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A Bit of History

Physical scenario of preparational UR

M N

n—»/ﬁ—)p n—)/ﬁ—)q

A short history [see e.g. Coles-Berta-Tomamichel-Wehner’17, RMP]

1927, Heisenberg: (heuristic idea) impossible to prepare a state such that its outcome
probability distributions from the position and moment observables are both sharp.

* 1983, Deutsch: H (M) + H(N) > const.
* 1988, Maassen-Uffink:  H, (M) + Hg(N) > —loge, 1/a+1/8=2
» 2010, Berta-Christandl-Colbeck-Renes-Renner: H(M|B) + H(N|B) > —logc+ H(A|B)



A Plethora of Applications

Determine

» Nonlocality

e.g. Oppenheim, J. and Wehner, S., 2010. The uncertainty principle determines the
nonlocality of quantum mechanics. Science, 330(6007), pp.1072-1074.

Witness

» Entanglement

e.g. Hofmann, H.F. and Takeuchi, S., 2003. Violation of local uncertainty relations as a
signature of entanglement. Physical Review A, 68(3), p.032103.

Detect

. » Non-Markovianity
Uncertainty

R | t e.g. Maity, A.G., Bhattacharya, S. and Maujmdar, A.S., 2019. Detecting non-
elation Markovianity via uncertainty relations. arXiv preprint arXiv:1901.02372.

Secure

» Quantum Cryptography/QKD

e.g. Ng, N.H\., Berta, M. and Wehner, S., 2012. Min-entropy uncertainty relation for
finite-size cryptography. Physical Review A, 86(4), p.042315.

Certify

» Quantum Randomness

e.g. Miller, C.A. and Shi, Y., 2016. Robust protocols for securely expanding randomness and
distributing keys using untrusted quantum devices. Journal of the ACM (JACM), 63(4), p.33.




Majorization as Uncertainty Measure

1. Standard deviation, drawback: change under relabeling;
2. Entropy, no fundamental reason which entropy to use.

How to quantify “uncertainty”? @m

Axiomatic approach (Two intuitive assumptions):

1. Uncertainty should not be changed by relabeling (permutation);

(0.3,0.6,0.1) v.s. (0.1,0.3,0.6)

2. Uncertainty should not be decreased by forgetting information (discarding).

rp + (1 — r)wp should be more uncertain than p( or 7p)

[Friedland-Gheorghiu-Gour’13]
majorization is the most nature choice of uncertainty order;
any measure of uncertainty has to preserve the partial order induced by majorization,
i.e. any Schur-concave function is a valid uncertainty measure .
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Main Result
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Previous study Our focus point

Question: Given the information gain from the pre-testing, what is the uncertainty of
the post-testing before it is actually performed?

Complementary Information Principle

Let M = {|u;)};—; and N = {|v,)};_, be the measurements of pre- and post-testing
respectively. If the pre-testing outcome probability is given by p = (¢;)7_; , then the
post-testing outcome probability q is boundedasr <q < t .

1. r and t can be explicitly computed via semidefinite programs (SDPs).
r: nindependent SDPs of size n by n; t:2”nindependent SDPs of size n by n.

2. r and t are both unique and tight in majorization!

X<q<y =—=x<r<q<t<y



Lorenz Curve

L = (xz)@—l in non-increasing order Lorenz curve L(x {(k Z , 7,)}
1= k=0

= (0.5,0.3,0.2)  L(x)={(0,0),(1,0.5),(2,0.8),(3,1)}
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Lorenz Curve

L = (xz)@—l in non-increasing order Lorenz curve L(x {(k Z , 7,)}
1= k=0

= (0.5,0.3,0.2) L(x) =1{(0,0),(1,0.5),(2,0.8),(3,1)}
— (0.4,0.3,0.3)  L(y) ={(0,0),(1,0.4),(2,0.7), (3,1)}

Majorization relation Y < & ifandonlyif L(y) is everywhere below L(x)




Lorenz Curve

£ = (3%')?:1 in non-increasing order Lorenz curve L(x {(k Z , 7,)}
1= k=0

= (0.5,0.3,0.2) L(x) =1{(0,0),(1,0.5),(2,0.8),(3,1)}
— (0.4,0.3,0.3)  L(y) ={(0,0),(1,0.4),(2,0.7), (3,1)}

Majorization relation Y < & ifandonlyif L(y) is everywhere below L(x)

Remark:
a valid Lorenz curve is
necessarily concave.




Proof Intuition

M = {|u;)}7_q N = {|ve) }r—q

n_)'/ﬁ — P= (¢)j=1 n—>-/7"\ > q

Post-testing

%
Time

1 : The set of states compatible with the pre-testing
0.8} S(M,p) = {p: Tr|u;)(uslp = ¢;,Vj}
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Proof Intuition

N = {[ve) yiza

M = {|uy) ?:1

n—>- A= r= ()
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The set of states compatible with the pre-testing
S(M,p) = {p: Tr|us)(uj|p = c;,Vj}



Proof Intuition

M = {|u;)}7_q N = {|ve) }r—q

n—»/ﬁ — P= () n—»/ﬁ —q

Pre-testing Post-testing
1o —

1

The set of states compatible with the pre-testing
S(M,p) ={p: Tr|uj){ujlp = ¢;,Vj}
For givenp € S(M, p), the largest partial sum of 9
Tr N —
s TeNup Ny, =37, oo

Find the boundary points:

rr =| min |maxTr Ny, p
peS(M,p)| Ik

tr =| max |maxTr Ny p
peS(M,p)| Ik

0 : 2 3
Sample number 1000+




Proof Intuition

The set of states compatible with the pre-testing
S(M,p) = {p: Tr|uj)(uj|p = ¢;,Vj}

For given p € S(M, p), the largest partial sum of 4

max Tr Ny, p
Iy

Ny, = Zeak |ve) {ve|

Find the boundary points:

rr =| min |maxTr Ny, p
pES(M,p)| Ik
tr =| max |maxTrN
" peS(M,p)| Ik Il
Sample number 1000+
Remarks: 1. 7x = min |maxTr Ny pl= min [min{x:z > Tr Ny, p,VI}
peS(M,p)| Ik pES(M,p

2. Upper boundary t;. is not necessarily concave, thus may not be a valid
Lorenz curve. But we can construct a tightest concave curve above ;.
by a standard process (flatness process [see Cicalese- Vaccaro’02])



Application 1: Universal Uncertainty Region
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Application 1: Universal Uncertainty Region

Raw data set in the q/R"
high dimensional space



Application 1: Universal Uncertainty Region

Raw data set in the q/R"
high dimensional space



Application 1: Universal Uncertainty Region

Universal Uncertainty Region
(unique & tight in majorization)
Outer-approximation
of the raw data set, coincide if n =2
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Raw data set in the q/R"
high dimensional space



Application 1: Universal Uncertainty Region

— d

p— f(p)
q— g(q)

Raw data in the q/R"
high dimensional space

Universal Uncertainty Region
(unique & tight in majorization)
Outer-approximation
of the raw data set, coincide if n =2
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Uncertainty Region and Uncertainty relation

f(p)+g(q) >c Uncertainty Region
C L 2
Forbidden
Area )
v, > g(q)/R
C *

Uncertainty region is more informative than uncertainty relation in general.



Application 1: qubit case

M = {]0),11)}, N = {(l0) = v3]1))/2, (V3]0) + |1))/2}

------- MU bound  H.(M) + Hs(N) >1log(4/3),| 1/a+1/8=2
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Application 2: Majorization based QRTs

Task: Given an unknown pure state [¢V) and measurement device M

9) -5 J) = >Vl

) =D VEli) o) =D vEld ) fﬁ ) =1 <y

Strategy: 1. perform measurement M and obtain the pre-testing outcome P

2. Let N = {|j)};—1 be the post-testing and compute r and t by SDPs.
Wehave r < x < t.

yes
3.t <y e— X%t%}"—th’S@
Y =<T ) y<r<x% ‘¢>£>’S0>
otherwise = —————sssssssssm) No enough information



Summary & Discussions



o Complementary Information Principle: given the information gain from the pre-
testing outcome, we can fully characterize the uncertainty of the post-testing.
o Majorization bounds are SDP computable;
o Unique and tight in majorization.
o works for POVMs and even multiple measurements.

o Applications
o Universal uncertainty region
o Determine quantum state transformation
o Bounding joint uncertainty for any given measures

Open problems and future directions:

1. Is it possible to compute the majorization upper bound t in a single SDP,
instead of exponential many independent SDPs ?

2. Is there any more concrete applications of our general framework?
E.g. in quantum cryptography, ERP steering....



Thanks for your attention!
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