Semidefinite programming converse bounds for quantum communication

arXiv:1709.00200

Kun Fang

Joint work with Xin Wang, Runyao Duan

Centre for Quantum Software and Information University of Technology Sydney

How well the simulation is? [Kretschmann, Werner, 2004]

- ◎ Channel distance $|| \mathcal{D} \circ \mathcal{N} \circ \mathcal{E} id_k ||_{\diamond}$.
- ◎ Channel fidelity $F(\Phi_k, \mathcal{D} \circ \mathbb{N} \circ \mathcal{E}(\Phi_k))$. \checkmark , where Φ_k is *k*-dimensional maximally entangled state.

o ...

- ◎ *r*: qubits transmitted per channel use.
- ◎ *n*: number of channel copies.
- $\odot \epsilon$: error tolerance.

◎ A triplet (r, n, ε) is achievable if $\exists \Phi_k, \varepsilon_n$ and \mathcal{D}_n such that $\frac{1}{n} \log k \ge r, \quad F(\Phi_k, \widetilde{\Phi}_k) \ge 1 - \varepsilon.$

Optimal achievable rate given n, ε

$$r^*(n, \varepsilon) := \max\{r : (r, n, \varepsilon) \text{ achievable}\}.$$

Quantum capacity

$$Q(\mathbb{N}) \coloneqq \lim_{\varepsilon \to 0} \lim_{n \to \infty} r^*(n, \varepsilon).$$

Theorem (Barnum, Nielsen, Schumacher, 1996-2000; Lloyd, Shor, Devetak, 1997-2005)

For any quantum channel N, it quantum capacity is equal to the regularized coherent information of the channel:

$$Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} I_c(\mathcal{N}^{\otimes n}),$$

where $I_c(\mathcal{N}) = \max_{\phi_{AA'}} I(A \rangle B)_{\mathcal{N}_{A' \to B}}(\phi_{AA'})$ and $\phi_{AA'}$ pure state.

- Not a single-letter formula.
- ◎ I_c (\mathbb{N}) not additive in general.

	Strong converse	Efficiently computable	For general channels
R	\checkmark	? (max-min)	\checkmark
ε - DEG	?	√ 	X
E_C	\checkmark	? (regularization)	\checkmark
Q_E	\checkmark	1	\checkmark
Q_{ss}	?	? (unbounded dimension)	\checkmark
Q_{Θ}	\checkmark	\checkmark	\checkmark

- ◎ R: Rains information [Tomamichel, Wilde, Winter, 2017]
- © ε-DEG: Epsilon degradable bound [Sutter, Scholz, Winter, Renner, 2014]
- ◎ E_C: Channel's entanglement cost [Berta, Brandão, Christandl, Wehner, 2013]
- $@ Q_E:$ Entanglement assisted quantum capacity [Bennett, Devetak, Harrow, Shor, Winter, 2014; Berta, Christandl, Renner, 2011]
- ◎ *Q*_{ss}: Quantum capacity with symmetric side channels [Smith, Smolin, Winter, 2008]
- ◎ *Q*_Θ: Partial transposition bound [Holevo,Werner, 2001]

One-shot quantum capacity

One-shot quantum capacity

O Unassisted code (UA):

$$\Pi_{A_i B_i \to A_o B_o} = \mathcal{E}_{A_i \to A_o} \otimes \mathcal{D}_{B_i \to B_o}.$$

 Positive partial transpose preserving (PPT) code: [Rains, 1999; Rains, 2001]

$$\Pi_{A_i B_i \to A_o B_o} \text{PPT operation} \quad J_{\Pi}^{T_{B_i B_o}} \geq 0.$$

 Non-signalling (NS) code: [Leung, Matthews, 2015; Duan, Winter, 2016]

$$\begin{aligned} \mathrm{Tr}_{A_o} \ J_{\Pi} &= \frac{\mathbbm{1}_{A_i}}{d_{A_i}} \otimes \mathrm{Tr}_{A_i A_o} \ J_{\Pi}, \quad (A \twoheadrightarrow B) \\ \mathrm{Tr}_{B_o} \ J_{\Pi} &= \frac{\mathbbm{1}_{B_i}}{d_{B_i}} \otimes \mathrm{Tr}_{B_i B_o} \ J_{\Pi}, \quad (B \twoheadrightarrow A) \end{aligned}$$

Maximum channel fidelity

$$F_{\Omega}(\mathcal{N},k) := \sup_{\Pi \in \Omega} \operatorname{Tr}\left(\underbrace{\Phi_k}_{input} \cdot \underbrace{\Pi \circ \mathcal{N}(\Phi_k)}_{output}\right)$$

One-shot quantum capacity

 $\begin{array}{c} & \text{error tolerance} \\ Q_{\Omega}^{(1)}(\mathbb{N}, \varepsilon) := \log \max \left\{ k : F_{\Omega}(\mathbb{N}, k) \geq 1 - \varepsilon \right\}. \end{array}$

(Asymptotic) quantum capacity

$$Q_{\Omega}(\mathbb{N}) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} Q_{\Omega}^{(1)}(\mathbb{N}^{\otimes n}, \varepsilon).$$

[Leung, Matthews, 2015]

$$F_{\Omega}(\mathcal{N}, k) = \max \operatorname{Tr} J_{\mathcal{N}} W_{AB} \text{ s.t. } 0 \le W_{AB} \le \rho_A \otimes \mathbb{1}_B, \operatorname{Tr} \rho_A = 1,$$

$$\mathbf{PPT:} - k^{-1} \rho_A \otimes \mathbb{1}_B \le W_{AB}^{T_B} \le k^{-1} \rho_A \otimes \mathbb{1}_B, \ \mathbf{NS:} \operatorname{Tr}_A W_{AB} = k^{-2} \mathbb{1}_B.$$

Optimization characterization

$$\begin{aligned} Q_{PPT}^{(1)}(N,\varepsilon) &= -\log\min m \\ \text{s.t. Tr } J_N W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes \mathbb{1}_B, \\ \text{Tr } \rho_A &= 1, -m\rho_A \otimes \mathbb{1}_B \leq W_{AB}^{T_B} \leq m\rho_A \otimes \mathbb{1}_B, \\ \begin{bmatrix} \text{Tr}_A W_{AB} &= m^2 \mathbb{1}_B \\ \text{NS condition} \end{bmatrix} \end{aligned}$$

$$Q_{PPT}^{(1)}(\mathcal{N},\varepsilon) = -\log\min m$$
s.t. $\operatorname{Tr} J_{\mathcal{N}} W_{AB} \ge 1 - \varepsilon, 0 \le W_{AB} \le \rho_A \otimes \mathbb{1}_B,$
 $\operatorname{Tr} \rho_A = \mathbb{1}, -m\rho_A \otimes \mathbb{1}_B \le W_{AB}^{T_B} \le m\rho_A \otimes \mathbb{1}_B.$

$$[\operatorname{Tr}_A W_{AB} = m^2 \mathbb{1}_B. \text{ NS condition}]$$
(1)

$$g(\mathcal{N}, \varepsilon) := \min \operatorname{Tr} S_A$$

s.t. $\operatorname{Tr} J_{\mathcal{N}} W_{AB} \ge 1 - \varepsilon, 0 \le W_{AB} \le \rho_A \otimes \mathbb{1}_B,$
 $\operatorname{Tr} \rho_A = \mathbb{1}, -S_A \otimes \mathbb{1}_B \le W_{AB}^{T_B} \le S_A \otimes \mathbb{1}_B.$ (2)

$$\begin{split} \widetilde{g} (\mathcal{N}, \varepsilon) &:= \min \operatorname{Tr} S_A \\ \text{s.t. } \operatorname{Tr} J_{\mathcal{N}} W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_A \otimes \mathbb{1}_B, \\ \operatorname{Tr} \rho_A &= 1, -S_A \otimes \mathbb{1}_B \leq W_{AB}^{T_B} \leq S_A \otimes \mathbb{1}_B, \\ \operatorname{Tr}_A W_{AB} &= t \mathbb{1}_B. \end{split}$$
(3)

 $\widehat{g}(\mathcal{N},\varepsilon) := \min \operatorname{Tr} S_A$

s.t.
$$\operatorname{Tr} J_{\mathcal{N}} W_{AB} \ge 1 - \varepsilon, 0 \le W_{AB} \le \rho_A \otimes \mathbb{1}_B,$$

 $\operatorname{Tr} \rho_A = 1, -S_A \otimes \mathbb{1}_B \le W_{AB}^{T_B} \le S_A \otimes \mathbb{1}_B,$ (4)
 $\operatorname{Tr}_A W_{AB} = t \mathbb{1}_B, t \ge \widehat{m}^2,$
 $\left(Q_{PPT \cap NS}^{(1)}(\mathcal{N}, \varepsilon) \le -\log \widehat{m}\right).$

[Tomamichel, Berta, Renes, 2016]

$$f(\mathcal{N}, \varepsilon) = \min \operatorname{Tr} S_A$$

s.t. Tr $J_{\mathcal{N}} W_{AB} \ge 1 - \varepsilon, S_A, \Theta_{AB} \ge 0, \operatorname{Tr} \rho_A = 1,$
$$0 \le W_{AB} \le \rho_A \otimes \mathbb{1}_B, S_A \otimes \mathbb{1}_B \ge W_{AB} + \Theta_{AB}^{T_B}.$$
 (5)

Theorem

For any quantum channel N and error tolerance ε , the inequality chain holds

$$Q^{(1)}(\mathcal{N},\varepsilon) \le Q^{(1)}_{PPT\cap NS}(\mathcal{N},\varepsilon) \le -\log \widehat{g}(\mathcal{N},\varepsilon) \le -\log \widetilde{g}(\mathcal{N},\varepsilon) \le -\log g(\mathcal{N},\varepsilon) \le -\log f(\mathcal{N},\varepsilon).$$
(6)

Example: Amplitude damping channel

Amplitude damping channel $\mathcal{N}_{AD} = \sum_{i=0}^{1} E_i \cdot E_i^{\dagger}$ with $E_0 = |0\rangle\langle 0| + \sqrt{1-r} |1\rangle\langle 1| \quad E_1 = \sqrt{r} |0\rangle\langle 1|, \quad 0 \le r \le 1$

Example: Qubit depolarizing channel

Qubit depolarizing channel $\mathcal{N}_D(\rho) = (1 - p)\rho + \frac{p}{3}(X\rho X + Y\rho Y + Z\rho Z)$,

where X, Y, Z are Pauli matrices.

Asymptotic quantum capacity

SDP strong converse bound for quantum capacity

$$\begin{split} Q_{ppT}^{(1)}\left(\mathcal{N},\varepsilon\right) &= -\log\min m\\ \text{s.t. } \operatorname{Tr} J_{\mathcal{N}}W_{AB} \geq 1 - \varepsilon, 0 \leq W_{AB} \leq \rho_{A} \otimes \mathbb{1}_{B},\\ \operatorname{Tr} \rho_{A} &= 1, -m\rho_{A} \otimes \mathbb{1}_{B} \leq W_{AB}^{T_{B}} \leq m\rho_{A} \otimes \mathbb{1}_{B}. \end{split}$$

Take $R_{AB} = W_{AB}/m$ and throw away the condition $W_{AB} \le \rho_A \otimes \mathbb{1}_B$, we obtain an additive SDP upper bound $Q_{PPT}^{(1)}(N, \varepsilon) \le Q_{\Gamma}(N) - \log(1 - \varepsilon)$, where

$$Q_{\Gamma}(\mathcal{N}) = \log \max \operatorname{Tr} J_{\mathcal{N}} R_{AB}$$

s.t. $R_{AB}, \rho_A \ge 0, \operatorname{Tr} \rho_A = 1,$
 $-\rho_A \otimes \mathbb{1}_B \le R_{AB}^{T_B} \le \rho_A \otimes \mathbb{1}_B.$ (7)

- ◎ Additivity: Q_{Γ} ($N \otimes M$) = Q_{Γ} (N) + Q_{Γ} (M) (by utilizing SDP duality).
- ◎ Converse bound for $Q(\mathcal{N})$: $Q(\mathcal{N}) \leq Q_{PPT}(\mathcal{N}) \leq Q_{\Gamma}(\mathcal{N})$.
- ◎ For noiseless quantum channel \mathcal{I}_d , $Q(\mathcal{I}_d) = Q_{\Gamma}(\mathcal{I}_d) = \log_2 d$.
- ◎ Strong converse: denote the n-shot optimal rate as *r*, then (*r*, *n*, *ε*) satisfies $nr \le nQ_{\Gamma}(\mathbb{N}) \log(1 \varepsilon)$, which implies $\varepsilon \ge 1 2^{n(Q_{\Gamma}(\mathbb{N}) r)}$.

Theorem (SDP strong converse bound for Q)

For any quantum channel N,

$$\begin{split} Q\left(\mathcal{N}\right) &\leq Q_{\Gamma}\left(\mathcal{N}\right) = \log\max\operatorname{Tr} J_{\mathcal{N}}R_{AB}\\ s.t. \ R_{AB}, \rho_{A} &\geq 0, \operatorname{Tr} \rho_{A} = 1,\\ &-\rho_{A} \otimes \mathbb{1}_{B} \leq R_{AB}^{T_{B}} \leq \rho_{A} \otimes \mathbb{1}_{B} \end{split}$$

The fidelity of transmission goes to zero if the rate exceeds $Q_{\Gamma}(N)$ *.*

How to understand $Q_{\Gamma}(\mathcal{N})$? $Q_{\Gamma}(\mathcal{N}) = \max_{\substack{\rho_{A} \in \mathcal{S}(A)}} E_{W}(\mathcal{N}_{A' \to B}(\phi_{AA'}))$ $= \max_{\substack{\rho \in \mathcal{S}(A)}} \min_{\sigma \in \text{PPT'}} D_{\max}(\mathcal{N}_{A' \to B}(\phi_{AA'}) \| \sigma)$

where $E_W(\rho) := \log \max \left\{ \operatorname{Tr} \rho R_{AB} : -\mathbb{1}_{AB} \leq R_{AB}^{T_B} \leq \mathbb{1}_{AB}, R_{AB} \geq 0 \right\}$, [Wang, Duan, 2016], $\phi_{AA'}$ is a purification of ρ_A and PPT' = { $\sigma \geq 0 : \|\sigma^{T_B}\|_1 \leq 1$ }.

Remark: For any EB channel \mathcal{N} , $Q_{\Gamma}(\mathcal{N}) = 0$. If $Q_{E}(\mathcal{N}) \neq 0$, $Q_{\Gamma}(\mathcal{N}) < Q_{E}(\mathcal{N})$.

Rains information [Tomamichel, Wilde, Winter, 2016]

 $R(\mathcal{N}) \coloneqq \max_{\rho \in \mathcal{S}(A)} \min_{\sigma \in \text{PPT'}} D\left(\mathcal{N}_{A' \to B}\left(\phi_{AA'}\right) \| \sigma\right)$ $Q_{\Gamma}(\mathcal{N}) = \max_{\rho \in \mathcal{S}(A)} \min_{\sigma \in \text{PPT'}} D_{\max}\left(\mathcal{N}_{A' \to B}\left(\phi_{AA'}\right) \| \sigma\right)$

Due to the fact that $D(\rho \| \sigma) \leq D_{\max}(\rho \| \sigma)$ [Datta, 2009], we have $R(\mathcal{N}) \leq Q_{\Gamma}(\mathcal{N})$.

R(*N*) strong converse but not known to be efficiently computable in general. *Q*_Γ(*N*) strong converse and efficiently computable in general.

Partial Transposition bound [Holevo, Werner, 2001]

 $Q(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N}) = \log ||\mathcal{N} \circ T||_{\diamond}$,

where *T* is the transpose map, $\|N\|_{\diamond} = \|N \otimes id\|_1$ and can be characterized by SDP from [Watrous, 2012].

Improved efficiently computable bound

For any quantum channel \mathcal{N} , it holds $Q_{\Gamma}(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N})$.

Example: $\mathcal{N}_r = \sum_i E_i \cdot E_i^{\dagger}$ where $E_0 = |0\rangle\langle 0| + \sqrt{r}|1\rangle\langle 1|$, $E_1 = \sqrt{1-r}|0\rangle\langle 1| + |1\rangle\langle 2|$.

Converse bounds comparison

For any quantum channel N, it holds

 $Q\left(\mathcal{N}\right) \leq R\left(\mathcal{N}\right) \leq \underline{Q}_{\Gamma}\left(\mathcal{N}\right) \leq \underline{Q}_{\Theta}\left(\mathcal{N}\right).$

Known converse bounds

	Strong converse	Efficiently computable	For general channels
QΓ	✓	✓	\checkmark
R	1	? (max-min)	\checkmark
ε - DEG	?	√ 	X
E_C	1	? (regularization)	\checkmark
Q_E	1	1	\checkmark
Q_{ss}	?	? (unbounded dimension)	\checkmark
Q_{Θ}	\checkmark	\checkmark	\checkmark

- ◎ Q_{Γ} : SDP strong converse bound in this talk.
- R: Rains information [Tomamichel, Wilde, Winter, 2017]
- © ε-DEG: Epsilon degradable bound [Sutter, Scholz, Winter, Renner, 2014]
- ◎ E_C: Channel's entanglement cost [Berta, Brandão, Christandl, Wehner, 2013]
- Q_E: Entanglement assisted quantum capacity [Bennett, Devetak, Harrow, Shor, Winter, 2014; Berta, Christandl, Renner, 2011]
- ◎ *Q*_{ss}: Quantum capacity with symmetric side channels [Smith, Smolin, Winter, 2008]
- ◎ Q_{Θ} : Partial transposition bound [Holevo,Werner, 2001]

Theorem (SDP converse bounds for finite blocklength Q)

For any quantum channel N and error tolerance ε , the inequality chain holds

$$\begin{aligned} Q^{(1)}(\mathcal{N},\varepsilon) &\leq Q^{(1)}_{PPT\cap NS}(\mathcal{N},\varepsilon) \\ &\leq -\log \widehat{g}(\mathcal{N},\varepsilon) \leq -\log \widetilde{g}(\mathcal{N},\varepsilon) \leq -\log g(\mathcal{N},\varepsilon) \leq -\log f(\mathcal{N},\varepsilon). \end{aligned}$$

Theorem (SDP strong converse bound for Q)

For any quantum channel N,

$$\begin{split} Q\left(\mathcal{N}\right) &\leq Q_{\Gamma}\left(\mathcal{N}\right) = \log\max\operatorname{Tr} J_{\mathcal{N}}R_{AB}\\ s.t. \ R_{AB}, \rho_{A} &\geq 0, \operatorname{Tr} \rho_{A} = 1,\\ &-\rho_{A} \otimes \mathbb{1}_{B} \leq R_{AB}^{T_{B}} \leq \rho_{A} \otimes \mathbb{1}_{B}. \end{split}$$

 $Q\left(\mathcal{N}\right) \leq R\left(\mathcal{N}\right) \leq \frac{Q_{\Gamma}\left(\mathcal{N}\right)}{Q_{\Theta}\left(\mathcal{N}\right)}.$

- How to apply our relaxation technique to Gaussian channels?
- Q_{Γ} does not work well for depolarizing channels. Can we obtain a better result from the linear programs \hat{g}, \tilde{g} or g?

THE END

THANK YOU!

References

- 1 S. Lloyd, "Capacity of the noisy quantum channel," Phys. Rev. A, vol. 55, no. 3, p. 1613, 1997.
- 2 P. W. Shor, "The quantum channel capacity and coherent information," in lecture notes, MSRI Workshop on Quantum Computation, 2002.
- 3 I. Devetak, "The private classical capacity and quantum capacity of a quantum channel," IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 44–55, 2005.
- 4 B. Schumacher and M. A. Nielsen, "Quantum data processing and error correction," Phys. Rev. A, vol. 54, no. 4, p. 2629, 1996.
- 5 H. Barnum, E. Knill, and M. A. Nielsen, "On quantum fidelities and channel capacities," IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1317–1329, 2000.
- 6 H. Barnum, M. A. Nielsen, and B. Schumacher, "Information transmission through a noisy quantum channel," Phys. Rev. A, vol. 57, no. 6, p. 4153, 1998.
- 7 M. Tomamichel, M. M. Wilde, and A. Winter, "Strong Converse Rates for Quantum Communication," IEEE Trans. Inf. Theory, vol. 63, no. 1, pp. 715–727, Jan. 2017.
- 8 M. Berta, F. G. S. L. Brandao, M. Christandl, and S. Wehner, "Entanglement cost of quantum channels," IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6779–6795, 2013.
- 9 D. Sutter, V. B. Scholz, A. Winter, and R. Renner, "Approximate Degradable Quantum Channels," arXiv:1412.0980, Dec. 2014.
- 10 C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, "The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels," IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2926–2959, 2014.

References

- 11 M. Berta, M. Christandl, and R. Renner, "The quantum reverse Shannon theorem based on one-shot information theory," Commun. Math. Phys., vol. 306, no. 3, pp. 579–615, 2011.
- 12 G. Smith, J. Smolin, and A. Winter, "The quantum capacity with symmetric side channels," IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4208–4217, 2008.
- 13 A. S. Holevo and R. F. Werner, "Evaluating capacities of bosonic Gaussian channels," Phys. Rev. A, vol. 63, no. 3, p. 32312, 2001.
- 14 E. M. Rains, "Bound on distillable entanglement," Phys. Rev. A, vol. 60, no. 1, p. 179, 1999.
- 15 E. M. Rains, "A semidefinite program for distillable entanglement," IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2921–2933, 2001.
- 16 D. Leung and W. Matthews, "On the Power of PPT-Preserving and Non-Signalling Codes," IEEE Trans. Inf. Theory, vol. 61, no. 8, pp. 4486–4499, Aug. 2015.
- 17 M. Tomamichel, M. Berta, and J. M. Renes, "Quantum coding with finite resources," Nat. Commun., vol. 7, p. 11419, 2016.
- 18 X. Wang and R. Duan, "Improved semidefinite programming upper bound on distillable entanglement," Phys. Rev. A, vol. 94, no. 5, p. 50301, Nov. 2016.
- 19 N. Datta, "Min-and max-relative entropies and a new entanglement monotone," IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2816–2826, 2009.
- 20 D. Kretschmann and R. F. Werner, "Tema con variazioni: Quantum channel capacity," New J. Phys., vol. 6, 2004.

