Finite Block Length Analysis on Quantum Coherence Distillation and Incoherent Randomness Extraction

[2002.12004]

Masahito Hayashi^{1,2,3,4}, Kun Fang⁵, and Kun Wang⁶

 ¹Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology
 ² Guangdong Provincial Key Laboratory of Quantum Science and Engineering
 ³ Shenzhen Key Laboratory of Quantum Science and Engineering
 ⁴Graduate School of Mathematics, Nagoya University
 ⁵Institute for Quantum Computing, University of Waterloo
 ⁶Institute for Quantum Computing, Baidu Research

Beyond IID in Information Theory 8, 2020

PART 1: Coherence Distillation

PART 2: Assisted Coherence Distillation

PART 1: Coherence Distillation

[1.1] Coherence theory

Free states: incoherent (diagonal) states $\mathcal{I} := \left\{ \rho \ge 0 : \operatorname{Tr} \rho = 1, \rho = \Delta(\rho) \right\}$ **Resource states:** coherent (non-diagonal) states **Maximally coherent state:** $|\Psi_m\rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^m |i\rangle$

[1.2] Coherence distillation

$$\rho_B \longrightarrow \mathcal{O} \longrightarrow \approx_{\varepsilon} \Psi_m$$

One-shot distillable coherence

$$C_{d,\mathcal{O}}^{(1),\varepsilon}(\rho) := \max_{\Lambda \in \mathcal{O}} \log m$$

s.t. $P(\Lambda(\rho), \Psi_m) \le \varepsilon$

Asymptotic distillable coherence

$$C^{\infty}_{d,\mathcal{O}}(\rho) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} C^{(1),\varepsilon}_{d,\mathcal{O}}(\rho^{\otimes n})$$

Why do we do coherence distillation?

- 1. Quantum algorithm: [Hillery-2016-PRA]
- 2. Quantum state merging: [Streltsov et al-2016-PRL]
- 3. Quantum state redistribution: [Anshu-Jain-Streltsov-2018-arxiv]
- 4. Quantum random number generation: [Ma et al.-2019-PRA,

Hayashi-Zhu 2018-PRA]

[1.3] Previous works

one-s	hot	Second-ord	der analysis ?	asymptotic	
1 100		large bl	ocklength	∞	
	Operatio	ons Distillable coherence	Coherence cost	[Winter-Yang-2016-PRL] [Regula-Fang-Wang-Adesso-2018-PRL [Chitambar-2018-PRA]	
	MIO	C_r	C_r		
	DIO	C_r	C_r		
	Ю	C_r	C_{f}		
	SIO	Q	C_{f}	[Lami-2020-TIT]	
	PIO	Q	$C_f^{\mathcal{U}}$		

		MIO	DIO	ΙΟ	SIO				
One-shot 5	distillation	$\widetilde{C}_{H}^{arepsilon}$ [25]	$\widetilde{C}_{H}^{arepsilon}$ [25]	$\mathbf{C}_{\min}^{arepsilon'}$ [*]	Thm. 10 [*]				
	formation	C_{\max}^{ε} [24]	$C^{arepsilon}_{\Delta,\mathrm{max}}$ [24]	C_0^{ε} [24]	$C_0^{arepsilon}$ [24]				
[Regula-Fang-Wang-Adesso-2018-PRL] [Zhao-Liu-Yuan-Chitambar-Winter-2019-TIT]									

[1.4] Second-order analysis

Why do we study the second-order asymptotics?

- 1. A useful approximation to the distillable coherence for given *finite copies* of resource states.
- 2. Determines the *rate of convergence* of the distillable coherence to its first order coefficient.
- 3. Implies the *strong converse property*.

Difficulty

One-shot upper & lower bounds need to *match* dependently on error ε .

[1.5] Incoherent randomness extraction

Extraction protocol

[Hayashi-Zhu 2018 PRA]

- 1. Bob holds ρ_B with a purifying system R held by Eve;
- 2. Bob performs an incoherent operation Λ on system B whose environment system E is also held by Eve;
- 3. Bob applies a dephasing map (measurement) Δ on his state to obtain classical bits;
- 4. Bob applies a hash function *f* to extract randomness that is *secure from Eve*.

One-shot extractable randomness

$$\ell^{\varepsilon}_{\Lambda}(\rho_B) := \max_{f} \{ \log |L| : d_{sec}(\rho[\Lambda, \Delta, f]_{LER} | ER) \le \varepsilon \}$$
$$\ell^{\varepsilon}_{\mathcal{O}}(\rho_B) := \max_{\Lambda \in \mathcal{O}} \ell^{\varepsilon}_{\Lambda}(\rho_B), \quad d_{sec}(\rho_{BR} | R) := \min_{\sigma_R \in \mathcal{S}(R)} P(\rho_{BR}, \pi_B \otimes \sigma_R)$$

[1.6] Main result 1: one-shot equivalence

For any quantum state ρ_B , error tolerance $\varepsilon \in [0,1]$, and free operation class $\mathcal{O} \in \{\text{MIO}, \text{DIO}, \text{IO}, \text{DIIO}\}$, it holds

$$C^{\varepsilon}_{d,\mathcal{O}}(\rho_B) = \ell^{\varepsilon}_{\mathcal{O}}(\rho_B)$$

Coherence distillation

Incoherent randomness extraction

maximum number of coherent bits that can be distilled maximum number of secure random bits that can be extracted

[1.7] Proof ideas

Distillation protocol -> Randomness extraction protocol

For any free operation Λ such that $P(\Lambda(\rho_B),\Psi_C)\leq \varepsilon$

Then $(\Lambda, \Delta, \mathrm{id})$ is an incoherent randomness extraction protocol such that

 $d_{sec}(\rho[\Lambda, \Delta, \mathrm{id}]_{CER} | ER) \leq \varepsilon$

Randomness extraction protocol -> Distillation protocol

For any incoherent randomness extraction protocol (id,Δ,f) such that $d_{sec}(
ho[\mathrm{id},\Delta,f]_{LR}|R)\leq arepsilon$

Then there exists Γ in DIIO such that $P(\Gamma_{B \to L}(\rho_B), \Psi_L) \leq \varepsilon$

[1.8] Main result 2: second-order expansions

For any quantum state ρ_B , error tolerance $\varepsilon \in (0,1)$, and free operation class $\mathcal{O} \in \{MIO, DIO, IO, DIIO\}$, it holds that

 $C^{\varepsilon}_{d,\mathcal{O}}(\rho^{\otimes n}) = \ell^{\varepsilon}_{\mathcal{O}}(\rho^{\otimes n}) = nD(\rho \| \Delta(\rho)) + \sqrt{nV(\rho \| \Delta(\rho))} \, \Phi^{-1}(\varepsilon^2) + O(\log n).$

Remarks:

- 1. This is the *first* second-order analysis in coherence theory.
- 2. MIO/DIO/IO/DIIO have *equivalent power* for coherence distillation and randomness extraction in the large block length regime.
- 3. As coherence is generically undistillable under SIO/PIO [Lami et al.-2019-PRL, Lami-2019-TIT], our results have *completed* the second order analysis on distillable coherence under all major classes of free operations.
- 4. It gives an alternative proof of the strong converse property of coherence distillation [Zhao et al.-2019-TIT] and randomness extraction.

[Tomamichel-Hayashi-2013-TIT; Li-2014-AS]

$$D_{H}^{\varepsilon}(\rho^{\otimes n} \| \sigma^{\otimes n}) = nD(\rho \| \sigma) + \sqrt{nV(\rho \| \sigma)} \Phi^{-1}(\varepsilon) + O(\log n),$$

$$D_{\max}^{\varepsilon}(\rho^{\otimes n} \| \sigma^{\otimes n}) = nD(\rho \| \sigma) - \sqrt{nV(\rho \| \sigma)} \Phi^{-1}(\varepsilon^{2}) + O(\log n),$$

PART 2: Assisted Coherence Distillation

[2.1] Assisted coherence theory

Free states: quantum-incoherent states

$$\rho_{AB} = \sum p_i \rho_A^i \otimes |i\rangle\!\langle i|_B$$

Free operations:

Local incoherent operations and classical com. (LICC)

Local quantum-incoherent operations and CC (LQICC)

Separable incoherent operations (SI)

Separable quantum-incoherent operations (SQI)

Quantum-incoherent state preserving operations (QIP)

Chitambar-Streltsov-Rana-Bera-Adesso-Lewenstein-2016-PRL Streltsov-Rana-Bera-Lewenstein-2017-PRX

 ρ_{AB}

[2.2] Assisted coherence distillation

One-shot assisted distillable coherence

$$C_{d,\mathcal{F}}^{(1),\varepsilon}(\rho_{AB}) := \max_{\Lambda \in \mathcal{F}} \log m$$

s.t. $P(\operatorname{Tr}_{A'} \Lambda_{AB \to A'B'}(\rho_{AB}), \Psi_m) \le \varepsilon$

Asymptotic assisted distillable coherence

$$C^{\infty}_{d,\mathcal{F}}(\rho_{AB}) := \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} C^{(1),\varepsilon}_{d,\mathcal{F}}(\rho_{AB}^{\otimes n})$$

[2.3] Previous works

[2.4] Assisted incoherent randomness extraction

Extraction protocol:

- 1. Alice and Bob hold state ρ_{AB} with a purifying system R held by Eve;
- 2. Alice and Bob performs an quantum-incoherent operation Λ on AB and the environment system E is held by Eve;
- 3. Bob applies a dephasing map Δ on his state and obtains the classical bits;
- 4. Bob applies a hash function f to extract randomness that is secure from Eve.

One-shot assisted extractable randomness

$$\ell^{\varepsilon}_{\Lambda}(\rho_{AB}) := \max_{f} \left\{ \log |L| : d_{sec}(\rho[\Lambda, \Delta, f]_{LER} | ER) \le \varepsilon \right\}, \quad \ell^{\varepsilon}_{\mathcal{F}}(\rho_{AB}) := \max_{\Lambda \in \mathcal{F}} \ell^{\varepsilon}_{\Lambda}(\rho_{AB})$$

[2.5] Main result 3: one-shot equivalence

For any quantum state ρ_{AB} , error tolerance $\varepsilon \in [0,1]$, and free operation class QIP, it holds

$$C_{d,\text{QIP}}^{\varepsilon}(\rho_{AB}) = \ell_{\text{QIP}}^{\varepsilon}(\rho_{AB})$$

Assisted coherence distillation

Assisted incoherent randomness extraction

maximum number of coherent bits that can be assisted distilled maximum number of secure random bits that can be assisted extracted

[2.6] Main result 4: second-order expansions

For any quantum state ρ_{AB} , error tolerance $\varepsilon \in [0,1]$, and free operation class $\mathcal{F} \in \{\text{LICC}, \text{LQICC}, \text{SI}, \text{SQI}, \text{QIP}\}$, it holds that

$$C_{d,\text{QIP}}^{\varepsilon}\left(\rho_{AB}^{\otimes n}\right) = nD\left(\rho_{AB} \| \Delta_B(\rho_{AB})\right) + \sqrt{nV\left(\rho_{AB} \| \Delta_B(\rho_{AB})\right)} \Phi^{-1}(\varepsilon^2) + O(\log n),$$
$$\ell_{\mathcal{F}}^{\varepsilon}\left(\rho_{AB}^{\otimes n}\right) = nD\left(\rho_{AB} \| \Delta_B(\rho_{AB})\right) + \sqrt{nV\left(\rho_{AB} \| \Delta_B(\rho_{AB})\right)} \Phi^{-1}(\varepsilon^2) + O(\log n).$$

Remarks:

- 1. This is the *first* second-order analysis in assisted coherence theory.
- 2. Recover the unassisted case when ρ_{AB} is product.
- 3. LICC/LQICC/SI/SQI/QIP have *equivalent power* for assisted randomness extraction in the large block length regime.

- 1. Second order expansion of assisted distillation for LICC/LQICC/SI/SQI
- 2. Coherence distillation in the unassisted & assisted settings
 - Strong converse exponents
 - Error exponents
- 1. Coherence cost
 - What are the second order asymptotics of **coherence cost**?