, are close to being so. To
formalize this, Sutter et al. introduced the ε-degradable channel [SSWR17], defined as follows.

Definition 5. Let N ∈ CPTP(A : B) be a quantum channel with complementary channel N c ∈
CPTP(A : E), where E denotes the environment system. We say that N is ε-degradable if there
exists a quantum channelM∈ CPTP(B : E′) such that E′ ∼= E and

1

2

∥∥N c −M◦N
∥∥
⋄ ≤ ε, (65)

where ∥ · ∥⋄ denotes the diamond norm. The channelM is referred to as an ε-degrading channel.
The degradability parameter of N is defined as1

dg(N ) := inf
M∈CPTP(B:E)

1

2

∥∥N c −M◦N
∥∥
⋄. (66)

This framework provides bounds on the quantum capacity of a channel based on the approximate
degradability [SSWR17, Theorem 3.4], and the degradability parameter can be computed via an
SDP:

dg(N ) = inf ∥TrE Z∥∞ s.t. Z ≥ JN c − JM◦N , Z ≥ 0, JM ≥ 0, TrE JM = 1B. (67)

Recently, building upon the improved continuity bound on conditional entropy, the quantum
capacity upper bound based on the approximate degradability has been improved in [BLT25,
Proposition 10] as follows.

Proposition 7 (Improved quantum capacity upper bound [BLT25]). Let N ∈ CPTP(A : B) be an
ε-degradable channel with an ε-degrading channelM∈ CPTP(B : E′). It satisfies that

Q(N ) ≤ UM(N ) + ε log(|E|2 − 1) + h(ε). (68)

Here, UM(N ) is defined as

UM(N ) := max
{
H(G|E′)σ : σE′G = VN (ρ)V †, ρ ∈ D(A)

}
, (69)

where V : HB → HE′ ⊗HG is the Stinespring isometry ofM.

Similarly to Corollary 3 for the state case, by combining Fact 2 and Proposition 7, we have the
following upper bound on the quantum capacity through channel extensions.

Corollary 8. Let N ∈ CPTP(A : B) be a quantum channel with a Stinespring isometry U :

HA → HB ⊗ HE and V : HE → HR ⊗ HF be an arbitrary isometry. Consider the channel
N̂ ∈ CPTP(A : BF ) whose Stinespring isometry is given by W = (1B ⊗ V )U . Then it holds that

Q(N ) ≤ inf UM(N̂ ) + dg(N̂ ) log(|E′|2 − 1) + h(dg(N̂ ))

s.t. V ∈ St(|FR|, |E|), |F |, |R| ∈ N+,

N̂ (·) = TrR(1B ⊗ V )U(·)U †(1B ⊗ V †).

(70)

1 Compared with the definition in [SSWR17], the definition here includes an additional factor of 1
2
to unify the results

in the subsequent text.
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Remark 2 In principle, our state and channel extension methods can be combined with any upper
bound on the target state’s one-way distillable entanglement or channel’s capacity. However, the
method provides no improvement for ‘meta-converse’ bounds, e.g., the geometric-Rains informa-
tion [FF21, Theorem 12]. Such bounds are always defined via a minimization of a divergence D over
a set of free channels F, i.e., minM∈F(A:B)D(NA→B∥MA→B). By the data-processing inequality, if
F is closed under partial trace on the output, i.e., MA→BF ∈ F(A : BF ) =⇒ MA→B ∈ F(A : B),
the value of the bound is invariant under channel extensions, i.e.,

min
M∈F(A:B)

D(NA→B∥MA→B) = min
M̂∈F(A:BF )

D(N̂A→BF ∥M̂A→BF ). (71)

In contrast, the non-monotonicity of the continuity bound in Eq. (19) and Eq. (68) makes them
an ideal testbed for the extension method. Moreover, in Eq. (30) and Eq. (70), we are essentially
searching for a degradable extension with the tail terms in the continuity bound serving as a proper
regularization term.

3.4 Improved upper bounds on isotropic states and depolarizing channels

In this section, we establish improved upper bounds on the one-way distillable entanglement of
isotropic states using our proposed methods. As a consequence, we obtain the SOTA upper bounds
on the quantum capacity of qubit depolarizing channels.

For a local dimension d, the isotropic state is defined by

Id(f) := fΦ+ +
1− f
d2 − 1

(1d2 − Φ+), (72)

where Φ+ is the d× d maximally entangled state and f ∈ [0, 1]. It is also known as the Choi state
of the qudit depolarizing channel

Dp(·) = (1− p)(·) +
p

d2 − 1

∑
0≤i,j≤d−1
(i,j)̸=(0,0)

XiZj(·)(XiZj)†, (73)

where p = 1− f and X,Z are the generalized Pauli operators defined by

X|k⟩ := |k + 1(mod d)⟩, Z|k⟩ := ωk|k⟩, ω = exp(2πi/d). (74)

First, we directly compare our bound in Theorem 1 with that given in [LDS18, Theorem 2.12].
The numerical results are shown in Figure 4. The green solid line is the coherent information of
states, which gives a lower bound on D→(Id(f)). The red solid line and the blue solid line are the
upper bound given by Theorem 1 and [LDS18, Theorem 2.12], respectively. We can observe that a
considerably tighter upper bound can be obtained by refining the continuity estimate via Lemma 2
and by removing an additional approximation step through the additivity of conditional entropy. In
particular, the refined continuity bound exhibits a more favorable scaling behavior, maintaining
its effectiveness especially for relatively large degradability parameters (when p goes large), where
previous bounds tend to become very loose.
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Figure 4: Bounds on the one-way distillable entanglement of the qubit isotropic states. The x-axis
is the parameter 3/4p = 1− f ∈ [0, 0.1] of the state I2(f).
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Figure 5: Bounds on the quantum capacity of the qubit depolarizing channel. The x-axis is the
parameter 3/4p = 1− f ∈ [0.0925, 0.1875] of the qubit depolarizing channel Dp.

Notably, the quantum capacity of a teleportation-simulable channel is equal to the one-way
distillable entanglement of its Choi state [BBC+93,BDSW96,BK98], i.e., Q(D1−f ) = D→(Id(f)).
Therefore, the upper bound on D→(Id(f)) also gives an upper bound on the quantum capacity of
depolarizing channels, Q(D1−f ). The previously best-known upper bound on Q(Dp) is given by the
flagged extension method [KFG22, Proposition 5.1 and Figure 1]. Here, based on Corollary 3 and
the numerical optimization method on a Stiefel manifold as described in Section 3.2.1, we obtained
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SOTA upper bounds on the quantum capacity of qubit depolarizing channels. Specifically, for qubit
isotropic states, we have |E| = 4 and choose |R| = 4, |F | = 2 in our numerical experiments. Thereby,
we are performing optimization over St(8, 4) for the extensions of isotropic states ρABF , with a
qubit extension system F . The comparison of our bound with the best-known ones is presented
in Figure 5. The red dashed line is the upper bound given by the optimized extensions of the
isotropic states, according to Corollary 3. The blue solid line corresponds to the upper bound given
by [KFG22, Proposition 5.1], using flag extensions. We can observe a notable improvement in the
given noise range.

We emphasize that all our numerical experiments leverage high-precision solvers where the
primal-dual gap for all semidefinite programs is consistently driven below 10−14, and all other
entropy function calculations are performed at standard double-precision machine epsilon (≈ 10−16).
This high degree of accuracy ensures that the reported gains are significant and reliable. All state
extensions as well as corresponding isometries (cf. Fact 1) we have obtained for the qubit isotropic
states, which yield the SOTA upper bounds, can be found in [Zhu25].

3.5 Further examples

To demonstrate the efficacy of our method, we conduct numerical experiments on more general
bipartite states and quantum channels to estimate upper bounds on their one-way distillable
entanglement and quantum capacity, respectively.

Quantum states. Suppose Alice and Bob share some maximally entangled states affected by
local noises, i.e.,

ρA′B′ := NA→A′ ⊗MB→B′(ΦAB). (75)

A canonical model for physical processes such as spontaneous emission is the amplitude damping
channel (AD) Ap(·) [NC10], which is defined by

Ap(·) = K1(·)K†
1 +K2(·)K†

2, (76)

where K1 = |0⟩⟨0| + √1− p|1⟩⟨1|, K2 =
√
p|0⟩⟨1| are Kraus operators. Set NA→A′ as the qubit

amplitude damping channel A0.1 and MB→B′ as the qubit depolarizing channel Dp. In Figure 6,
we compare our continuity bound in Theorem 1 and the bound optimized through Corollary 3 with
previous bounds. The green line represents the Rains bound [Rai01], and the blue line represents the
bound in [ZZW24, Corollary 2] based on decomposing the state into degradable and antidegradable
parts [LDS18], which was reported as the best-known bound for this family of noisy states. We can
observe that the optimized upper bound following Corollary 3 outperforms all previous ones and
can provide tighter estimations on such noisy states.

Quantum channels. For channels, to numerically demonstrate the efficacy of Proposition 7
and Corollary 8, we conduct numerical experiments on several examples. Specifically, we consider
damping-dephasing channel and damping-erasure channel, which are compositions of an AD channel
Ap(·) with a dephasing channel Zp(·), or an erasure channel Ep(·), respectively. The dephasing
channel and the erasure channel are defined as

Zp(·) = (1− p)(·) + pZ(·)Z†, Ep(·) = (1− p)(·) + p|e⟩⟨e|, (77)
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Figure 6: Bounds on the one-way distillable entanglement of maximum entangled states affected
by Dp and A0.1. Select p ∈ [0.15, 0.22] as the plot range. The result includes a comparison
between Theorem 1, Ref. [ZZW24, Corollary 2], Rains bound [Rai01], Corollary 3 and the hashing
bound [DW05] given by the state’s coherent information.

where |e⟩ is the quantum state orthogonal to original quantum system, Z = diag(1,−1) is the Pauli
Z matrix. We will abbreviate

ZAg,p(·) := Zp ◦ Ag(·), and EAg,p(·) := Ep ◦ Ag(·) (78)

as the damping-dephasing and the damping-erasure channel, respectively, where the first parameter
in the subscript denotes the noise parameter of the first composited channel. In particular, the
damping-dephasing channel is argued as a natural and important noise model in [GFG12]. To use
Proposition 7 and Corollary 8, a central challenge is to calculate UM(N̂ ) for any parameterized
extended channel in the optimization iterations. Notice that after calculating dg(N̂ ) and ε-degrading
channelM via Eq. (67), the overall channelM◦N̂ is fixed, and the quantity UM(N ), i.e., maximizing
the conditional entropy with a specified channel, can be computed via an SDP [FF18]. However,
the SDP formulation [FF18] is still time-consuming, considering our need to estimate the gradient
through a finite-difference scheme. Therefore, we opt to employ an alternative numerical technique
during our implementation as follows.

Note that the Choi matrix of the above channel is real. Thus, if we set the transformation V to
be restricted to a real unitary matrix, then the Choi matrix of the extended channel is also real.
We argue that the Choi matrix of the optimal ε-degrading channel M in Eq. (67) can be taken as a
real matrix by convexity. That is, if σ is a maximizing input state, then its conjugate σ∗ is also a
maximizing state due to symmetry. Therefore ρ = 1

2(σ + σ∗) is also a maximizing state, leading
to ρ is real. Finally, we can argue that the optimal solution of UM(N ) can be restricted to real
matrices when the Choi matrix of N is real. Thus to find the optimal value UM(N ) we can simply
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Figure 7: Bounds on the quantum capacity of damping-dephasing channels and damping-erasure
channels. The x-axis represents the parameter p ∈ [0, 0.05] for all channels. The results include a
comparison between Proposition 7, Ref. [FF21, Theorem 12] and Corollary 8. The green solid line
represents the coherent information of the channel’s Choi state.

scan all possible feasible solutions

ρ =

[
a b
b 1− a

]
, where a ∈ [0, 1], b ∈

[
−
√
a(1− a),

√
a(1− a)

]
. (79)

The accuracy can be controlled by adjusting the scanning step size. Typically, a step size of 0.005 is
chosen, which provides sufficient precision compared to convex optimization results while reducing
computation time. After the optimization is terminated, we can then calculate the upper bound in
Proposition 7 with the optimized extended channel.

The numerical results are shown in Figure 7. The red dashed line corresponds to the upper bound
provided by Corollary 8 combined with our optimization method, where we choose |F | = 2 and
|R| = |E|. The purple solid line corresponds to the upper bound given by Rα(N̂ ) [FF21, Theorem
12], which is the best-known SDP computable upper bound for general quantum channels, according
to the best of our knowledge. Specifically, Rα(N̂ ) is computed by an SDP [FF21, Proposition 13]
and we set the parameter to α = 1 + 2−10. The green solid line shows the coherent information
of the channel’s Choi state, which serves as the hashing lower bound on its one-way distillable
entanglement and is therefore a lower bound on the quantum capacity. We can observe that our
method can achieve significantly tighter upper bounds than previous ones. Notably, in Figure 7b
for the damping-erasure channel, our upper bound nearly meets the lower bound, providing a sharp
estimate of the channel’s quantum capacity.

4 Lower bounds on quantum communication

In this section, we develop Riemannian optimization methods for estimating lower bounds on the
one-way distillable entanglement and the quantum capacity.
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4.1 Lower bounds on the one-way distillable entanglement

Recall that the regularized formula of the one-way distillable entanglement is

D→(ρAB) = lim
n→∞

1

n
D(1)

→ (ρ⊗nAB) = lim
n→∞

1

n
max
T

I(A′⟩BnM)T (ρ⊗n
AB), (80)

where the maximization is over all quantum instruments T : A → A′M on Alice’s system. It is
defined by T (·) =

∑
j Tj(·)⊗ |j⟩⟨j|, where {|j⟩}m−1

j=0 is an orthonormal basis for the classical register,
each Tj is a completely positive map such that

∑
j Tj is a CPTP. Note that it suffices to consider

instrument T where each map Tj consists of only one Kraus operator [KW24, Section 13.2.5], i.e.,

T (·) =

m−1∑
j=0

Kj(·)K†
j ⊗ |j⟩⟨j|. (81)

The one-way distillable entanglement is an operational quantity of great interest in entanglement

theory. Due to the superadditivity of D
(1)
→ (·), to obtain a lower bound on D→(ρAB), a direct

approach is to tackle the calculation of D
(1)
→ (ρ⊗nAB) for as large n as possible. To this end, we

formulate the problem as a Riemannian optimization over the unitary manifold as follows. For any
fixed |M | = m and any j = 0, 1, ...,m− 1, construct

Kj := (1A ⊗ ⟨j|M )UAM (1A ⊗ |0⟩M ), (82)

where UAM is a unitary operator. It lies in U(|AM |) = St(|AM |, |AM |), the unitary manifold, a
special case of the Stiefel manifold. This parameterization is nothing but the Stinespring dilation
theorem. One can check that

m−1∑
j=0

K†
jKj =

m−1∑
j=0

(1A ⊗ ⟨0|)U †
AM (1A ⊗ |j⟩⟨j|)UAM (1A ⊗ |0⟩)

= (1A ⊗ ⟨0|M )U †
AMUAM (1A ⊗ |0⟩M ) = 1A,

which shows {Kj} is a set of Kraus operators. Taking Eq. (82) into Eq. (81), for any fixed n,m ∈ N+,
For a quantum state ρA|B, let us define the coherent information cost function ρA|B as

cohρA|B (UAM ) = −I(A′⟩BM)σ, (83)

where

σA|BM =

m−1∑
j=0

(1AB ⊗ ⟨j|M )(1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ U †
AM )(1AB ⊗ |j⟩M )⊗ |j⟩⟨j|M . (84)

Lemma 9. For a bipartite quantum state ρAB and a system M with |M | = m ∈ N+, the Euclidean
gradient of cohρAB (UAM ) with respect to UAM is given by

∇cohρAB = 2 TrB

[m−1∑
j=0

((
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M

)
(1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )

]
, (85)

where σ
(j)
AB = (1AB⊗⟨j|M )(1B⊗UAM )(ρAB⊗|0⟩⟨0|M )(1B⊗U †

AM )(1AB⊗|j⟩M ) and σ
(j)
B = TrA σ

(j)
AB.
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Proof. For any unitary UAM , let’s construct Kj = (1A ⊗ ⟨j|M )UAM (1A ⊗ |0⟩M ) as that in Eq. (82).
We introduce some notations

ρUABM = (1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ U †
AM ) (86)

and
σ
(j)
AB = (1AB ⊗ ⟨j|M )ρUABM (1AB ⊗ |j⟩M ). (87)

Then the output state T (ρ) =
∑m−1

j=0 KjρABK
†
j ⊗ |j⟩⟨j|M and its marginal can be written as

σABM =
m−1∑
j=0

σ
(j)
AB ⊗ |j⟩⟨j|M and σBM =

m−1∑
j=0

σ
(j)
B ⊗ |j⟩⟨j|M , (88)

respectively. Now, we express the coherent information cost function ρA|B as

cohρA|B (UAM ) = Tr
(
σBM log σBM

)
− Tr

(
σABM log σABM

)
, (89)

and will calculate the gradient of it with respect to UAM , i.e., dcohρA|B = Re
(

Tr[(∇UcohρA|B )†dU ]
)
.

Notice that for block-diagonal matrices, we have that

log σABM =
m−1∑
j=0

(
log σ

(j)
AB

)
⊗ |j⟩⟨j|M , log σBM =

m−1∑
j=0

(
log σ

(j)
B

)
⊗ |j⟩⟨j|M . (90)

It follows that

Tr
(
σABM log σABM

)
=

m−1∑
j=0

Tr
(
σ
(j)
AB log σ

(j)
AB

)
, Tr

(
σBM log σBM

)
=

m−1∑
j=0

Tr
(
σ
(j)
B log σ

(j)
B

)
. (91)

and

cohρA|B (UAM ) =

m−1∑
j=0

Tr
(
σ
(j)
B log σ

(j)
B

)
− Tr

(
σ
(j)
AB log σ

(j)
AB

)
. (92)

Using the fact that dTr(X logX) = Tr[(logX+1)dX] and dσ
(j)
AB = (1AB⊗⟨j|M )dρUABM (1AB⊗|j⟩M ),

we can deduce that

dcohρA|B =
m−1∑
j=0

dTr
(
σ
(j)
B log σ

(j)
B

)
− dTr

(
σ
(j)
AB log σ

(j)
AB

)

=

m−1∑
j=0

Tr
[(

log σ
(j)
B + 1B

)
dσ

(j)
B

]
− Tr

[(
log σ

(j)
AB + 1AB

)
dσ

(j)
AB

]

=
m−1∑
j=0

Tr
[(
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
(1AB ⊗ ⟨j|M )dρUABM (1AB ⊗ |j⟩M )

]
= Tr

(
YABMdρ

U
ABM

)
,

(93)
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where in the last equality we defined

YABM :=
m−1∑
j=0

(
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M . (94)

Note the differential of ρUABM is given by

dρUABM = (1B⊗dUAM )(ρAB⊗|0⟩⟨0|M )(1B⊗U †
AM )+(1B⊗UAM )(ρAB⊗|0⟩⟨0|M )(1B⊗dU †

AM ). (95)

We can plug it into Eq. (93) to obtain

dcohρA|B = Tr
[
YABM (1B ⊗ dUAM )(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ U †

AM )
]

+ Tr
[
YABM (1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ dU †

AM )
]

= Tr
[

TrB

(
(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ U †

AM )YABM

)
dUAM

]
+ Tr

[
TrB

(
YABM (1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )

)
dU †

AM

]
.

(96)

Therefore, we can identify the gradient

∇cohρAB = 2 TrB

[m−1∑
j=0

((
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M

)
(1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )

]
. (97)

⊓⊔

The Riemannian gradient is then given as follows.

Corollary 10. For a bipartite quantum state ρAB and a system M with |M | = m ∈ N+, the
Riemannian gradient of cohρAB (UAM ) with respect to UAM is given by

gradcohρAB (UAM ) = TrB

[m−1∑
j=0

((
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M

)
(1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )

]

− UAM TrB

[
(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ U †

AM )
m−1∑
j=0

((
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M

)]
UAM .

(98)

where σ
(j)
AB = (1AB⊗⟨j|M )(1B⊗UAM )(ρAB⊗|0⟩⟨0|M )(1B⊗U †

AM )(1AB⊗|j⟩M ) and σ
(j)
B = TrA σ

(j)
AB.

Proof. For the unitary manifold, according to Eq. (57), the projection onto the tangent space is
given by

ProjV (X) =
1

2
(X − V X†V ). (99)
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Algorithm 2 RGD algorithm for lower bounds on the one-way distillable entanglement

Input: A quantum state ρAB, m ∈ N+; Initial guess U (1) ∈ U(|AM |).
1: while the stopping criteria are not satisfied do
2: Compute U̇ (t) = − grad cohρAB (U (t)) by Eq. (98).
3: Compute a stepsize s(t).
4: Update U (t+1) = RU(t)

(
s(t)U̇ (t)

)
by Eq. (59); t = t+ 1.

5: end while
6: Compute Ilow = − 1

ncohρAB (U∗)
Output: U∗, Ilow.

Therefore, by Lemma 9, we have that

gradcohρAB (UAM ) = TrB

[m−1∑
j=0

((
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M

)
(1B ⊗ UAM )(ρAB ⊗ |0⟩⟨0|M )

]

− UAM TrB

[
(ρAB ⊗ |0⟩⟨0|M )(1B ⊗ U †

AM )

m−1∑
j=0

((
1A ⊗ log σ

(j)
B − log σ

(j)
AB

)
⊗ |j⟩⟨j|M

)]
UAM .

(100)
⊓⊔

Equipped with the Riemannian gradient, we can thereby apply the standard RGD algorithm as

shown in Algorithm 2 to estimate D
(1)
→ (ρ⊗nAB) for a fixed bipartite state ρAB and a fixed n ∈ N+.

4.2 Lower bounds on the quantum capacity

A key challenge in determining a channel’s quantum capacity, Q(N ), is the superadditivity of
its underlying coherent information, i.e., entangled input state across multiple channel uses N⊗n

can strictly improve the coherent information compared with strategies that use the channels
independently. Consequently, the standard approach to establishing lower bounds is to compute
1
nQ

(1)(N⊗n) for large n, a quantity that becomes progressively tighter as the blocklength n increases.
Recall that the n-shot channel coherent information is given by

Q(1)(N⊗n) := max
ψRAn

I(R⟩B)N⊗n
A→B(ψRAn ), (101)

where the optimization is with respect to all code states |ψ⟩RAn and we abbreviate |ψ⟩⟨ψ| as ψ. One
key strategy to obtaining a tight lower bound is to restrict the search to code state families with
high symmetry [BL21,BL25]. This approach can render the entropy computation manageable even
for large blocklengths, enabling a more accurate assessment of superadditive gains. A notable recent
success in this method is the use of permutation-invariant codes [BL25], which have led to improved
capacity thresholds for several important channel models. Another strategy moves away from rigid
symmetries and instead utilizes highly expressive, general-purpose ansatz. A key example is to
utilize a neural network state ansatz to estimate lower bounds on quantum capacity [BL20].

In fact, it is straightforward to see that Eq. (101) is an optimization on the complex unit sphere
of the corresponding Hilbert space, a canonical example of a Riemannian manifold. Thereby, we can
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apply Riemannian optimization algorithms to compute Eq. (101). The tangent space of a complex
unit sphere S|A| is given by T|ψ⟩ S|A| = {|ψ̇⟩ ∈ C|A| : ⟨ψ|ψ̇⟩ = 0}, the projection onto which is

Proj|ψ⟩(|v⟩) = (1− |ψ⟩⟨ψ|)|v⟩, ∀|v⟩ ∈ C|A|. (102)

Then we can use the RGD algorithm to compute Eq. (101) once we can obtain the Riemannian
gradient. To this end, we first calculate the Euclidean gradient of the objective function as follows.

Lemma 11. For a quantum channel NA→B and a system R, let fN (ψRA) = −I(R⟩B)NA→B(ψRA).
The Euclidean gradient of fN (ψRA) at |ψ⟩RA is given by

∇|ψ⟩fN = 2
{
1R ⊗N †

B→A

[
log TrRNA→B(ψRA)

]
−N †

B→A

[
logNA→B(ψRA)

]}
|ψ⟩RA. (103)

Proof. Since TrRXRA =
∑

j(⟨j|R ⊗ 1A)(XRA)(|j⟩R ⊗ 1A), by denoting the Kraus operators of
NA→B as {Kk}k, we can express the function fN (ψRA) := I(R⟩B)NA→B(ψRA) as

fN (ψRA) = Tr
[∑
k,j

(⟨j|R ⊗Kk)|ψ⟩⟨ψ|(|j⟩R ⊗K†
k) log

(∑
k,j

(⟨j|R ⊗Kk)|ψ⟩⟨ψ|(|j⟩R ⊗K†
k)
)]

−
∑
k

⟨ψ|(1R ⊗K†
k) log

(∑
k

(1R ⊗Kk)|ψ⟩⟨ψ|(1R ⊗K†
k)
)

(1R ⊗Kk)|ψ⟩.
(104)

In order to compute the derivatives, we introduce the following argument

∂

∂|ℓ⟩⟨ψ|W(|ψ⟩)|ψ⟩ = ⟨ψ| ∂
∂|ℓ⟩W(|ψ⟩)|ψ⟩+ 2⟨ℓ|W(|ψ⟩)|ψ⟩, (105)

that computes the directional derivative of the function ⟨ψ|W(|ψ⟩)|ψ⟩ along a vector |ℓ⟩ ∈ Cn, where
W : Cn → Cn×n is a mapping. Denote the first term and the second term in Eq. (104) as

f
(1)
N = ⟨ψ|

[ ∑
k1,j1

(|j1⟩R ⊗K†
k1

) log
( ∑
k2,j2

(⟨j2|R ⊗Kk2)|ψ⟩⟨ψ|(|j2⟩R ⊗K†
k2

)
)

(⟨j1|R ⊗Kk1)
]
|ψ⟩

f
(2)
N = ⟨ψ|

[∑
k1

(1R ⊗K†
k1

) log
(∑

k2

(1R ⊗Kk2)|ψ⟩⟨ψ|(1R ⊗K†
k2

)
)

(1R ⊗Kk1)
]
|ψ⟩.

For f
(1)
N , according to Eq. (105), we can calculate the directional derivative along the state |ℓ⟩ as

⟨∇|ψ⟩f
(1)
N |ℓ⟩ = 2⟨ℓ|

∑
k1,j1

(|j1⟩ ⊗K†
k1

) log
( ∑
k2,j2

(⟨j2| ⊗Kk2)|ψ⟩⟨ψ|(|j2⟩ ⊗K†
k2

)
)

(⟨j1| ⊗Kk1)|ψ⟩

+⟨ψ| ∂
∂|ℓ⟩

∑
k1,j1

(|j1⟩ ⊗K†
k1

) log
( ∑
k2,j2

(⟨j2| ⊗Kk2)|ψ⟩⟨ψ|(|j2⟩ ⊗K†
k2

)
)

(⟨j1| ⊗Kk1)|ψ⟩.
(106)
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The second term can be calculated by

⟨ψ| ∂
∂|ℓ⟩

∑
k1,j1

(|j1⟩ ⊗K†
k1

) log
( ∑
k2,j2

(⟨j2| ⊗Kk2)|ψ⟩⟨ψ|(|j2⟩ ⊗K†
k2

)
)

(⟨j1| ⊗Kk1)|ψ⟩

= ⟨ψ|
∑
k1,j1

(|j1⟩ ⊗K†
k1

)
( ∑
k2,j2

(⟨j2| ⊗Kk2)(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(|j2⟩ ⊗K†
k2

)
)
σ−1(⟨j1| ⊗Kk1)|ψ⟩

= Tr
∑
k1,j1

[( ∑
k2,j2

(⟨j2| ⊗Kk2)(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(|j2⟩ ⊗K†
k2

)
)
σ−1(⟨j1| ⊗Kk1)|ψ⟩⟨ψ|(|j1⟩ ⊗K†

k1
)
]

= Tr
( ∑
k2,j2

(⟨j2| ⊗Kk2)(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(|j2⟩ ⊗K†
k2

)
)

= Tr
( ∑
k2,j2

(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(|j2⟩⟨j2| ⊗K†
k2
Kk2)

)
= 2⟨ℓ|ψ⟩.

(107)

Similarly, for f
(2)
N , we have

⟨∇|ψ⟩f
(2)
N |ℓ⟩ = 2⟨ℓ|

∑
k1

(1⊗K†
k1

) log
(∑

k2

(1⊗Kk2)|ψ⟩⟨ψ|(1⊗K†
k2

)
)

(1⊗Kk1)|ψ⟩

+⟨ψ| ∂
∂|ℓ⟩

∑
k1

(1⊗K†
k1

) log
(∑

k2

(1⊗Kk2)|ψ⟩⟨ψ|(1R ⊗K†
k2

)
)

(1R ⊗Kk1)|ψ⟩.
(108)

The second term can be calculated by

⟨ψ| ∂
∂|ℓ⟩

∑
k1

(1⊗K†
k1

) log
(∑

k2

(1⊗Kk2)|ψ⟩⟨ψ|(1⊗K†
k2

)
)

(1⊗Kk1)|ψ⟩

= ⟨ψ|
∑
k1

(1⊗K†
k1

)
(∑

k2

(1⊗Kk2)(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(1⊗K†
k2

)
)
σ−1(1⊗Kk1)|ψ⟩

= Tr
∑
k1

[(∑
k2

(1⊗Kk2)(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(1⊗K†
k2

)
)
σ−1(1⊗Kk1)|ψ⟩⟨ψ|(1⊗K†

k1
)
]

= Tr
∑
k2

[
(|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|)(1⊗K†

k2
Kk2)

]
= Tr

[
|ℓ⟩⟨ψ|+ |ψ⟩⟨ℓ|

]
= 2⟨ℓ|ψ⟩.

(109)

Combining Eqs. (106) (107) (108) (109), we have that

∇|ψ⟩fN = ∇|ψ⟩f
(1)
N −∇|ψ⟩f

(2)
N

= 2
{ ∑
k1,j1

(|j1⟩ ⊗K†
k1

) log
[

TrRNA→B(ψ)
]
(⟨j1| ⊗Kk1)−N †

B→A

[
logNA→B(ψ)

]}
|ψ⟩

= 2
{
1⊗N †

B→A

[
log TrRNA→B(ψ)

]
−N †

B→A

[
logNA→B(ψ)

]}
|ψ⟩.

(110)

⊓⊔
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Figure 8: An example of estimating 1

3Q
(1)(N⊗3

A→B) using a product of unitary manifolds. Five local
unitaries are interleaved to parameterize an input code state |ψ⟩RA1A2A3 for 3 copies of the channel.

Based on Lemma 11 and the projection given in Eq. (102), we can obtain the Riemannian
gradient and use the standard RGD method to tackle the problem in Eq. (101). However, this
formulation faces a significant scalability challenge. As the blocklength n increases, the dimension
of this sphere grows exponentially, quickly rendering the problem computationally intractable. To
circumvent this curse of dimensionality, we reformulate the problem as an optimization over a
product of unitary manifolds in the manner described below.

To illustrate our method, we consider an example of computing the average 3-shot coherent
information, 1

3Q
(1)(N⊗3

A→B). Let the three input systems be denoted by A1, A2, A3, where Ai ∼= A,
and let their joint system be A3 := A1A2A3. We parameterize the input state |ψ⟩RA3 with an
auxiliary system R as

|ψ⟩RA3 = (U
(5)
RA1
⊗1A2A3)(U

(4)
A1A2

⊗1RA3)(U
(3)
A2A3

⊗1RA1)(U
(2)
RA2
⊗1A1A3)(U

(1)
RA1
⊗1A2A3)|ϕ⟩RA3 , (111)

where |ϕ⟩RA3 is a fixed initial state, e.g., |0⟩⊗|R||A|3 , and each U (i) is a unitary operator acting on a
specific subsystem, creating an interleaved structure as depicted in Figure 8. We call such a circuit
an interleaved local unitary ansatz. Similar ideas have been adopted to optimize quantum circuits
for Hamiltonian simulation, e.g., using a brick wall circuit ansatz and then applying Riemannian
optimization [KBHM24,LSM25]. Then the optimization is over a product of unitary manifolds

U(|RA|)× U(|A|2)× · · · × U(|A|2)× U(|RA|). (112)

The key insight of this method is to interleave local unitaries to avoid the curse of dimensionality
while maintaining expressivity of the parameterized input state. If |R| is a fixed constant, then
each constituent manifold has a fixed dimension that does not scale with n, ensuring the problem
remains manageable even for large blocklengths. Even if we want to make |R| increase dependent
on n, e.g., |R| = |A|n, we can alternatively divide R into local subsystems and construct a similar
manageable local structure.

Formally, for n-copy uses of a quantum channel N , let us define the coherent information cost
function of n-shot N as

cohN ,n(Un) = −I(R⟩B)N⊗n
A→B(ψ(Un))

, (113)

where
Un = (U (1), U (2), · · · , U (2n−1)) ∈ U(|RA|)× U(|A|2)× · · · × U(|RA|)︸ ︷︷ ︸

2n−1

, (114)
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and

|ψ(U)⟩RAn =
←−∏2n−1

k=n+1

(
U

(k)
S2n−1−kS2n−k

⊗ 1
S
(k)
c

)←−∏n

k=1

(
U

(k)
Sk−1Sk

⊗ 1
S
(k)
c

)
|0⟩RAn . (115)

Here, the notation
←−∏

denotes the ordered product of operators, arranged from left to right in
descending order of the index. We set S0 = R,Sj = Aj and denote the corresponding complementary
subsystem by

S(k)
c :=

{
S1S2 · · ·Sn \ Sk−1Sk, for 1 ≤ k ≤ n,
S1S2 · · ·Sn \ S2n−1−kS2n−k, for n < k ≤ 2n− 1.

(116)

The tangent space of the product manifold is given by

TU(1) U(|RA|)× TU(2) U(|A|2)× · · ·TU(2n−1) U(|RA|), (117)

where each local tangent space is defined in Eq. (55). The Riemannian gradient is given by

grad cohN ,n(U) =
(

ProjU(1)

(
∂U(1)coh(U)

)
, · · · ,ProjU(2n−1)

(
∂U(2n−1)coh(U)

))
, (118)

where ProjUk(·) is the projection onto the tangent space as defined in Eq. (57) and coh : C|RA|×|RA|×
C|A|2×|A|2 × · · ·C|RA|×|RA| → R is an extension function of coh that coincide with the later on the
product of unitary manifolds. The retraction map is given in Eq. (59).

Since such an ansatz (cf. Eq. (114) and Figure 8) is not guaranteed to express all possible input
states, we have the relation

Q(1)(N⊗n) ≥ −min
Un

cohN ,n(Un), (119)

to give a valid lower bound on Q(1)(N⊗n), thus a lower bound on Q(N ). Then Eq. (119) is the main
optimization we are concerned with, which we utilize the RGD algorithm to solve. The Riemannian
gradient can be calculated as follows.

Lemma 12. For a quantum channel NA→B and its n-shot coherent information cost function

cohN ,n(U), denote V (k) = U (k) ⊗ 1
S
(k)
c
, |ϕk⟩ =

←−∏k

j=1V
(j)|0⟩RAn, and |ψ⟩RAn = |ϕ2n−1⟩. Then the

partial derivative of cohN ,n(U) at U (k) is given by

∂U(k)cohN ,n = Tr
S
(k)
c

[(
V (2n−1)V (2n−2) · · ·V (k+1)

)†|Gψ⟩⟨ϕk−1|
]
, (120)

for k = 1, 2, · · · , 2n− 1, where |Gψ⟩ = ∂|ψ⟩fN is given in Lemma 11.

Proof. Based on Lemma 11, we can use the chain rule to obtain the desired partial derivative.
Denote the gradient vector with respect to a state |ψ⟩RAn as |Gψ⟩. We have

dfN = Re
(
⟨Gψ|d|ψ⟩

)
, dcohN ,n = Re

(
Tr

[
(∇UcohN ,n)†dU

])
. (121)

We will calculate the gradient with respect to a single, arbitrary unitary U (k). To this end, we
consider the change dcohN ,n that results only from an infinitesimal change dU (k), while all other
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U (j) for j ≠ k are held constant. This is equivalent to taking a partial derivative. In this case,
dV (j) = 0 for all j ̸= k. Using the fact that

d|ψ⟩|U(k) = V (2n−1)V (2n−2) · · ·V (k+1)dV (k)|ϕk−1⟩, (122)

we can deduce

dcohN ,n = Re
(

Tr
[
|ϕk−1⟩⟨Gψ|V (2n−1)V (2n−2) · · ·V (k+1)dV (k)

])
= Re

(
Tr

[
|ϕk−1⟩⟨Gψ|V (2n−1)V (2n−2) · · ·V (k+1)(dU (k) ⊗ 1Sk

)
])

= Re
(

Tr
[

TrSk

(
|ϕk−1⟩⟨Gψ|V (2n−1)V (2n−2) · · ·V (k+1)

)
dU (k)

])
.

(123)

Compared with Eq. (121), we find that

∇U(k)cohN ,n = TrSk

[(
V (2n−1)V (2n−2) · · ·V (k+1)

)†|Gψ⟩⟨ϕk−1|
]
. (124)

⊓⊔

The Riemannian gradient is then given as follows.

Corollary 13. For a quantum channel NA→B and a unitary ensemble {U (k)}2n−1
k=1 , the Riemannian

gradient of the n-shot coherent information cost function at U = (U (1), U (2), · · · , U (2n−1)) is given
by

[
grad cohN ,n(U)

]
k

=
1

2
Tr

S
(k)
c

[(←−∏2n−1

j=k+1
V (j)

)†
|Gψ⟩⟨ϕk−1| − |ϕk⟩⟨Gψ|

←−∏2n−1

j=k
V (j)

]
(125)

for k = 1, 2, · · · , 2n− 1.

Proof. For the unitary manifold, according to Eq. (57), the projection onto the tangent space is
given by

ProjV (X) =
1

2
(X − V X†V ). (126)

Therefore, by Lemma 12 and Eq. (118), we have that

[
grad cohN ,n(U)

]
k

=
1

2

(
Tr

S
(k)
c

[(←−∏2n−1

j=k+1
V (j)

)†
|Gψ⟩⟨ϕk−1|

]
− Tr

S
(k)
c

[
U (k)|ϕk−1⟩⟨Gψ|

(←−∏2n−1

j=k+1
V (j)

)
U (k)

])
=

1

2
Tr

S
(k)
c

[(←−∏2n−1

j=k+1
V (j)

)†
|Gψ⟩⟨ϕk−1| − |ϕk⟩⟨Gψ|

←−∏2n−1

j=k
V (j)

]
.

⊓⊔
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Algorithm 3 RGD algorithm for lower bounds on the quantum capacity

Input: A quantum channel NA→B, |R|, n ∈ N+; Initial guess (U (1), U (2), · · · , U (2n−1)).
1: while the stopping criteria are not satisfied do
2: Compute U̇(t) = − grad cohN ,n(U(t)) by Eq. (125).
3: Compute a stepsize s(t).
4: Update U(t+1) = RU(t)

(
s(t)U̇(t)

)
by Eq. (59); t = t+ 1.

5: end while
6: Compute qlow = − 1

ncohN ,n(Un)
Output: |ψ(Un)⟩, qlow.

Equipped with the Riemannian gradient, we have Algorithm 3 to optimize a code state for
a given channel N and a positive integer n, thereby establishing a lower bound on the quantum
capacity.

Remark 3 Regarding Algorithm 2 for computing lower bounds on the one-way distillable entangle-
ment, we can also formulate the problem on a product of unitary manifolds by constructing a local
unitary ansatz like Figure 8. It should be noted, however, that while our ansatz circumvents the
curse of dimensionality in the parameter space, the evaluation of the coherent information objective
function remains a computational bottleneck. This challenge arises from the need to compute the
logarithm of density matrices in a Hilbert space whose dimension grows exponentially with n.

4.3 Superadditivity in one-way entanglement distillation

To demonstrate the efficacy of our method on computing lower bounds on the one-way distillable
entanglement, we apply Algorithm 2 to a class of noisy bipartite states.

Generalized amplitude damping channel. Similar to Eq. (75), we consider a pair of Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩) shared between Alice and Bob is affected by a local generalized amplitude

damping channel (GADC) [KSW20] channel. As a generalization of the AD channel, it is defined by

Aγ,N (·) =
4∑
i=1

Ai(·)A†
i , (127)

where the Kraus operators {Ai}4i=1 are given by

A1 =
√

1−N
(
|0⟩⟨0|+

√
1− γ|1⟩⟨1|

)
(128)

A2 =
√
γ(1−N)|0⟩⟨1| (129)

A3 =
√
N
(√

1− γ|0⟩⟨0|+ |1⟩⟨1|
)

(130)

A4 =
√
γN |1⟩⟨0|, (131)

with γ,N ∈ [0, 1]. When N = 0, it reduces to the AD channel. Thereby, we are interested in
the Choi state of the GADC, i.e., ρAB′ = (I ⊗ Aγ,N )(Φ+). For a fixed number of copies n = 2, 4,

we compute lower bounds on D
(1)
→ (ρ⊗nAB) by optimizing a feasible one-way LOCC protocol using

Algorithm 2, with a fixed dimension of the classical register to |M | = 2. The optimization is
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terminated when the norm of the Riemannian gradient falls below 10−7. To mitigate convergence
to local optima, each data point is the result of 200 independent optimization runs with random
initial unitaries.

The results of our numerical experiments are presented in Figure 9. The green solid line
represents the coherent information as a lower bound. The blue and red dashed lines show our
improved multi-copy bounds for n = 2, 4, respectively, which are given by the quantity

1

n
I(A′⟩BnM)T ∗(ρ⊗n

AB). (132)

These bounds were calculated using the instrument T ∗, which was optimized via Algorithm 2
through the parameterization of the output unitary U∗. It demonstrates that for all tested noise
parameters, the calculated lower bounds for multi-copy cases are strictly greater than the single-
shot coherent information, which confirms that multi-copy protocols unlock additional distillable
entanglement. The fluctuations observed in the dashed lines are attributed to the nature of the
numerical optimization Algorithm 2. As the channel parameter is varied, the algorithm may settle
into different local solutions, causing small variations in the resulting lower bound. Because we
set |M | = 2 for all experiments, and the issue of local minima, there may be cases where a 4-copy
average rate is smaller than a 2-copy average rate in Figure 9b. We can adjust the dimension of
the classical system M to further optimize the lower bounds. Overall, the results highlight the
effectiveness of our Riemannian optimization framework in discovering the non-trivial quantum
instruments required to reveal these superadditive effects, even with a small measurement dimension.
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Figure 9: Distillable entanglement lower bound on the Choi state of GADC by optimizing
1
nI(A′⟩BnM)T (ρ⊗n

AB).

4.4 Superadditivity in channel coherent information

To demonstrate the efficacy of our method on computing lower bounds on the quantum capacity,
we apply Algorithm 3 to different channels of interest.
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Generalized amplitude damping channel. First, we consider the GADC as defined in Eq. (127).
We compute lower bounds on the quantum capacity, 1

nQ
(1)(A⊗n

γ,N ), for blocklength n = 3, 4, 5 using
our interleaved unitary ansatz with a reference system of dimension |R| = 2, and choose the same
parameters as that in [BL20, Appendix A.2]. For each channel with fixed parameters, we execute
Algorithm 3 200 times from random initial points to thoroughly explore the optimization landscape,
selecting the highest coherent information rate achieved. The algorithm is terminated when the
norm of the Riemannian gradient falls below 10−7.

The resulting rates for the optimized code states, 1
nQ

(1)(ψ(Un),A⊗n
γ,N ), are then compared to

the results in Ref. [BL20]. Finding a rate that exceeds the single-shot coherent information demon-
strates the superadditive nature of the channel, where a larger value signifies a more pronounced
superadditive effect for that blocklength. In Table 1 to 5, we present the results for the GADC
with different parameters (γ,N). We can see that our method achieves an improvement over the
results in Ref. [BL20] even with a small, 2- or 3-dimensional auxiliary system R. This shows that
our method is highly effective at discovering complex entangled code states, allowing us to reveal
stronger superadditivity in the channel coherent information.

Dephrasure channel. The dephrasure channel is defined by the composition of a dephasing
channel and an erasure channel, i.e.,

EZp,q(·) := (1− q)
(
(1− p)(·) + pZ(·)Z

)
+ qTr(·)|e⟩⟨e|, (133)

where |e⟩ is an erasure flag orthogonal to the input space. In Table 6 to 9, we present our numerical
results for the dephrasure channels with different parameters (p, q) using Algorithm 3. We compare
the coherent information yielded by our optimized code states with the ones given by the permutation-
invariant code states in [BL25, Table 4]. We observe that our code states can achieve higher rates
with only 3 or 4 copy uses, compared with the 9-copy uses in Ref. [BL25].

Damping-dephasing channel. Another channel of particular interest is the damping-dephasing
channel ZAg,p(·), as introduced in Section 3.5, which has been shown to have a non-additive coherent
information [SAJOS24]. It has Kraus operators

O1 =
√

1− p
(
|0⟩⟨0|+

√
1− g|1⟩⟨1|

)
(134)

O2 =
√
g|0⟩⟨1| (135)

O3 =
√
p
(
|0⟩⟨0| −

√
1− g|1⟩⟨1|

)
, (136)

where p, g ∈ [0, 1]. The optimized rates 1
nQ

(1)(ψ,ZA⊗n
g,p) for n = 2, 3, 4, 5 are shown in Table 10,

where they are compared with the results from [BL25, Table 3]. For an auxiliary system of
dimension |R| = 2 or |R| = 3, our optimized code states can provide higher rates, indicating a
stronger superadditivity. It is worth noting that the primary focus of Ref. [BL25] is on improving
capacity thresholds in the high-noise regime using permutation-invariant codes, an approach that is
not necessarily optimized for maximizing rates at small blocklengths. Nevertheless, this comparison
serves to highlight the superadditive gains that our method can unlock even with very few channel
uses and small auxiliary dimensions.
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(γ,N) = (0.44035, 0.1)

n copy
This work (cf. Alg. 3) Ref. [BL20]

|R| = 2 |R| = 3 |R| = 2n

3 1.7515 · 10−3 1.7515 · 10−3 5.7598 · 10−4

4 2.0657 · 10−3 2.0657 · 10−3 1.2683 · 10−3

5 1.9124 · 10−3 1.9116 · 10−3 9.1537 · 10−4

Table 1: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ,A⊗n
γ,N ) with an optimized

code state |ψ⟩, for a GADC with (γ,N) = (0.44035, 0.1). The increasing value as a function of n
demonstrates strong superadditivity of the coherent information.

(γ,N) = (0.41488, 0.2)

n copy
This work (cf. Alg. 3) Ref. [BL20]

|R| = 2 |R| = 3 |R| = 2n

3 2.4565 · 10−3 2.4565 · 10−3 1.6923 · 10−3

4 2.4633 · 10−3 2.4188 · 10−3 1.4132 · 10−3

5 2.5366 · 10−3 2.5245 · 10−3 9.8025 · 10−4

Table 2: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ,A⊗n
γ,N ) with an optimized code

state |ψ⟩, for a GADC with (γ,N) = (0.41488, 0.2).

(γ,N) = (0.40102, 0.3)

n copy
This work (cf. Alg. 3) Ref. [BL20]

|R| = 2 |R| = 3 |R| = 2n

3 2.8213 · 10−3 2.8213 · 10−3 2.1889 · 10−3

4 2.7973 · 10−3 2.7921 · 10−3 7.3635 · 10−4

5 2.8460 · 10−3 2.7500 · 10−3 -

Table 3: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ,A⊗n
γ,N ) with an optimized code

state |ψ⟩, for a GADC with (γ,N) = (0.40102, 0.3).

(γ,N) = (0.39392, 0.4)

n copy
This work (cf. Alg. 3) Ref. [BL20]

|R| = 2 |R| = 3 |R| = 2n

3 2.8517 · 10−3 2.8517 · 10−3 2.3456 · 10−3

4 2.8377 · 10−3 2.8340 · 10−3 1.7592 · 10−3

5 2.8458 · 10−3 2.7590 · 10−3 -

Table 4: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ,A⊗n
γ,N ) with an optimized code

state |ψ⟩, for a GADC with (γ,N) = (0.39392, 0.4).
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(γ,N) = (0.39169, 0.5)

n copy
This work (cf. Alg. 3) Ref. [BL20]

|R| = 2 |R| = 3 |R| = 2n

3 2.7901 · 10−3 2.7901 · 10−3 2.3948 · 10−3

4 2.7491 · 10−3 2.7365 · 10−3 1.7913 · 10−3

5 2.7222 · 10−3 2.1595 · 10−3 1.3393 · 10−3

Table 5: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ,A⊗n
γ,N ) with an optimized code

state |ψ⟩, for a GADC with (γ,N) = (0.39169, 0.5).

(p, q) = (0.32, 0.1)

n copy
This work (cf. Alg. 3) Ref. [BL25]

|R| = 2 |R| = 3 |R| = 2

3 7.4634 · 10−5 1.1178 · 10−4 -
4 8.6365 · 10−5 7.9767 · 10−5 -
9 - - 5.2223 · 10−5

Table 6: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ, EZ⊗n
p,q ) with an optimized code

state |ψ⟩, for a dephrasure channel with (p, q) = (0.32, 0.1). The increasing value as a function of n
demonstrates strong superadditivity of the coherent information.

(p, q) = (0.24, 0.2)

n copy
This work (cf. Alg. 3) Ref. [BL25]

|R| = 2 |R| = 3 |R| = 2

3 6.1854 · 10−6 4.5631 · 10−6 -
4 1.2144 · 10−5 3.4223 · 10−6 -
9 - - 1.3181 · 10−6

Table 7: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ, EZ⊗n
p,q ) with an optimized code

state |ψ⟩, for a dephrasure channel with (p, q) = (0.24, 0.2).

(p, q) = (0.16, 0.3)

n copy
This work (cf. Alg. 3) Ref. [BL25]

|R| = 2 |R| = 3 |R| = 2

3 3.9674 · 10−5 3.3592 · 10−5 -
4 1.5026 · 10−5 2.5206 · 10−5 -
9 - - 2.3103 · 10−5

Table 8: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ, EZ⊗n
p,q ) with an optimized code

state |ψ⟩, for a dephrasure channel with (p, q) = (0.16, 0.3).
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(p, q) = (0.08, 0.4)

n copy
This work (cf. Alg. 3) Ref. [BL25]

|R| = 2 |R| = 3 |R| = 2

3 4.7900 · 10−5 1.3663 · 10−6 -
4 8.1678 · 10−7 7.5609 · 10−5 -
9 - - 5.4524 · 10−5

Table 9: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ, EZ⊗n
p,q ) with an optimized code

state |ψ⟩, for a dephrasure channel with (p, q) = (0.08, 0.4).

(p, g) = (0.16, 0.20)

n copy
This work (cf. Alg. 3) Ref. [BL25]

|R| = 2 |R| = 3 |R| = 2 |R| = 3

2 1.9987 · 10−2 2.0105 · 10−2 - -
3 2.0978 · 10−2 2.1637 · 10−2 - -
4 2.0083 · 10−2 2.2073 · 10−2 - -
5 1.8714 · 10−2 2.1816 · 10−2 1.4707 · 10−2 1.9899 · 10−2

Table 10: Lower bounds on the n-shot coherent information, 1
nQ

(1)(ψ,ZA⊗n
g,p) with an optimized

code state |ψ⟩, for a damping-dephasing channel with (p, g) = (0.16, 0.20).

4.5 Amortization does not enhance channel coherent information

It is known that the channel coherent information, and thus the quantum channel capacity, can
be expressed in terms of a quantum channel divergence and its regularization [FGW25, Section
5]. One natural idea for obtaining potentially tighter lower bounds is to consider the amortized
channel divergence [WBHK20], where different input states are allowed for the two channels
being distinguished. We introduce the notion of amortized channel coherent information and
show that it is sandwiched between the channel coherent information and the regularized channel
coherent information, suggesting a possible improvement over the single-letter lower bound by the
channel coherent information. However, we subsequently prove that the amortized channel coherent
information always coincides with the channel coherent information, thereby ruling out the potential
enhancement of the quantum capacity lower bound via amortization.

Definition 6. Let D be a general quantum divergence. For any N ∈ CPTP(A : B) and M ∈
CP(A : B), the unstabilized channel divergence is defined by

D(N∥M) := sup
ρ∈D(A)

D
(
NA→B(ρ)∥MA→B(ρ)

)
, (137)

where the supremum is taken over all quantum states ρ on system A. The regularized and unstabilized
channel divergence is defined by

Dreg(N∥M) := lim
n→∞

1

n
D

(
N⊗n∥M⊗n) = sup

n∈N

1

n
D

(
N⊗n∥M⊗n) , (138)
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where the second equality is followed by the super-additivity of unstabilized channel divergence D.
The amortized and unstabilized channel divergence is defined by

DA(N∥M) := sup
ρ,σ∈D(A)

[
D (NA→B(ρ)∥MA→B(σ))−D(ρ∥σ)

]
, (139)

where the supremum is taken over all quantum states ρ and σ on system A.

See the definition of the amortized channel divergence in [WBHK20, Definition 3]. A common
choice of D(·∥·) is the Umegaki relative entropy (also called quantum relative entropy) [Ume62],
defined by

D(ρ∥σ) :=

{
Tr[ρ(log ρ− log σ)] if supp(ρ) ⊆ supp(σ),

+∞ otherwise.
(140)

for any quantum states ρ and semidefinite operator σ. It was shown in [FGW25, Theorem 34] that
the coherent information of a quantum channel can be expressed as the unstabilized channel relative
entropy as follows.

Lemma 14 ([FGW25]). For any N ∈ CPTP(A : B), it holds that

Ic(N ) = D
(
IE ⊗NA→B∥R1

E ⊗NA→B

)
, (141)

Q(N ) = Dreg
(
IE ⊗NA→B∥R1

E ⊗NA→B

)
, (142)

where E is isomorphic to A and R1
E(·) = TrE(·)1E is a CP map that always outputs the identity

operator 1E.

Then, we introduce the amortized channel coherent information as follows.

Definition 7 (Amortized channel coherent information). For any N ∈ CPTP(A : B), the amortized
channel coherent information IAc (N ) is defined by

IAc (N ) := DA
(
IE ⊗NA→B∥R1

E ⊗NA→B

)
, (143)

where DA(·) is the amortized unstabilized channel relative entropy.

Remark 4 Following the convention of defining an amortized entanglement measure for quantum
channels, e.g., the amortized entanglement [KW17, Section 2], one could also define another variant
of the amortized channel coherent information as

IAc (N ) = max
ρA′AB′

I(A′⟩BB′)NA→B(ρA′AB′ ) − I(A′A⟩B)ρ, (144)

which is different from our consideration here.

Followed by Lemma 14, we have the following chain inequalities for any quantum channel N .

Lemma 15. For any N ∈ CPTP(A : B) it holds that Ic(N ) ≤ IAc (N ) ≤ Q(N ).
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Proof. Since D(·∥·) ≤ DA(·∥·), we have Ic(N ) ≤ IAc (N ). On the other hand, by the chain rule of
quantum relative entropy [FFRS20, Theorem 2], we have

IAc (N ) = DA
(
IE ⊗NA→B

∥∥R1
E ⊗NA→B

)
(145)

≤ Dreg
(
IE ⊗NA→B

∥∥R1
E ⊗NA→B

)
(146)

= Q(N ), (147)

where we used Lemma 14 for the second equality. ⊓⊔

Lemma 15 indicates that the amortized channel coherent information could potentially provide
a tighter lower bound on quantum capacity. However, we show that the amortized channel coherent
information in fact equals the channel coherent information for any channel N .

Theorem 2. For any N ∈ CPTP(A : B) it holds that IAc (N ) = Ic(N ).

Proof. Combining (143) and (139), we have

IAc (N ) = sup
ρ,σ∈D(EA)

[
D
(
IE ⊗NA→B(ρ)∥R1

E ⊗NA→B(σ)
)
−D(ρ∥σ)

]
. (148)

By denoting ρEB = IE ⊗NA→B(ρ) and ρB = TrE ρEB, we can consider

IAc (N ) = sup
ρ,σ∈D(EA)

[
D
(
IE ⊗NA→B(ρ)∥R1

E ⊗NA→B(σ)
)
−D(ρ∥σ)

]
= sup
ρ,σ∈D(EA)

[
Tr(ρEB log ρEB)− Tr[ρEB log(1E ⊗ TrE σEB)]−D(ρ∥σ)

]
= sup
ρ,σ∈D(EA)

[
Tr(ρEB log ρEB)− Tr[ρEB log(1E ⊗ TrE ρEB)]

+ Tr[ρEB log(1E ⊗ TrE ρEB)]− Tr[ρEB log(1E ⊗ TrE σEB)]−D(ρ∥σ)
]

= sup
ρ,σ∈D(EA)

[
D
(
IE ⊗NA→B (ρ) ∥R1

E ⊗NA→B(ρ)
)

+ Tr[ρB log ρB]− Tr[ρB log σB]−D(ρ∥σ)
]

= sup
ρ,σ∈D(EA)

[
D
(
IE ⊗NA→B (ρ) ∥R1

E ⊗NA→B(ρ)
)

+D (ρB∥σB)−D(ρ∥σ)
]
,

(149)

where the second equality follows from the definition of quantum relative entropy, in the third
equality we add and subtract the term Tr[ρEB log(1E ⊗ TrE ρEB)], and the fourth equality follows
from the fact that log(A⊗B) = logA⊗ 1+ 1⊗ logB. Notice that

D (ρB∥σB) = D (TrE ⊗NA→B(ρ)∥TrE ⊗NA→B(σ)) ≤ D (ρ∥σ) , (150)

where TrE(·) is the partial trace over the system E, and the inequality follows from the monotonicity
of the quantum relative entropy under CPTP maps. Then we have that

(149) ≤ sup
ρ∈D(EA)

[
D
(
IE ⊗NA→B (ρ) ∥R1

E ⊗NA→B(ρ)
)]

= Ic(N ), (151)

where the equality follows from Lemma 14. ⊓⊔
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5 Concluding remarks

In this work, we have developed a comprehensive framework based on Riemannian optimization to
derive improved, computable two-sided bounds on the one-way distillable entanglement and the
quantum capacity.

Our main technical contributions are twofold. First, for upper bounds, we transformed the search
for state and channel extensions that can minimize information-theoretic bounds into a tractable
optimization over the Stiefel manifold. This method, when combined with a refined continuity
bound for conditional entropy, delivers strictly tighter upper bounds than previously known records
for large values of the depolarizing parameter [KFG22]. We can also obtain improved upper bounds
for different states and channels of interest. Second, for lower bounds, we transform the problem to
optimizations over unitary manifolds. Our algorithm for states and channels can be flexibly used to
explore the superadditivity in the one-way entanglement distillation rate and the channel coherent
information. We demonstrate improved lower bounds on both quantities for various states and
channels of interest, compared to previous results. Our methods may also serve as a guide for the
design of entanglement distillation protocols and quantum error correction codes. Furthermore,
we proved that amortization of the underlying channel divergence does not enhance the channel
coherent information. This result excludes the amortization as a pathway to obtain a tighter lower
bound on the quantum capacity, and can be of independent interest.

The methods presented here open several avenues for future research. For the upper-bound
framework, it would be of great interest to see if the structure of the optimal isometries found
via optimization can inspire new analytical insights or closed-form bounds for specific channel
families. The computational cost of the finite-difference gradient approximation could be reduced
by exploring more advanced non-smooth or bilevel optimization techniques tailored to the Stiefel
manifold [SJL22,DCS24,HMJT25]. For the lower-bound approach, the key bottleneck of computing
the entropy function remains unsolved in our methods, which limits the scalability of our algorithms.
It would be interesting to explore new manifolds with a symmetry structure that can aid in the
calculation of the entropy function, combined with the idea of permutation-invariant codes [BL25].
It would also be interesting and potentially impactful to explore geometric optimization for other
quantum resource theories [CG19,LRWW23,KDWW19,GA15,WWS19,WWS20,LRW+18,RFWA18,
WFD19,TR19,WJZ23] and quantum information–processing tasks [DTW16,DMHB13,ZLZW24,
CH17,CLM+14,ZZW+21], both to establish fundamental limits and to discover better protocols or
lower bounds of achievable rates.
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