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Asymptotic equipartition property (AEP)
A form of the law of large numbers in information theory

Given i.i.d. random variables , the probability  satisfiesX1, X2, ⋯, Xn p(X1, X2, ⋯, Xn)

    in probability−
1
n

log p(X1, X2, ⋯, Xn) ⟶ H(X)

AEP or Shannon-MacMillan-Breiman theorem   

What is “asymptotic equipartition”?
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Lie in the heart of information theory:  
data compression, channel coding, cryptography…

Size of the typical set is nearly 

The typical set has probability nearly 

Elements in the typical set are nearly equiprobable

2nH(X)

1

Typical set v.s. Non-typical set

Bit strings of length n

What is “asymptotic equipartition”?
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More generic form of AEP in divergences

lim
ε→0

lim
n→∞

1
n

𝔻ε(P⊗n∥Q⊗n) = D(P∥Q)

Divergence of interest

Smoothing parameter KL divergence (relative entropy)

Probability distribution
 nonnegative function
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More generic form of AEP in divergences

lim
ε→0

lim
n→∞

1
n

𝔻ε(P⊗n∥Q⊗n) = D(P∥Q)

Chernoff-Stein Lemma: 

 hypothesis testing relative entropy𝔻 = DH

Shannon-McMillan-Breiman theorem:  
 or ,  constant function𝔻 = Hmin Hmax Q = 1 e.g. [Tomamichel, Colbeck, Renner 2009]

: the size of the typical set & : the distribution is uniform on the typical setHmax Hmin
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Generalization to quantum AEP?
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Generalization to quantum AEP?

lim
ε→0

lim
n→∞

1
n

𝔻ε(ρ⊗n∥σ⊗n) = D(ρ∥σ)

Quantum divergence

Smoothing parameter Umegaki (quantum) relative entropy

Density matrix
PSD operator
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Generalization to quantum AEP?

Many applications: quantum data compression, quantum state merging, 

quantum channel coding, quantum cryptography, and quantum resource theory…

•Hiai and Petz 1991: 

•Ogawa and Nagaoka 2000: remove -dependence in the outer limit

𝔻 = DH

ε
Quantum  
Stein’s lemma

•Tomamichel, Colbeck, Renner 2009: ,  and σAB = IA ⊗ ρB Hmin(A |B) Hmax(A |B)
•Tomamichel, Hayashi 2013: 𝔻 = Dmax ……

lim
ε→0

lim
n→∞

1
n

𝔻ε(ρ⊗n∥σ⊗n) = D(ρ∥σ)
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Generalization to quantum AEP?

Limited to singleton and i.i.d. structure

lim
ε→0

lim
n→∞

1
n

𝔻ε(ρ⊗n∥σ⊗n) = D(ρ∥σ)
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Generalization to quantum AEP?

Limited to singleton and i.i.d. structure

e.g. composite hypothesis

𝒜n ℬnV.S.

lim
ε→0

lim
n→∞

1
n

𝔻ε(ρ⊗n∥σ⊗n) = D(ρ∥σ)

Correlation: beyond i.i.d. source , 

Uncertainty: not singleton  and 

ρn ≠ ρ⊗n σn ≠ σ⊗n

ρn ∈ 𝒜n σn ∈ ℬn

What if?
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Generalization to quantum AEP?

Correlation: beyond i.i.d. source , 

Uncertainty: not singleton  and 

ρn ≠ ρ⊗n σn ≠ σ⊗n

ρn ∈ 𝒜n σn ∈ ℬn

What if?

e.g. composite hypothesis

Practical motivations in the classical setting e.g. [Levitan and Nerhav 2002, TIT] 
Classification with training sequences (e.g. speech recognition, signal detection) 

Detection of messages via unknown channels (e.g. radar target detection, watermark detection)

lim
ε→0

lim
n→∞

1
n

𝔻ε(ρ⊗n∥σ⊗n) = D(ρ∥σ)

𝒜n ℬnV.S.
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beyond i.i.d. and singleton 
Generalization to quantum AEP
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lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = ?

𝔻ε(𝒜n∥ℬn) := inf
ρn∈𝒜n,σn∈ℬn

𝔻ε(ρn∥σn)

A set of quantum states A set of PSD operators
𝒜n ℬnV.S.

beyond i.i.d. and singleton 
Generalization to quantum AEP
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lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = ?

beyond i.i.d. and singleton 
Generalization to quantum AEP

A very general framework that contains almost all existing quantum AEP in the literature

Including the generalized quantum Stein’s lemma, 


where  and  a set of quantum states𝒜n = {ρ⊗n} ℬn

Long Plenary 2 by Hayashi and Yamasaki & Short Plenary 3 by Lami, Berta, Regula   
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lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

beyond i.i.d. and singleton 
Generalization to quantum AEP

D∞(𝒜∥ℬ) := lim
n→∞

1
n

D(𝒜n∥ℬn)𝔻 ∈ {DH, Dmax}

Our answer   
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lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

beyond i.i.d. and singleton 
Generalization to quantum AEP

Generality (divergence):

two extreme cases  
any divergence in between or equivalent, yield the same result

𝔻 ∈ {DH, Dmax}

Our answer   

16



lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

Generality (sets):
(A.1) Each  is convex and compact;


(A.2) Each  is permutation-invariant; 

𝒜n

𝒜n

Polar set 𝒞∘ := {X : ⟨X, Y⟩ ≤ 1,∀ Y ∈ 𝒞}

(A.3) , for all ;


(A.4) , for all ;

𝒜m ⊗ 𝒜k ⊆ 𝒜m+k m, k ∈ ℕ

(𝒜m)∘
+ ⊗ (𝒜k)∘

+ ⊆ (𝒜m+k)∘
+ m, k ∈ ℕ

Our answer   
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lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

Generality (sets):
(A.1) Each  is convex and compact;


(A.2) Each  is permutation-invariant; 

𝒜n

𝒜n

Polar set 𝒞∘ := {X : ⟨X, Y⟩ ≤ 1,∀ Y ∈ 𝒞}

(A.3) , for all ;


(A.4) , for all ;

𝒜m ⊗ 𝒜k ⊆ 𝒜m+k m, k ∈ ℕ

(𝒜m)∘
+ ⊗ (𝒜k)∘

+ ⊆ (𝒜m+k)∘
+ m, k ∈ ℕ

More importantly, without (A.4), the AEP does not hold in general.

Counterexamples e.g. 

arXiv: 2501.09303v2 by Hayashi & arXiv: 2408.07067 by Lami, Berta, Regula   

Our answer   

19



lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

Efficiency:
Regularization instead of single-letter formula. But it can estimated by

1
m

DM(𝒜m∥ℬm) ≤ D∞(𝒜∥ℬ) ≤
1
m

D(𝒜m∥ℬm)

with explicit convergence guarantees,
1
m

D(𝒜m∥ℬm) −
1
m

DM(𝒜m∥ℬm) ≤
1
m

2(d2 + d)log(m + d)

Efficiently approximate  within an additive error by a quantum 
relative entropy program of polynomial size. [arXiv: 2502.15659]

D∞(𝒜∥ℬ)

Our answer   
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lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

Explicit finite  estimate:n

nD∞(𝒜∥ℬ)−O(n2/3 log n) ≤ 𝔻ε(𝒜n∥ℬn) ≤ nD∞(𝒜∥ℬ)+O(n2/3 log n)

Leading term independent of  (strong converse property)ε

The second order in  instead of , potential improvement existsO(n2/3 log n) O( n)

Leading term is regularized, but still provide an explicit estimate for finite , 

making its convergence controllable; a rare case in QIT

n

Our answer   
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Key technical tools

Measured relative entropy DM(ρ∥σ) := sup
M

D(Pρ,M∥Pσ,M)

DM(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≥ DM(ρ1∥σ1) + DM(ρ2∥σ2)Superadditivity D(ρ∥σ) = lim
n→∞

1
n

DM(ρ⊗n∥σ⊗n)

D

DM,α

DS,α

Suppose  and (𝒜1)∘
+ ⊗ (𝒜2)∘

+ ⊆ (𝒜12)∘
+ (ℬ1)∘

+ ⊗ (ℬ2)∘
+ ⊆ (ℬ12)∘

+

DM,α(𝒜12∥ℬ12) ≥ DM,α(𝒜1∥ℬ1) + DM,α(𝒜2∥ℬ2)

Superadditivity

Suppose  and 𝒜1 ⊗ 𝒜2 ⊆ 𝒜12 ℬ1 ⊗ ℬ2 ⊆ ℬ12

DS,α(𝒜12∥ℬ12) ≤ DS,α(𝒜1∥ℬ1) + DS,α(𝒜2∥ℬ2)

Subadditivity

Measured

Umegaki

Sandwiched

∀α > 1

∀0 < α < 1
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Recap: from AEP to generalized quantum AEP

    in probability−
1
n

log p(X1, X2, ⋯, Xn) ⟶ H(X)

lim
ε→0

lim
n→∞

1
n

𝔻ε(P⊗n∥Q⊗n) = D(P∥Q)

AEP

Quantum

lim
ε→0

lim
n→∞

1
n

𝔻ε(ρ⊗n∥σ⊗n) = D(ρ∥σ)

Generalized
lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)
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Applications

1. Quantum hypothesis testing between two sets of states 

2. Adversarial quantum channel discrimination 

3. A relative entropy accumulation theorem


4. Efficient bounds for quantum resource theory
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Application 1: Quantum hypothesis testing between two sets of states
A tester draws samples from two sets of quantum states, 

and performs measurements to determine which set the sample belongs to. 

As in standard hypothesis testing, the tester will make two types of errors:


Type-I error: sample from , but classified as from ,

Type-II error: sample from , but classified as from .


𝒜n ℬn
ℬn 𝒜n

α(𝒜n, Mn) := sup
ρn∈𝒜n

Tr [ρn(I − Mn)]

β(ℬn, Mn) := sup
σn∈ℬn

Tr [σnMn]

Type-I error

Type-II error Worst-case
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Application 1: Quantum hypothesis testing between two sets of states

α(𝒜n, Mn) := sup
ρn∈𝒜n

Tr [ρn(I − Mn)]

β(ℬn, Mn) := sup
σn∈ℬn

Tr [σnMn]

Type-I error

Type-II error

βε(𝒜n∥ℬn) := inf
0≤Mn≤I

{β(ℬn, Mn) : α(𝒜n, Mn) ≤ ε} βε(𝒜n∥ℬn) ≈ ?

Goal: Determine the optimal exponent at which the type-II error probability decays, 

while keeping the type-I error within a fixed threshold  (to control over false positives)ε

Worst-case

A tester draws samples from two sets of quantum states, 

and performs measurements to determine which set the sample belongs to. 

e.g. COVID-19: healthy 
people get a positive test
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Application 1: Quantum hypothesis testing between two sets of states

lim
n→∞

−
1
n

log βε(𝒜n∥ℬn) = D∞(𝒜∥ℬ) ∀ε ∈ (0,1)

Classical Chernoff-Stein Lemma

   Quantum Stein’s Lemma [Hiai, Petz 1991; Ogawa, Nagaoka 

Let  and  be two singletons. 𝒜n = {ρ⊗n} ℬn = {σ⊗n}

Generalized Quantum Stein’s Lemma ( )𝒜n = {ρ⊗n}

Long Plenary 2 by Hayashi and Yamasaki & Short Plenary 3 by Lami, Berta, Regula   

Our answer   

27



Story:    Generalized Quantum Stein’s Lemma ( )𝒜n = {ρ⊗n}

2010

Brandão and Plenio

2021

KF, Gour, Wang

2023

Berta, Brandão, Gour, Lami, 

Plenio, Regula, Tomamichel

2024

Hayashi and Yamasaki

LamiInitial statement

Plenty of applications

Channel Stein’s lemma

Triggers the finding 

of a gap 


in the original proof

Formally point out 

the gap and 


study the consequences

Two different solutions

KF, Fawzi, Fawzi  
(this work)

(Related to 

1k+citations)

Trigger

A.1 A.3

A.1 A.2 A.3

A.1 A.2 A.3
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Story:    Generalized Quantum Stein’s Lemma ( )𝒜n = {ρ⊗n}

Berta, Brandão, Gour, Lami, 

Plenio, Regula, Tomamichel

2024

Hayashi and Yamasaki

Lami

KF, Fawzi, Fawzi  
(this work)

(A.1) Each  is convex and compact;


(A.2) Each  is permutation-invariant; 


(A.3) , for all ;


(A.5)  contains a full-rank state


(A.6) Each  is closed under partial traces


(A.4) , for all ;

𝒜n

𝒜n

𝒜m ⊗ 𝒜k ⊆ 𝒜m+k m, k ∈ ℕ

𝒜1

𝒜n

(𝒜m)∘
+ ⊗ (𝒜k)∘

+ ⊆ (𝒜m+k)∘
+ m, k ∈ ℕ

A.1 A.3 A.5

A.1 A.2 A.3 A.5 A.6

A.1 A.2 A.3 A.4
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𝒜n

(𝒜m)∘
+ ⊗ (𝒜k)∘
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+ m, k ∈ ℕ

A.1 A.3 A.5

A.1 A.2 A.3 A.5 A.6

A.1 A.2 A.3 A.4

30

Our result is incomparable to the previous generalized quantum Stein lemma. 

Weaker: assume (A.4) for 


Stronger: 1. composite null hypothesis  instead of 

ℬn

𝒜n ρ⊗n

solves open problems 

in [Brandão, Harrow, Lee, Peres, 2020, TIT] and [Mosonyi, Szilagyi, Weiner, 2022, TIT]

2. efficient and controlled approximations of the Stein’s exponent D∞(𝒜∥ℬ)



Application 1’: Quantum resource theory and its reversibility
a.k.a, second law

ρ⊗n σ⊗m

Standard resource manipulation

𝒜n ℬn

Resource manipulation with partial information

Lack of knowledge of the states 

Different copies of the sources 

can exhibit correlation in nature

r (𝒜 RNG ℬ) =
D∞(𝒜∥ℱ)
D∞(ℬ∥ℱ)

Asymptotic resource nongenerating operations

[Brandão and Plenio, 2010] 

 is the set of free statesℱ
Optimal transformation rate
Our answer   
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Application 2: adversarial quantum channel discrimination

Operational setting: 

A tester is working with an untrusted quantum device that generates a quantum state upon request

Guarantee: either  (the bad case) or  (the good case)𝒩 ℳ

Request samples

Perform measurement

Make a guess

Untrusted 
Device

Adversary Tester
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Application 2: adversarial quantum channel discrimination

Operational setting: 

A tester is working with an untrusted quantum device that generates a quantum state upon request

Guarantee: either  (the bad case) or  (the good case)𝒩 ℳ

Request samples

Perform measurement

Make a guess

Untrusted 
Device

Adversary Tester

Environmental system of the channel

Internal memory correlates with the generated samples

Actively misleading the tester to correctly identify the channel

How effectively can the tester  

distinguish between the two cases  

while playing against the adversary? 

Classical setting refers to [Brandão, Harrow, Lee, Peres, 2020, TIT]
33



Application 2: adversarial quantum channel discrimination

Operational setting: 

A tester is working with an untrusted quantum device that generates a quantum state upon request

𝒩A→B = TrE ∘ 𝒰A→BE

ℳA→B = TrE ∘ 𝒱A→BE

Stinespring dilation

 environmental systems,  internal memories,  internal operations by adversaryEi Ri Pi /Qi

•  if device is ;


•  if device is 

𝒜n 𝒩

ℬn ℳ

Adaptive strategies 
by adversary

34

Due to the lack of knowledge of 
what the adversary do:



Application 2: adversarial quantum channel discrimination

Operational setting: 

A tester is working with an untrusted quantum device that generates a quantum state upon request

𝒩A→B = TrE ∘ 𝒰A→BE

ℳA→B = TrE ∘ 𝒱A→BE

Stinespring dilation

 environmental systems,  internal memories,  internal operations by adversaryEi Ri Pi /Qi

•  if device is ;


•  if device is 

𝒜′￼n 𝒩

ℬ′￼n ℳ

Non-adaptive strategies 
by adversary
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Due to the lack of knowledge of 
what the adversary do:



Application 2: adversarial quantum channel discrimination

The best performance of the tester playing against the adversary is given by:

Adaptive strategies 

by adversary

Non-adaptive strategies 

by adversary

Dinf(𝒩∥ℳ) := inf
ρ,σ∈𝒟

D(𝒩(ρ)∥ℳ(σ)) Dinf ,∞(𝒩∥ℳ) := lim
n→∞

1
n

Dinf(𝒩⊗n∥ℳ⊗n)

Minimum output 

quantum channel divergence

lim
n→∞

−
1
n

log βε(𝒜n∥ℬn) = lim
n→∞

−
1
n

log βε(𝒜′￼n∥ℬ′￼n) = Dinf ,∞(𝒩∥ℳ)

Adaptive strategies offer no advantage over non-adaptive ones 

in adversarial quantum channel discrimination.

Good news for the tester!

Our answer   

36



Application 2: adversarial quantum channel discrimination

The best performance of the tester playing against the adversary is given by:

lim
n→∞

−
1
n

log βε(𝒜n∥ℬn) = lim
n→∞

−
1
n

log βε(𝒜′￼n∥ℬ′￼n) = Dinf ,∞(𝒩∥ℳ)

Key technical tool (chain rule):

DM,α(𝒩A→B(ρRA)∥ℳA→B(σRA)) ≥ DM,α(ρR∥σR) + Dinf
M,α(𝒩A→B∥ℳA→B)

DS,α(𝒩A→B(ρRA)∥ℳA→B(σRA)) ≥ DS,α(ρR∥σR) + Dinf ,∞
S,α (𝒩A→B∥ℳA→B)
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Application 3: a relative entropy accumulation theorem

How entropy accumulate for sequential operations on a state? 
[Dupuis, Fawzi, Renner, 2020, CMP] Find plenty of applications in quantum cryptography

Hε
max(B1…Bn |C1…Cn)𝒩n∘⋯∘𝒩1(ρR0)

≤
n

∑
i=1

sup
ωRi−1

H(Bi |Ci)𝒩i(ω) + O( n)

Open question in [Metger, Fawzi, Sutter, Renner, 2022, FOCS] for Dmax ,ε

How to generalize from conditional entropy to relative entropy?
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Application 3: a relative entropy accumulation theorem

How entropy accumulate for sequential operations on a state? 
[Dupuis, Fawzi, Renner, 2020, CMP] Find plenty of applications in quantum cryptography

Hε
max(B1…Bn |C1…Cn)𝒩n∘⋯∘𝒩1(ρR0)

≤
n

∑
i=1

sup
ωRi−1

H(Bi |Ci)𝒩i(ω) + O( n)

Open question in [Metger, Fawzi, Sutter, Renner, 2022, FOCS] for Dmax ,ε

How to generalize from conditional entropy to relative entropy?

DH,ε (TrRn ∘
n

∏
i=1

𝒩i(ρR0
) TrRn ∘

n

∏
i=1

ℳi(σR0
)) ≥

n

∑
i=1

Dinf ,∞(TrRi ∘ 𝒩i∥TrRi ∘ ℳi) − O(n2/3 log n)

Recover with a 
slightly weaker 
second order

Our answer   
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Application 4: efficient bounds for quantum resource theory

(A.1) Each  is convex and compact;


(A.2) Each  is permutation-invariant; 


(A.3) , for all ;


(A.4) , for all ;

𝒜n

𝒜n

𝒜m ⊗ 𝒜k ⊆ 𝒜m+k m, k ∈ ℕ

(𝒜m)∘
+ ⊗ (𝒜k)∘

+ ⊆ (𝒜m+k)∘
+ m, k ∈ ℕ

If (A.4) is not directly satisfied, we do relaxation!!! 

Note that  is efficiently computableD∞(𝒜∥ℬ) := lim
n→∞

1
n

D(𝒜n∥ℬn)

SEP PPT Rains
X  (A.4)

D∞(ρAB∥ SEP) ≥ D∞(ρAB∥ Rains)

STAB Nonpositive 

mana

Improvement (even for the first level of approximation) 
• Entanglement cost of quantum states and channels

• Entanglement distillation

• Magic state distillation Refer to arXiv: 2502.15659 for more details
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Summary
Generalized quantum AEP  

(A.1) Each  is convex and compact;


(A.2) Each  is permutation-invariant; 


(A.3) , for all ;


(A.4) , for all ;

𝒜n

𝒜n

𝒜m ⊗ 𝒜k ⊆ 𝒜m+k m, k ∈ ℕ

(𝒜m)∘
+ ⊗ (𝒜k)∘

+ ⊆ (𝒜m+k)∘
+ m, k ∈ ℕ

Generality/efficiency/finite  estimaten Technical tools (superadditivity & chain rule):

lim
n→∞

1
n

𝔻ε(𝒜n∥ℬn) = D∞(𝒜∥ℬ)

As AEP is in the heart of information theory, we expect further studies and applications.

Already been used in [2502.02563] by Arqand and Tan for quantum cryptography

DM,α(𝒜12∥ℬ12) ≥ DM,α(𝒜1∥ℬ1) + DM,α(𝒜2∥ℬ2)

DM,α(𝒩A→B(ρRA)∥ℳA→B(σRA)) ≥ DM,α(ρR∥σR) + Dinf
M,α(𝒩A→B∥ℳA→B)
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I am hiring

Looking for postdocs, PhDs, research assistants… 

Quantum Information Theory, Quantum Computation

 

kunfang.info          kunfang@cuhk.edu.cn

One Brand, Two Campuses
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Thanks for your attention!
arXiv: 2411.04035 & 2502.15659

43


